Page	Line	Corrections
47	-1	$\left.-n \bar{y}]^{2} . \rightarrow-n \bar{y}^{2}\right]$.
95	-1	$z_{j} \rightarrow z_{i}$
175	19,21,23	" + " sign change to "-"
70	-1 to -13	Change to:
		Simply testing $\beta_{10}=\beta_{20}$ yields an $F=.76$ with a p-value 0.9827 , which makes it difficult to reject $\beta_{10}=\beta_{20}$. In testing $\beta_{11}=\beta_{21}$ against $\beta_{11} \neq \beta_{21}$ we get an F -value of .0005 with a p-value 0.3979 , very strong evidence in favor of the hypothesis

