STA 302 / 1001 (A. Gibbs)
Solutions to Additional Practice Problems for Chapter 2 of Sheather

1. Either the left hand side should be $Y_{i}$ or the $e_{i}$ should not be on the right hand side.
2. (a) The model would go through the origin.
(b) Minimize $\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1} x_{i}\right)^{2}$ by differentiating with respect to $\hat{\beta}_{1}$ and setting the derivative equal to 0 . This gives $\hat{\beta}_{1}=\sum y_{i} x_{i} / \sum x_{i}^{2}$.
(c) The model is a horizontal line. The fitted model would be $\hat{y}=\bar{y}$.
(d) Minimize $\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}\right)^{2}$ by differentiating with respect to $\hat{\beta}_{0}$ and setting the derivative equal to 0 . This gives $\hat{\beta}_{0}=\bar{y}$. This is unbiased for $\beta_{0}$ since $\mathrm{E}(\bar{Y})=\frac{1}{n} \sum \mathrm{E}\left(Y_{i}\right)=\beta_{0}$ since $\mathrm{E}\left(e_{i}\right)=0$.
3. (a)

$$
\begin{aligned}
\sum \hat{e}_{i} x_{i} & =\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) x_{i} \\
& =\sum\left(y_{i}-\bar{y}+\hat{\beta}_{1} \bar{x}-\hat{\beta}_{1} x_{i}\right) x_{i} \\
& =\sum x_{i} y_{i}-n \overline{x y}-\hat{\beta}_{1} S X X \\
& =0
\end{aligned}
$$

using $\hat{\beta}_{1}=\left(\sum x_{i} y_{i}-n \overline{x y}\right) / S X X$.
(b) $\sum \hat{e}_{i} \hat{y}_{i}=\sum\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right) \hat{e}_{i}=\hat{\beta}_{0} \sum \hat{e}_{i}+\hat{\beta}_{1} \sum x_{i} \hat{e}_{i}=0$ using $\sum \hat{e}_{i}=0$ and the result in part (a).
4. (a) When $x=0: N(10,4)$

When $x=5: N(35,4)$
(b) When $x=2$, the conditional distribution of $Y$ is $N(20,4)$ and the probability that it is between 16 and 20 is $\Phi\left(\frac{20-20}{2}\right)-\Phi\left(\frac{16-20}{2}\right)=0.477$ where $\Phi$ is the standard normal cumulative distribution function. (You should be able to approximate this (perhaps as 0.475 ) by knowing standard properties of the normal distribution.)
5. This could be an example of the regression effect where employees who did well before the training will tend to do worse, on average, the next time they are measured and employees who did poorly before the training will tend to do better, on average, the next time they are measured. However, the cut-off point (where the regression line crosses the line $y=x$ ) is at $x=400$. But for this situation, $x$ ranges from 40 to 100 . Therefore, on average, employees did better after the training. The slope of 0.95 is not the whole story!
6. The slope is not statistically significantly different from 0 . So the correct conclusions is that there is no evidence of a linear relationship between advertising expenditures and sales.

