
Some Statistics Background Needed for STA 302/1001

A.L. Gibbs

1 A Brief Review of the Distribution Theory for t-tests and Con-
fidence Intervals

Some facts related to Normally distributed random variables:

1. Consider a random variable X whose distribution is N(µ, σ2). To standardize X, let

Z =
X − µ
σ

then Z ∼ N(0, 1).

2. Any linear combination of Normally distributed random variables is also normally distributed.

3. If U and V are independent random variables with U ∼ N(0, 1) and V ∼ chisquare(m) then
U√
V/m

has a t distribution with m degrees of freedom.

4. If X1, X2, . . . , Xn are i.i.d. N(µ, σ2) random variables then

(a) X ∼ N
(
µ, σ

2

n

)
where X = 1

n

∑n
i=1Xi is an (unbiased) estimator of µ.

(b) An (unbiased) estimator of σ2 is

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

and (n− 1)S2/σ2 has a chisquare distribution with n− 1 degrees of freedom.

(c) S (the square root of S2) and X are independent.

(d)
(X − µ)/(σ/

√
n)

s/σ
=
X − µ
s/
√
n
∼ tn−1
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2 Confidence Intervals for the Mean of a Normal Distribution

Suppose x1, x2, . . . , xn are realizations of i.i.d. random variables X1, X2, . . . , Xn which have the
N(µ, σ2) distribution.

Then X−µ
S/
√
n
∼ tn−1 and

Pr

(∣∣∣∣∣X − µS/
√
n

∣∣∣∣∣ ≤ tn−1, α/2

)
= 1− α

where tn−1, α/2 is the value from the tn−1 distribution such that α/2 is the probability above it, i.e.
it is the 1− α/2 quantile from the tn−1 distribution.

The interval
x± tn−1, α/2

s√
n

is a 100(1− α)% confidence interval for µ where

x =
1
n

n∑
i=1

xi

and

s =

√√√√ 1
n− 1

n∑
i=1

(xi − x)2.

Note that the form of the C.I. is estimate ± quantile × standard error.

How to interpret the C.I.:

Confidence intervals calculated by this method from repeated samples from a N(µ, σ2)
distribution of size n will include the true (unknown) value of µ 100(1 − α)% of the
time.

A common misinterpretation of C.I.s:

The probability that µ is in the interval is 100(1− α)%.

What is the error in this misinterpretation?

Confidence intervals are given to give an idea of the precision of an estimate of a parameter.

Usual values of α:
0.01 (gives 99% C.I.)
0.05 (gives 95% C.I.)
0.10 (gives 90% C.I.)
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3 Steps for Hypothesis Testing

Note that the focus here is on getting and interpreting p-values and not on rejection regions, which
are useful for theoretical analysis but are limiting in practice.

1. Establish null (H0) and alternative (Ha) hypotheses for the value of the parameter of interest.
Typically the alternative hypothesis is what is of interest.

2. Calculate a test statistic whose distribution is known assuming that the null hypothesis is true.

3. Estimate the p-value. Assuming the null hypothesis is true, the p-value is the probability of
the value of the test statistic that was observed or a value more extreme (where “more ex-
treme” values belong to the alternative hypothesis). The p-value is a measure of the strength
of the evidence against H0 in favour of Ha.

4. If the p-value is small, then either:
(1)H0 is correct and the observed data happened to be one of those rare samples that produces
an unusual test statistic (Type I error)
or
(2) H0 is incorrect.
The smaller the p-value the stronger the evidence that H0 is incorrect. A large p-value
indicates that the data are consistent with H0 (which doesn’t necessarily mean that H0 is
true).

How small is “small”? The boundaries are grey, but here are some typical guidelines:
p > 0.1 No evidence against H0

0.05 < p < 0.1 Some weak evidence against H0 (suggestive but inconclusive)
0.01 < p < 0.05 Moderate evidence against H0

p < 0.01 Strong evidence against H0
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4 Tests for Comparing the Means of Two Normal Distributions

Probably the most commonly carried out tests in statistics are tests to compare whether two
independent samples are from distributions with the same mean, assuming the distributions are
normal. Even if they aren’t normal distributions, the tests are very robust since all sample means
are approximately normally distributed by the Central Limit Theorem.

Suppose we have a sample of size n1 from a random variable X1 ∼ N(µ1, σ
2
1) (i.e. n1 independent

realizations of X1) and a sample of size n2 from a random variable X2 ∼ N(µ2, σ
2
2). Comparing

whether µ1 = µ2 is equivalent to testing if µ1 − µ2 = 0 so we are interested in estimating µ1 − µ2

for which we’ll use the (unbiased) estimator X1 −X2. The distribution of the estimator is

X1 −X2 ∼ N
(
µ1 − µ2,

σ2
1

n1
+
σ2

2

n2

)

To test H0 : µ1 = µ2 versus Ha : µ1 6= µ2, the two independent sample t-test has as test statistic
(x1 − x2)/the standard error of (x1 − x2). There are two common approaches to calculating the
standard error.

1. Assume σ1 = σ2.
Then the test statistic

tobs =
x1 − x2

sp
√

1
n1

+ 1
n2

∼ tn1+n2−2

where sp is the pooled standard deviation

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

2. Don’t assume the standard deviations are equal.
Then the test statistic

tobs =
x1 − x2√
s21
n1

+ s22
n2

has approximately a t-distribution with the degrees of freedom estimated by the Satterthwaite
approximation

df =

(
s21
n1

+ s22
n2

)2

1
n1−1

(
s21
n1

)2
+ 1

n2−1

(
s22
n2

)2
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