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Summary: The study of dependence between random variables is a mainstay in Statistics. In

many cases the strength of dependence between two or more random variables varies according

to the values of a measured covariate. We propose inference for this type of variation using a

conditional copula model where the copula function belongs to a parametric copula family and

the copula parameter varies with the covariate. In order to estimate the functional relationship

between the copula parameter and the covariate, we propose a nonparametric approach based on

local likelihood. Of importance is also the choice of the copula family that best represents a given

set of data. The proposed framework naturally leads to a novel copula selection method based on

cross-validated prediction errors. We derive the asymptotic bias and variance of the resulting local

polynomial estimator, and outline how to construct pointwise confidence intervals. The finite sample

performance of our method is investigated using simulation studies and is illustrated using a subset

of the Matched Multiple Birth data.

Key words: Copula parameter; Copula selection; Covariate adjustment; Local likelihood; Local
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1. Introduction

Understanding dependence is an important, yet challenging, task in multivariate statistical

modeling. One often needs to specify a complex joint distribution of random variables to have

a complete view of the dependence structure. The challenge of constructing such multivariate

distributions can be significantly reduced if one uses a copula model to separate the marginal

components of a joint distribution from its dependence structure. Sklar’s theorem (1959)

is central to the theoretical foundation needed for the use of copulas as it states that a

multivariate distribution can be fully characterized by its marginal distributions and a copula,

i.e., a multivariate distribution function having uniform [0, 1] marginals.

In what follows, we focus on the bivariate case only for simplicity, the arguments being

extendable to more than two dimensions. Let Y1 and Y2 be continuous random variables of

interest with joint distribution function H and marginal distributions F1 and F2, respectively.

Sklar’s theorem ensures the existence of a unique copula C : [0, 1]2 → [0, 1], which satisfies

H(y1, y2) = C(F1(y1), F2(y2)), for all (y1, y2) ∈ R
2.

In the last twenty years copulas have been widely used in a variety of applied work. We refer

the reader to Embrechts et al. (2002), Cherubini et al. (2004) and Frees and Valdez (1998) for

applications specific to finance and insurance. In survival analysis, Clayton (1978), Shih and

Louis (1995), Wang and Wells (2000) and the monograph by Hougaard (2000) present the

copula techniques to model multivariate time-to-event data and competing risks. As a direct

result of their wide applicability, a large number of parametric families of copulas, typically

indexed by a real-valued parameter θ, have been proposed in the literature to represent

different dependence patterns. While the copula family describes the functional form, within

each family it is the copula parameter, θ, which controls the strength of the dependence. A

comprehensive introduction on copulas and their properties can be found in Nelsen (2006)

and the connections between various copulas and dependence concepts are discussed in detail
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by Joe (1997). If a parametric form is assumed for the copula function, estimation can be

achieved using maximum likelihood estimation for the single copula parameter (Joe, 1997;

Genest et al., 1995). Alternatively, estimation can be performed fully nonparametrically by

using kernel estimators (Fermanian and Scaillet, 2003; Chen and Huang, 2007).

Although copulas have been in use in the applied statistical literature for more than

twenty years, the covariate adjustment for copulas has been considered only recently. The

extension of Sklar’s theorem for conditional distributions (Patton, 2006) allows us to adjust

for covariates. For instance, if, in addition to Y1 and Y2, we have information on a covariate

X, then the influence of X on the dependence between Y1 and Y2 can be modeled by the

conditional copula C(· | X), which is the joint distribution function of U1 ≡ F1|X(Y1 | x) and

U2 ≡ F2|X(Y2 | x) given X = x, where Yi | X = x has cdf Fi|X(. | x), i = 1, 2. Patton (2006)

showed that for each x in the support of X, the joint conditional distribution is uniquely

defined by

HX(y1, y2 | x) = C(F1|X(y1 | x), F2|X(y2 | x) | x), for all (y1, y2) ∈ R
2. (1)

Conditional copulas have been used mostly in the context of financial time series to allow

for time-variation in the dependence structure via likelihood inference for ARMA models

(Patton, 2006; Jondeau and Rockinger, 2006; Bartram et al., 2007).

The main contribution of the current work is to provide a nonparametric procedure to

estimate the functional relationship between the copula parameter and the covariate(s). Our

motivation is to relax the parametric assumptions about this relationship. Since a parametric

model will only find features in the data that are already incorporated a priori in the model,

parametric approaches might not be adequate if the dependence structure does not fall into

a preconceived class of functions.

In Section 4 we investigate the impact of gestational age on the dependence between twin

birth weights using a subset of the Matched Multiple Birth Data Set. Among the twin
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live births, we consider those who were delivered between 28-42 weeks of gestation and

in which both twins survived for the first year of life. Our initial investigation, shown in

Figure 1, indicates a relatively stronger dependence between the birth weights (in grams)

of the preterm (28-32 weeks) and post-term (38-42 weeks) twins compared to the twins

delivered at term (33-37 weeks). This suggests the need of such nonparametric approach as

an exploratory tool for detecting the underlying functional relationship between the copula

parameter and the covariate.

[Figure 1 about here.]

Smoothing methods for function estimation have been substantially studied for various

problems. In this paper we use the local polynomial framework (see Fan and Gijbels, 1996,

for a comprehensive review) for the covariate adjusted copula estimation via local likelihood-

based models (Tibshirani and Hastie, 1987). In practice, all inferential methods for copulas

must be accompanied by a strategy to select among a number of copula families the one that

best approximates the data at hand. Choosing an appropriate family of copulas to fit a given

set of data is challenging and has recently attracted considerable interest. Some methods

for copula selection include goodness-of-fit tests based on the empirical copula (Durrleman

et al., 2000), on the Kendall process (Genest and Rivest, 1993; Wang and Wells, 2000;

Genest et al., 2007), and on kernel density estimation (Fermanian, 2005; Craiu and Craiu,

2008). Our estimation procedure naturally leads to a novel copula selection method based on

cross-validated prediction error. Besides being data-adaptive, the proposed selection criterion

makes comparisons across copula families possible due to its general applicability.

The paper is organized as follows. In Section 2, we present the proposed estimation

procedure, discuss aspects related to copula selection, and derive the asymptotic bias and

variance of the nonparametric estimator used for constructing pointwise confidence bands.

Section 3 contains our simulation studies and in Section 4 we use the Matched Multiple Birth
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Data Set to investigate the influence of the gestational age on the structure of dependence

between the twin birth weights. Discussion and conclusions are presented in Section 5.

Technical details and additional simulated and real data examples can be found in the Web

Appendix.

2. Methodology

2.1 Proposed method

Let Y1 and Y2 be continuous variables of interest and X be a continuous variable that may

affect the dependence between Y1 and Y2. We consider the model (1) with the conditional

density hX(Y1, Y2 | x; θ, α1, α2) in which our main interest lies in the conditional copula

parameter θ, while the conditional marginal densities f1|X and f2|X are characterized by α1

and α2, respectively,

hX(y1, y2 | x; θ, α1, α2) = f1|X(y1 | x; α1) f2|X(y2 | x; α2) c(u1, u2 | x; θ, α1, α2),

where ui = Fi|X(yi | x; αi), i = 1, 2 and c(u1, u2 | x; θ, α1, α2) is the conditional copula density.

Here, we impose a minimal requirement that the parameters that govern the marginals are

different from the copula parameter. It is easy to see that such a requirement is not restrictive,

for instance, in a regression setting, marginals may correspond to mean effects and the copula

to covariance structure. Hence, the estimation can be performed in two-stages, first for the

marginal parameters and then for the copula. Then, by replacing the estimates F̂1|X(y1 | x)

and F̂2|X(y2 | x) in (1), we can estimate the functional form of the copula parameter.

Since our main focus is on the dependence structure, we assume that the conditional

marginal distributions F1|X and F2|X are known, and consider the following model

(U1i, U2i) | Xi ∼ C(u1i, u2i | θ(xi) ),

where θ(xi) = g−1(η(xi)), i = 1, . . . , n.

Here, g−1 : R → Θ is the known inverse link function, which ensures that the copula
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parameter has the correct range, and η is the unknown calibration function to be estimated.

The term calibration emphasizes that the level of dependence is adjusted for the covariate

effect on the copula parameter. Analogous to the generalized linear models one needs to

choose an appropriate link function, since there is no guarantee that the estimate of θ is

in the correct parameter range for the particular copula family under consideration. For

instance, for the Clayton copula family θ ∈ (0,∞), so we use g−1(t) = exp(t). As long as the

link function is monotone the choice is irrelevant, since inference is invariant to monotone

transformations of θ.

We begin with a classical polynomial functional form to motivate the proposed nonpara-

metric strategy. If the relationship between θ and X falls into a pre-specified class of func-

tions, for instance, the polynomials up to degree p, we may estimate the calibration function

η(·) via maximum likelihood estimation. More specifically, we write η(X) =
∑p

j=0 β̃jX
j , and

estimate β̃ = (β̃0, β̃1, . . . , β̃p)
T by maximizing L(β̃) =

∑n
i=1 ln c(U1i, U2i | g−1(β̃0 + β̃1Xi +

· · ·+ β̃pX
p
i )).

However, for most copula families, the function η(·) is not necessarily well approximated

by a pre-conceived polynomial model. Moreover, in contrast to classical regression, the form

of the calibration function η(·) characterizing the underlying dependence structure is more

difficult to discern by simply inspecting the data. Therefore, a nonparametric approach for

estimating such a latent function is more needed here than it is in the classical regression

context.

We adopt the local polynomial framework (Fan and Gijbels, 1996) within the local likeli-

hood formulation (Tibshirani and Hastie, 1987) as follows. Assume η has (p+1)th continuous

derivatives at an interior point x. For data points Xi in the neighborhood of x, we approxi-

mate η(Xi) by a Taylor expansion of polynomial of degree p,

η(Xi) ≈ η(x) + η′(x)(Xi − x) + · · · + η(p)(x)

p!
(Xi − x)p ≡ xT

i,xβ,
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where xi,x = (1, Xi − x, . . . , (Xi − x)p)T and β = (β0, β1, . . . , βp)
T with βν = η(ν)(x)/ν!. In

our implementations we use the commonly adopted local linear fit, i.e. p = 1, as in Fan and

Gijbels (1996).

The contribution of each data point (U1i, U2i) | Xi in a neighborhood of x to the local

likelihood is given by ln c(U1i, U2i | g−1(xT
i,xβ)). The weighted sum of contributions forms

the conditional local log-likelihood

L(β, x, p, h) =

n∑

i=1

ln c(U1i, U2i | g−1(xT
i,xβ)) Kh(Xi − x),

where h is a bandwidth controlling the size of the local neighborhood and Kh(·) = 1/h K(·/h)

with K a kernel function assigning weights to the data points in a certain local “window”. In

our implementations we use the commonly adopted Epanechnikov kernel, K(z) = 3/4(1 −

z2)+, where the subscript “+” denotes the positive part.

The local maximum likelihood estimator β̂ = (β̂0, β̂1, . . . , β̂p)
T is thus obtained by solving

the following estimating equation,

∇L(β, x) =
∂L(β, x, p, h)

∂β
= 0. (2)

The numerical solution for (2) is found via the Newton-Raphson iteration

βm+1 = βm − [∇2L(βm, x)]−1∇L(βm, x), m = 0, 1, . . . ,

where ∇L denotes the score vector and ∇2L the hessian matrix (expressions of ∇L and

∇2L can be found in the Web Appendix). One can then obtain the estimator for η(ν)(x),

ν = 0, . . . , n, where of particular interest is η̂(x) = β̂0(x). Finally, the copula parameter is

estimated at covariate value x by applying the inverse link function

θ̂(x) = g−1(η̂(x)).

2.2 Model tuning

For practical implementation, we distinguish two aspects of dependence in copula models,

which are the level of dependence within the copula function and, more importantly, the
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functional dependence characterized by the copula family. We shall deal with both facets

of the model tuning corresponding to selection of the smoothing bandwidth and the copula

family.

Various methods for bandwidth selection exist in the literature, including cross-validation

techniques, plug-in methods, and others. Since our estimation procedure is based on the

local copula likelihood, the leave-one-out cross-validated local likelihood serves as a natural

choice for the bandwidth selection.

Let θ̂h(·) denote the estimate of the copula parameter function depending on a bandwidth

parameter h. For each 1 6 i 6 n, we leave out the data point (U1i, U2i, Xi) and use the

remaining data {U1j , U2j, Xj , j 6= i} to obtain θ̂
(−i)
h (Xi), the estimate of the copula parameter

θ at Xi. The estimates obtained by leaving out the ith data point, are then used to build the

objective function depending on the bandwidth parameter,

B(h) =
n∑

i=1

ln c(U1i, U2i | θ̂
(−i)
h (Xi)). (3)

The optimum bandwidth h∗ is the one that maximizes (3). In practice, when the underlying

function has spiky features and/or the covariate design is highly nonuniform, one may use a

nearest neighbor type of variable bandwidth selection that chooses a suitable proportion of

data points contributing to each local estimate in a manner similar to (3).

One can see that the above general principle of the cross-validated likelihood does not

apply to the selection of copula family, as the scale of likelihoods varies across families.

It is necessary to characterize the goodness-of-fit using different families on a comparable

benchmark. Here we propose the cross-validated prediction of each response variable based

on the other in a symmetric fashion. One can certainly modify the proposed criterion below

if not both variables are of equal interest.

Suppose we have a (finite) set of candidate families C = {Cq : q = 1, . . .Q}, from which we

want to choose the one that represents best the data at hand. For the qth copula family the
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bandwidth selection process yields the optimal bandwidth h∗
q . For each left-out sample point

(U1i, U2i, Xi), we obtain the estimate for the conditional copula’s parameter θ̂
(−i)
h∗

q
, which, in

turn, leads to the best candidate model from the qth family, Cq(U1i, U2i | θ̂
(−i)
h∗

q
(Xi)), with

i = 1, . . . , n, q = 1, . . . , Q. We use the conditional expectation formula to measure the

predictive ability for each of the candidate models. Within family Cq, the best conditional

prediction for U1i is

Ê(−i)
q (U1i | U2i, Xi) =

∫ 1

0

U1 cq(U1, U2i | θ̂
(−i)
h∗ (Xi)) dU1.

Then, the cross-validated prediction error (CVPE) is used to define the model selection

criterion

CVPE(Cq) =

n∑

i=1

{
(U1i − Ê(−i)

q (U1i | U2i, Xi))
2 + (U2i − Ê(−i)

q (U2i | U1i, Xi))
2
}

. (4)

The copula family Cq which yields the minimum CVPE(Cq) value is selected. This criterion

can be justified as follows. If we denote M0 as the true copula family and M the working

copula family, then the first part in (4) normalized by 1/n is an approximation of EM0
[(U1 −

EM [U1|U2, X])2|U2, X] which is minimized when the model M is correctly specified, i.e.

M = M0. A similar result holds for the second part in (4).

2.3 Asymptotic properties

Before presenting the main results, we shall introduce some notation. Let fX(·) > 0 be

the density function of the covariate X. Denote the moments of K and K2 respectively

by µj =
∫

tjK(t)dt and νj =
∫

tjK2(t)dt, and write the matrices S =
(
µj+ℓ

)
06j,ℓ6p

, S∗ =

(
νj+ℓ

)
06j,ℓ6p

, the (p + 1)× 1 vectors sp = (µp+1, . . . , µ2p+1)
T , as well as the unit vector e1 =

(1, 0, . . . , 0)T . For simplicity, we use ℓ (θ, U1, U2) = ln c(U1, U2 | θ) for the log-copula density

and denote its first and second derivatives with respect to θ by ℓ′(θ, U1, U2) = ∂ℓ(θ, U1, U2)/∂θ

and ℓ′′(θ, U1, U2) = ∂2ℓ(θ, U1, U2)/∂θ2, respectively. For a fixed point x lying in the interior

of the support of fX , define σ2(x) = −E{ ℓ′′ (g−1(η(x)), U1, U2) | X = x}.
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For our derivations, we require the assumptions given in the Appendix. The assumption

(A1) is to ensure that the copula density satisfies the first and second order Bartlett identities.

Further discussion on condition (A1) for certain copula families can be found in Hu (1998)

and Chen and Fan (2006). The mild regularity conditions in (A2) are commonly adopted in

nonparametric regression.

Typically, an odd order polynomial fit is preferred to an even order fit in local polynomial

modeling, as the latter induces a higher asymptotic variance (see Fan and Gijbels, 1996, for

details). Therefore, we consider only the odd order fits in the asymptotic expressions for the

conditional bias and variance. The following theorem summarizes the main results, denoting

the collection of covariate/design variables {X1, . . . , Xn} by X, while the technical details

are deferred to the Web Appendix.

Theorem 1: Assume that (A1) and (A2) hold, h → 0 and nh → ∞ as n → ∞, for an

odd order local polynomial fit of degree p,

Bias(η̂(x) | X) = eT
1 S−1 sp

η(p+1)(x)

(p + 1)!
hp+1 + op(h

p+1),

V ar(η̂(x) | X) =
1

nh f(x) [(g−1)′(η(x))]2 σ2(x)
eT

1 S−1 S∗ S−1 e1 + op(
1

nh
).

As a direct corollary of Theorem 1, we obtain the asymptotic conditional bias and variance

of the copula parameter estimator, θ̂(x) = g−1(η̂(x)).

Corollary 1: Assume that conditions of Theorem 1 holds, then

Bias(θ̂(x) | X) = eT
1 S−1 sp

η(p+1)(x)

g′(θ(x)) (p + 1)!
hp+1 + op(h

p+1), (5)

V ar(θ̂(x) | X) =
1

nh f(x)σ2(x)
eT

1 S−1 S∗ S−1 e1 + op(
1

nh
). (6)

One can use the result of Corollary 1 to approximate the bias and variance of the esti-

mated copula parameter. The unknown quantity σ2(x) in the variance expression can be
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approximated by

σ̂2(x) = −
∫ 1

0

∫ 1

0

ℓ′′ (θ̂(x), U1, U2) c(U1, U2 | θ̂(x)) dU1 dU2. (7)

The approximate 100(1−α)% pointwise confidence bands for the copula parameter are given

by,

θ̂(x) − b̂(x) ± z1−α/2 V̂ (x)1/2, (8)

where b̂(x) and V̂ (x) are the estimated bias and variance based on (5) and (6), and z1−α/2 is

the 100(1 − α/2)th quantile of the standard normal distribution. In practice, estimating the

bias can be difficult due to unknown higher order derivatives (see Fan and Gijbels, 1996, for

further discussion on bias correction). Alternatively, when variability plays a dominant role

in (8), one may use a smaller bandwidth to bring the bias down to negligible levels (Fan and

Zhang, 2000).

In practice, the estimation of the conditional marginal distributions may have an impact

on the inference of the copula parameter. If the marginal distributions can be adequately

characterized by a parametric model, as in the example considered in Section 4, the
√

n-

convergence rate is negligible compared to the nonparametric convergence rate, i.e., the

additional variability due to the estimation of the conditional marginals can be ignored.

In the case when the marginal conditional distributions are estimated nonparametrically,

the rate of convergence is of the same order as that of the copula estimator. It is thus difficult

to analytically assess the two sources of uncertainty in a unified manner. A theoretical

investigation of this scenario is of substantial interest, but requires a different framework. In

practice, one viable way to incorporate the uncertainty from nonparametrically estimated

marginals is to bootstrap the raw data and calculate the quantile-based bootstrap confidence

bands. We illustrate this approach in Figure 7 in the Web Appendix using the twin data

set. It is not surprising that, due to the uncertainty in the nonparametric marginals, the

bootstrap bands are wider than the asymptotic ones using (8). Thus in the absence of an
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adequate parametric marginal model, we suggest the use of the raw bootstrap approach.

Nevertheless, the construction of more computationally efficient and theoretically justified

inference procedures is of great importance and constitutes a central topic of our future

efforts.

3. Simulation Study

This section illustrates the finite sample performance of the local copula parameter estima-

tion and the copula selection method. We consider the Clayton, Frank and Gumbel families

of copulas in simulations. These choices cover a wide range of situations as the Clayton and

Gumbel copulas are known to exhibit strong and weak lower tail dependence, respectively,

while the Frank copula is symmetric and shows no tail dependence. Basic properties of these

copulas can be found in the Appendix.

The inverse link functions are chosen as g−1(t) = exp(t) for the Clayton copula, g−1(t) = t

for the Frank copula and g−1(t) = exp(t) + 1 for the Gumbel copula, so that the resulting

copula parameter estimates will be in the correct range.

We generate the data {(U1i, U2i | Xi) : i = 1, 2, . . . , n} from the Clayton copula under each

of the following models:

(1) Linear calibration function : η(X) = 0.8X − 2

(U1, U2) | X ∼ C(u1, u2 | θ = exp(0.8X − 2) ) where X ∼ Uniform(2, 5),

(2) Quadratic calibration function: η(X) = 2 − 0.3(X − 4)2

(U1, U2) | X ∼ C(u1, u2 | θ = exp(2 − 0.3(X − 4)2) ) where X ∼ Uniform(2, 5).

We first generate the covariate values Xi from Uniform (2, 5). Then, for each i = 1, 2, . . . , n,

we obtain the copula parameter, θi = exp(η(xi)), imposed by the given calibration and link

functions, and simulate the pairs (U1i, U2i) | Xi from the Clayton copula with the parameter

θi. The true copula parameter varies from 0.67 to 7.39 in the linear calibration model, and
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from 2.22 to 7.39 in the nonlinear one. Under each model, we conduct experiments with

sample sizes n = 200 and n = 500, each replicated m = 100 times. Additional simulation

results in which the true underlying model is based on the Frank copula are included in the

Web Appendix.

To estimate the copula parameter, we perform the local linear estimation, with p = 1,

under each family, as well as the parametric estimation in which η is assumed to be linear in

X. By performing the estimation also under the Frank and Gumbel families, we investigate

the impact of the copula (mis)specification. We compare our proposed approach with the

parametric estimation when the underlying calibration function is correctly specified, as

in the first model, and when it is misspecified, as in the second one. For the bandwidth

parameter, we consider 12 candidate values, ranging from 0.33 to 2.96, equally spaced on a

logarithmic scale. All results reported are based on the local estimates at the chosen optimum

bandwidth, which is given by the cross-validated likelihood criterion (3).

Since the accuracy of the calibration estimation is not directly comparable across different

copula families, we convert the copula parameters to a common scale provided by the

Kendall’s tau measure of association, a widely used approach in copula inference (Trivedi

and Zimmer, 2007). The population version of Kendall’s tau can be expressed in terms of a

conditional copula function

τC(x) = 4

∫ 1

0

∫ 1

0

C(u1, u2 | x)dC(u1, u2 | x) − 1.

For each of the three families, we report the connection between θ and Kendall’s tau in the

Appendix. Table 1 displays the Monte Carlo estimates of the integrated Mean Square Error

(IMSE) along with the integrated square Bias (IBIAS2) and integrated Variance (IVAR),

IBIAS2(τ̂) =

∫

X

(
E(τ̂(x)) − τ(x)

)2
dx, IVAR(τ̂ ) =

∫

X
E

[(
τ̂ (x) − E(τ̂(x))

)2]
dx,

IMSE(τ̂) =

∫

X
E

[
(τ̂(x) − τ(x))2

]
dx = IBIAS2(τ̂) + IVAR(τ̂ ).

[Table 1 about here.]
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From Table 1 we see that the parametric estimation performs better under the linear

calibration model when it is using the correct functional form. However, when there is no

known parametric model for the calibration function, the proposed nonparametric approach

better captures the covariate effect on the copula parameter. The results also show that

the performance of the estimation deteriorates as the properties of the used copula family

significantly depart from the true one. Since the Frank copula, having no tail dependence,

is closer to the Clayton copula than is the Gumbel copula, it yields better results in all

simulation scenarios compared to Gumbel.

We also construct the approximate 90% pointwise confidence bands for the copula param-

eter under the correctly selected Clayton family, where the bias is much smaller than the

variance as noticed in Table 1. We thus use half of the optimum bandwidth to assess σ2(x)

in (7) while further reducing the bias to a negligible level (Fan and Zhang, 2000). To be

consistent, for each Monte Carlo sample, the confidence intervals obtained for the copula

parameter are converted to the Kendall’s tau scale. Figure 2 displays the confidence bands

for the Kendall’s tau, averaged over 100 Monte Carlo samples (n = 200). For comparison, we

present the Monte Carlo based confidence bands obtained from 100 estimates of Kendall’s

tau, which agree well with our proposal.

[Figure 2 about here.]

For the copula selection, we calculate the cross-validated prediction errors (4) and evaluate

the performance by counting the number of times the Clayton copula is selected. The results

show that we successfully identify the true copula family, 91% (n=200) and 99% (n=500)

of the times under the linear calibration model; and 97% (n=200) and 100% (n=500) of the

times under the quadratic calibration model.
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4. Data Example: Gestational age-specific birth weight dependence in twins

We now apply our proposed method to a subset of the Matched Multiple Birth Data Set.

The data containing all twin births in the United States from 1995 to 2000 enables detailed

investigation of twin gestations. In our application, we consider the twin live births in which

both babies survived their first year of life with mothers of age between 18 and 40. Of interest

is the dependence between the birth weights of twins (in grams), denoted by BW1 and BW2,

respectively. The gestational age, GA, is an important factor for prenatal growth and is

therefore chosen as the covariate. We consider a random sample of 30 twin live births for

each gestational age (in weeks) between 28 to 42.

The scatterplot and histograms of the birth weights, for n = 450 twin pairs, are given

in Figure 3(a), from which the marginals are seen to be fitted well by parametric cubic

regression models with normal noise, shown in Figure 3(c) and 3(d). The resulting coefficients,

all significant at 1% level, are plugged into Uj = Φ((BWj − µ̂j(GA))/σ̂j) to transform the

response variables to uniform scale, where µ̂j are the cubic fit and σ̂j are the estimated

standard errors and Φ is the c.d.f. of N(0, 1). Figure 3(b) gives the scatterplot and histograms

of the transformed random variables Uj , j = 1, 2, which support the parametric fit of marginal

models considered here.

[Figure 3 about here.]

We then estimate the calibration function using the proposed nonparametric model with

local linear fit (p = 1), under the Clayton, Frank and Gumbel families. For comparison, we

also perform the parametric estimation with a constant and a linear form, respectively. The

results converted to the Kendall’s tau scale are given in Figure 4. In all cases, our approach

yields a nonlinear pattern, with highest strength of dependence in pre-term and post-term

twins which can not be detected by the parametric linear fit.

[Figure 4 about here.]
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In the local linear estimation, the optimum bandwidths are chosen as 5.52, 4.04, and 5.52,

for the Clayton, Frank and Gumbel copulas, respectively. We constructed approximate 90%

confidence intervals under each family using half of these bandwidth values. As seen in Figure

4, the parametric estimates are not within the confidence bands, suggesting that the linear

model may not be adequate. Our copula selection method chooses the Frank family, having

the minimum cross-validated prediction error (4) with value 47.05, followed by the Clayton

copula with 47.36 and the Gumbel copula with 47.40.

5. Discussion

We propose a conditional copula approach to model the strength and type of dependence

between two responses. In order to capture the relationship between the strength of the

dependence and a measured covariate, we allow the copula parameter to change according

to a calibration function of the covariate. Statistical inference for the calibration function

is obtained using local polynomial estimation. The methodology proposed here leads to a

novel conditional copula selection procedure, in which we use prediction accuracy to select,

via cross validation, among a number of copula families, the one that best approximates the

data at hand.

Our simulation study conveys that i) the nonparametric estimator of the calibration func-

tion is flexible enough to capture non-linear patterns and ii) the copula selection procedure

performs well in the cases studied so far. The data analysis reveals a gestational age specific

dependence pattern in the birth weights of twins that, to our knowledge, has not been

detected before and may be of scientific interest.

Although in this paper we focus our attention on bivariate copulas, it is possible to extend

our method to more general multivariate copulas. In addition, if more covariates are of

potential interest for the conditional copula model, then we recommend a careful selection
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of the variables prior to estimation of the calibration function, as the computational cost

increases significantly with each covariate added to the model. We are currently working on

extending the framework of the work presented here by considering mixtures of conditional

copulas in order to increase the spectrum of applications that can be tackled using our

approach.

Supplementary Materials

A Web Appendix containing technical details (referenced in Sections 2.1 and 2.3), additional

simulated and real data examples is available under the Paper Information link at the

Biometrics website http://www.biometrics.tibs.org.
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Appendix

Regularity assumptions

Let N(x) denote the neighborhood of an interior point x.

(A1) ℓ′(θ(x), U1, U2) and ℓ′′(θ(x), U1, U2) exist and are continuous on N(x)× (0, 1)2, and can be

bounded by integrable functions of u1 and u2 in N(x).

(A2) The functions fX(·), η(p+2), g′′(·) and σ2(·) are continuous in N(x), and σ2(x′) > c for

x′ ∈ N(x) and some c > 0. Without loss of generality, the kernel density K(·) has a

compact support [−1, 1].

Copula families used in our implementations

The Clayton family has the copula function

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−
1

θ , θ ∈ (0,∞), with Kendall’s τ =
θ

θ + 2
.

The Frank family has the copula function

C(u1, u2) = −1

θ
ln

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
, θ ∈ (−∞,∞) \ {0},

with Kendall’s τ = 1 + 4
θ
[D1(θ) − 1], where D1(θ) = 1

θ

∫
0
θ t

et−1
dt is the Debye function.

The Gumbel family has the copula function

C(u1, u2) = exp
{
− [(− ln u1)

θ(− ln u2)
θ]

1

θ

}
, θ ∈ [1,∞), with Kendall’s τ = 1 − 1

θ
.
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Figure 1. Scatterplots of the twin birth weights at different gestational ages.
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Figure 2. Twin data: 90% confidence intervals for the Kendall’s tau under the Clayton
copula with the linear (left panel) and quadratic (right panel) calibration models: truth (solid
line), averaged local linear estimates (dashed line), approximate confidence intervals (dotted
line), and Monte Carlo confidence intervals (dotdashed line).



22 Biometrics, 000 0000

1000 2000 3000 4000

50
0

10
00

20
00

30
00

40
00

BW1

B
W

2

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U1

U
2

(b)

30 35 40

0
10

00
20

00
30

00
40

00
50

00

GA

B
W

1

(c)

30 35 40

0
10

00
20

00
30

00
40

00
50

00

GA

B
W

2

(d)

Figure 3. Histograms and scatterplots for: (a) the twin birth weights, (b) the marginal
distributions of the transformed variables (U1, U2). Scatterplots with the parametric cubic
regression fits for: (c) gestational age and BW1, (d) gestational age and BW2.
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Figure 4. Twin data: the Kendall’s tau estimates under three copula families: global con-
stant estimate (dashed line), global linear estimates (dotdashed line), local linear estimates
at the optimum bandwidth (longdashed line), and an approximate 90% confidence interval
(dotted lines).
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Table 1

Integrated Squared Bias, Integrated Variance and Integrated Mean Square Error (multiplied by 100) of the Kendall’s
tau estimator. The last column shows the averages of the bandwidths h

∗ selected using (3).

Linear Calibration Model

Parametric estimation Local estimation

n IBIAS2 IVAR IMSE IBIAS2 IVAR IMSE h∗

Clayton
200 0.024 0.305 0.329 0.017 0.553 0.570 2.183
500 0.018 0.136 0.154 0.020 0.228 0.248 2.283

Frank
200 0.490 0.596 1.086 0.044 0.963 1.007 1.848
500 0.479 0.265 0.744 0.060 0.437 0.497 1.644

Gumbel
200 3.739 1.115 4.660 3.704 1.716 5.389 2.095
500 3.499 0.429 3.928 3.510 0.556 4.066 2.385

Quadratic Calibration Model

Parametric estimation Local estimation

n IBIAS2 IVAR IMSE IBIAS2 IVAR IMSE h∗

Clayton
200 0.414 0.129 0.543 0.040 0.288 0.328 1.392
500 0.423 0.046 0.469 0.027 0.113 0.140 0.910

Frank
200 0.324 0.276 0.600 0.123 0.504 0.627 1.779
500 0.357 0.090 0.447 0.114 0.188 0.302 1.238

Gumbel
200 4.914 0.696 5.610 4.808 1.301 6.109 1.977
500 4.862 0.246 5.108 4.761 0.497 5.258 1.676


