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Summary: X-chromosome is often excluded from whole-genome association studies due to a number of complexities.

Some are apparent, e.g. sex-specific allele frequencies, sex-gene interaction effects, and the choice of (additive or other)

genetic models, while others are subtler, e.g. random, skewed or no X-inactivation, and the choice of risk allele. In this

work, we aim to consider all these complexities jointly and propose a regression-based association test. We provide

theoretical justifications for its robustness in the presence various aforementioned model uncertainties, as well as for

its improved power under certain alternatives as compared with existing approaches. For completeness, we also revisit

the autosomes and show that the proposed framework leads to a robust and sometimes much more powerful test than

the standard method. Finally, we provide supporting evidence from simulation and application studies.

Key words: Model selection; Confounding; Genome-wide association studies; X-chromosome.

ar
X

iv
:1

81
1.

00
96

4v
1 

 [
st

at
.A

P]
  2

 N
ov

 2
01

8



Brawn and Brains: a Robust and Powerful approach to X-inclusive Whole-genome Association Studies 1

1. Introduction

In genome-wide association studies (GWAS) and next generation sequencing (NGS) studies,

X-chromosome has been often excluded due to its complexity compared to autosomes. Wise

et al. (2013) found that for every GWAS paper published from January 2010 to December

2011 and included in the NHGRI GWAS catalog, “only 33% (242 out of 743 papers) reported

including the X-chromosome in analyses”. There are many analytical challenges related to

X-inclusive association studies. Some are for both autosomes and X-chromosomes, and some

are specific to X-chromosomes.

Throughout this paper, we use Y to denote phenotype or outcome of interest, which could

be binary or continuous, and G to denote genotype of a single nucleotide polymorphism

(SNP). A single SNP has two alleles: r and R, one of which is the risk allele with allele

frequency p and the other is reference allele. It needs to be noted that the major allele could

be risk allele and p is not necessarily the minor allele frequency (MAF) less than 0.5. An

autosome SNP has three genotypes, namely rr, rR and RR. Coding of G for each genotype

could be GA = (0, 1, 2) for additive effect, and GD = (0, 1, 0) for dominant effect. An X-

chromosome SNP has five genotypes, rr, rR and RR for females and r and R for males.

We will discuss the coding of G in more details below. The main question of phenotype-

genotype association analysis is to test H0 : Y is not associated with G. In addition, we use

S to represent sex-specific effect and Es to represent other environmental effects. When both

effects exist, there may also exist G×S: genotype-sex interaction, G×E: gene-environmental

interaction and S × E: sex-environmental interaction. β (with corresponding subscripts)

denotes the effect sizes of each covariate.

For any statistical approaches focusing on X-chromosome analysis, we summarize 8 major

challenges that must be properly addressed. As we discuss below, challenges C1 to C3 are

genome-wide, and C4 to C8 are specific to X-chromosome.
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• C1: Quantitative vs. binary traits/phenotypes

• C2: Genotype based vs. allele based

• C3: Additive vs. genotypic model (with dominant term)

• C4: Sex S as a covariate must be included or not

• C5: Genotype-sex interaction G× S should be included or not

• C6: X-chromosome inactivation (XCI) vs no inactivation

• C7: If XCI, the inactivation is random vs. skewed

• C8: Reference allele R vs. r

C1 and C2. Classic allele based tests from case-control studies require binary phenotype

data so that the Pearson chi-squared test statistics can be computed by contingency tables.

HardyWeinberg equilibrium (HWE) assumption must also be met to achieve correct type I

errors. For quantitative phenotypes and any departure from HWE, the most commonly used

approaches are genotype based tests under regression models. Regression models support

various types of phenotype data and HWE assumption is not required. Sasieni (1997) had

a detailed discussion about allele based tests with HWE assumption versus genotype based

tests. Another reason in favor of regression model is that additional covariates such as

environmental factors can be easily incorporated in the model.

C3. The genotype-based tests require a correct assumption of the genetic model, which

has been a long standing controversy. For both autosome and X-chromosome SNPs, the

genetic model either assumes a specific relationship between the effects of rr, rR and RR,

such as recessive, additive, dominant, multiplicative, or assumes no specific relationship

between each genotype (genotypic model), where the total genetic effects are decomposed as

a combination of additive and dominant effect. Each assumption leads to a different model,

and Bagos (2013) had a good review paper of several model selection approaches. When the

true genetic model is unknown, the main idea is to combine each test statistic or p-value
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under different models. However, the way to combine these tests are quite ad hoc, and it is

lack of theoretical justifications that how and why they should be combined.

On the other hand, a common practice for simplicity is to only examine additive models,

as the additive model has reasonable power to detect both the additive and dominant effects

(Bush and Moore, 2012). In addition, Hill et al. (2008) have shown that additive variance

typically accounts for over half and often close to 100% of total genetic variance, even if there

are non-additive effects at the level of gene action. It needs to be noted that people are usually

reluctant to assume the genotypic model. Although it is the most general assumption, the

test is believed to be less powerful due to the extra degree of freedoms of the test statistics.

However, we find such belief is not necessary correct in the context of GWAS. We derive the

upper bound of the power loss by incorporating the other covariate for dominant effect and

compare to the potential power gain, and find it may be worth to allow both the additive

and dominant effects in the model.

C4 and C5. The other challenges are specific to X-chromosome, due to the fundamental

differences between females and males. First, sex-specific effects may exist in biological point

of view. Next, sex is a classic confounder associated to both the genotype and the phenotype.

If covariate S is not included in the model, the type I error for testing the genotype effect

can be inflated. Ozbek et al. (2018) has extensitve simulation studies to show the type I

error inflation. Furthermore, different effect sizes of the same SNP in females and males are

recognized as genotype-sex interaction effects. Proper tests allowing for interaction effects

need to be developed.

C6 and C7. The next complications relate to the uncertainty of the biological status of X-

chromosome SNPs. X-chromosome inactivation is the phenomenon that one of the two alleles

in females is selected to be silenced, so that the effects of female genotypes may be reduced.

In brief, the additive coding of rr, rR and RR becomes 0, 0.5 and 1 rather than 0, 1 and 2.
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The challenge is that although we know about 15% of genes on X-chromosome are escaped

from XCI at population level (Carrel and Willard, 2005), we are uncertain if XCI occurs or

escapes on each SNP. Even though we are certain that XCI occurs on one particular SNP, at

individual level it is still unknown which allele is inactivated. Wang et al. (2014) discussed

various studies suggesting a biological plausibility of skewed inactivation so that one allele

is more likely to be inactivated than the other, while the additive model in essence assumes

two alleles have equal probability of inactivation.

C8. Lastly, when allele frequency difference is significant, females and males may have

different minor alleles. For autosome SNPs, people usually choose the minor allele with

allele frequency less than 0.5 as the risk allele, because switching the risk allele and reference

allele does not change the statistical inference and thus choosing an arbitrary risk allele does

not cause a problem. However, for X-chromosome SNPs, switching the reference allele and

risk allele may lead to different statistical models and yield different inferences. When minor

allele is different for females and males, the risk allele may be unknown and it becomes a

challenge to choose the risk allele. It needs to be noted that sex-stratified tests may not solve

the challenge, because stratification by sex may result in considerable loss of power (Clayton,

2008), especially when allele frequency difference is significant for females and males.

We summarize the genotype codings after considering all X-specific challenges in Table 1.

If the risk allele and XCI status are both unknown, there are 2 × 2 = 4 ways to code the

additive covariates GA, and 2 ways to code the genotype-sex interaction GS. We will discuss

in section 3 that skewed inactivation can be represented by the dominant effect coding GD.

[Table 1 about here.]

In recent years, quite a few methods have been proposed for X-chromosome association

studies. Zheng et al. (2007) proposed a few tests without considering X-chromosome in-

activation. In contrast, Clayton (2008, 2009) discussed analytical strategies assuming X-
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chromosome is always inactivated. Hickey and Bahlo (2011) and Loley et al. (2011) separately

performed simulation studies and gave a thorough comparison of Zheng et al. and Clayton’s

tests. Based on these simulation studies, Konig et al. (2014) provided a detailed guideline

for including X-chromosome in GWAS. The problem is they suggested different tests under

different assumptions of genetic model, interaction effects, XCI status and so on, and it

is not always possible to check these assumptions in practice. Gao et al. (2015) developed

a software toolset for X-chromosome association studies. Recently, Zhongxue et al. (2017)

improved existing sex-stratified tests by eliminating assumptions of genetic models, but they

still needed to assume same risk allele for females and males, and sex-genotype interaction

effects could not be measured. Focusing on XCI status, Wang et al. (2014) proposed a

maximum likelihood solution to handle the uncertainty of XCI as well as skewed inactivation,

and provided an XCI model selection method in their most recent paper (Wang et al., 2017).

In addition, Chen et al. (2017) used Bayesian model averaging (BMA) method to solve XCI

uncertainty. However, both approaches only considered the additive model, and it is unclear

how to include non-additive covariates in regression analysis with unknown XCI status.

Furthermore, both approaches were only illustrated by simulation studies, and it would be

more appealing to derive a theoretical justification.

After reviewing all up-to-date methodology developments on X-chromosome association

studies, we believe there is currently no approach which can handle all the 8 challenges

discussed above simultaneously. The target of this paper is to propose a theoretically justified

robust method that can solve all these challenges in most general framework, while the test

powers are well maintained and even improved in most practical situations. The proposed

tests are based on regression models, which allow for both quantitative and binary phenotypes

as the response variables, departure from HWE and incorporating extra covariates. In section

2, we discuss the long-lasting controversy between additive models and genotypic models.
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We revisit autosome SNPs for better illustrating of the benefits of genotypic model, which

leads to a robust and sometimes much more powerful test than additive model. In section

3, we propose our main theory to address the challenges specific to X-chromosome. Section

?? provides supporting evidence to our proposed approach from application studies. Finally,

we discuss the limitations of our approach and possible future work in section 4.

2. Additive vs. genotypic models

2.1 Theory of chi-squared distributions

For completeness and a more clear demonstration of the model selection challenge, we first

revisit autosome studies. We find that in general, Hill et al. (2008)’s result does not warrant

the exclusion of dominant covariate GD in regression model. Although the additive effect

may account for the majority of total genetic effect, excluding GD does not necessarily

increase test power. In order to determine whether GD needs to be included or not, two

questions must be answered. First, when all genetic effect is additive, what is the power loss

by introducing the extra covariate GD? Second, when there exists some dominant effect, will

the power increase or decrease by introducing GD?

To answer these two questions, we first define the additive model and genotypic model in

generalized linear regression framework. Let g be the link function. The additive model is

defined by

E[g(Y )] = β0 + βAGA,

and the genotypic model is defined by

E[g(Y )] = β0 + βAGA + βDGD,

Although the HWE assumption is not required, we adopt it only for the purpose of simplifying

the computation. The three genotype groups, rr, rR and RR have frequencies (1 − p)2,

2p(1−p) and p2, and GA and GD are coded as 0, 1, 2 and 0, 1, 0 correspondingly. Covariates
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for environmental factors can be freely added to both models. For notation simplicity we

denote the additive model by Y ∼ GA and genotypic model by Y ∼ GA +GD below.

We want to compare two tests: H0 : βA = 0 under the additive model and βA = βD = 0

under the genotypic model. The test statistics used most often in regression models are Wald,

Score and likelihood ratio statistics, which all follow asymptotic non-central chi-squared

distribution under the alternative hypothesis. We define two test statistics by W1 ∼ χ2
(1,ncp1)

and W2 ∼ χ2
(2,ncp2)

, where 1 and 2 denote degree of freedoms, and ncp1 and ncp2 are

corresponding non-centrality parameters. If the true genotype effect is all additive, then

ncp1 = ncp2. The power difference of W1 and W2 depends on both the non-centrality

parameters and type I error α. When ncp1 = ncp2 = 0 or α = 0, both tests have no

power; when non-centrality parameters are sufficiently large or α close to 1, both powers are

close to 1. To achieve the maximum power loss of W2, we expect a moderate value of both

the non-centrality parameter and α. We show the maximum power loss numerically in Web

Appendix A, where the maximum power loss is 0.114 when α = 0.0025 and ncp = 10.6. It

implies the power loss of using the genotypic model is capped by 0.114, regardless of type

I error level, sample size and size of additive effects. It needs to be noted that although we

assume additive model is correct, the maximum power loss is same for all 1 vs 2 degree of

freedom models. For instance, if the dominant model is correct, the power loss is still capped

by 0.114 by using the genotypic model.

With capped power loss, we want to investigate the power gain by testing W2 when the true

genotype effect is not additive. When dominant effect exists, the non-centrality parameters

can be written as ncp2 = ncp1 + ∆12, where ∆12 > 0. For fixed value of ncp1, when ∆12

is close to 0, we still expect W2 to be less powerful than W1. As ∆12 increases, there is a

threshold value of ∆12 which makes W1 as powerful as W2. When ∆12 is greater than the

threshold, W2 is more powerful, and the power goes up to 1 for large ∆12. Compared to the
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maximum power loss, the maximum power gain can be technically as large as 1 − α when

ncp1 = 0 and ∆12 →∞. In Web Appendix A, we choose a few practical values of ncp1 and

∆12 and plot the test powers of W1 and W2. To clearly illustrate the power gain, we assume

the worst case (maximum power loss) scenario where α = 0.0025. We show when ∆12 is as

large as ncp1, the power gain can be much higher than power loss. Therefore, the genotypic

model should not be overlooked in association studies with autosome SNPs.

2.2 Non-centrality parameters and corresponding test power computation

The above power computation is based on the theoretical values of non-centrality parameters,

which must be computed from sample size and genotype effect size under the additive or

genotypic model. When the sample size n → ∞, we want each test has a limiting chi-

squared distribution, but the non-centrality parameter under alternative hypothesis would

move toward infinity for fixed value of β = (β0, βA, βD). As in convention, we assume β =

c/
√
n. Instead of specifying β, we fix the value of constant vector c, so that β → 0 and the

non-centrality parameter under alternative hypothesis converges to finite number as n→∞.

We provide more discussions about the convergence of asymptotic non-centrality parameters

in section 4. We then use standard technique in Cox and Hinkley (1974) to compute the

asymptotic non-centrality parameters for the test under genotypic model as described below.

We write the generalized linear models in matrix form: E[g(Y )] = Xβ where X is the

design matrix. Suppose we want to test H0 : β2 = 0, where β2 is a subset of β. To compute

the non-centrality parameter, we partition X = (X1, X2), β = (β1, β2) according to the

null hypothesis, and the expected Fisher information matrix of β is partitioned accordingly:

H(β1, β2) =

 H11(β1, β2) H12(β1, β2)

H21(β1, β2) H22(β1, β2)

. Then the non-centrality parameter equals to

ncp = β′2[H22(β1, 0)−H21(β1, 0)H−111 (β1, 0)H12(β1, 0)]β2. (1)

For genotypic model, β1 = β0, X1 = 1n, and β2 = (βA, βD), X2 = (GA, GD). Specifically,
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we derive H under linear model and logistic model and compute corresponding ncp. The

mathematical details are given in Web Appendix C. Let σ2 be the variance of the error

term in linear model. We show when σ2 = 4, linear and logistic model has equal asymptotic

non-centrality parameters for same X and β.

The computation of non-centrality parameter under the additive model is less straightfor-

ward, because the additive model is indeed misspecified when the dominant effect βD 6= 0.

Although the derivation is difficult under the canonical parametrization of the genotype as

defined above, the result from Begg and Lagakos (1992) implies that a re-parametrization

of genotype coding may considerably simplify this derivation. Detailed steps are provided in

Web Appendix D.

Once the non-centrality parameters are computed, we may compare test powers of the

additive and genotypic model when βD 6= 0. Choosing α = 0.0025, we consider a realistic

situation where n = 1000, β0 = −0.3, βA = 0.3 and βD change from -0.6 to 0.6. We then plot

the power of both tests as a function of βD in Figure 1, which represents both the logistic

model and linear model with σ2 = 4. Risk allele frequencies are chosen to be 0.2, 0.5 and

0.8.

[Figure 1 about here.]

Figure 1 indicates that the power gain by using the genotypic model can be as much as

0.4 in realistic situations, which is quite significant compared to the maximum power loss of

0.113. In practice, the strength of dominant effect is usually unknown. In such case including

the dominant covariate is more like a risk-free solution: without sacrificing much test power,

the potential power gain may be significant.
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3. X-chromosome Challenges

3.1 Type I error control and choice of risk allele

We now consider association analysis on X-chromosome SNPs where the covariates are

defined in Table 1. When testing for the genotype effects, we note that they are usually

correlated with sex effects. The correlation has two implications. First, when genotype effect

exists, sex becomes a confounding variable. The sex effect is hard to explain separately

and it in fact helps explaining the genotype effect. Second and more importantly, when sex

effect exists but genotype effect does not exist, the correlation will lead to an inflated type

I error for testing the genotype effect if sex is not included in the model. Including sex as

the covariate warrants the correct type I error for testing the genotype effect. ? provided

extensive simulation studies to show both the type I error inflation and correct type I error

control when sex is included, and we would agree with their conclusion that sex should always

been included in regression models.

As shown in Table 1, the coding of GA depends on the risk allele, and model Y ∼ GA may

yield different test statistics under different risk allele assumptions. At first sight, it may

seem unclear that how we choose the correct way to code GA when risk allele is unknown.

However, with sex as the covariate, there turns out to be a connection between different risk

alleles. For instance, we observe two models with no XCI and different risk alleles,

E[g(Y )] = β10 + β1SS + β1AGA,R,N and E[g(Y )] = β20 + β2SS + β2AGA,r,N

where we want to test β1A = 0 or β2A = 0 under each model. We note that GA,r,N =

2 − GA,R,N − S, which yields β1A = −β2A, so it is equivalent to test β1A = 0 and β2A = 0

under two models, and we can further show that test statistics under two models are exactly

equal. It provides us some intuition that the problem of unknown risk allele is solved when

sex is included as the covariate because two tests then become indistinguishable. To make

our intuition more rigorous, we propose the following theorem:
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Theorem 1: For vector Y of length n, Let M1 and M2 be two generalized linear models

with same link function g, g[E(Y )] = X1β1 and g[E(Y )] = X2β2, where X1, X2 are n × p

design matrices and β1, β2 are vectors of length p. Let β′1 = (β′11, β
′
12) and β′2 = (β′21, β

′
22),

where β11 and β21 have length (p − q) and β12 and β22 have length q. If there exists a

transformation matrix T =

 T1 T12

0 T2

 such that X2 = X1T , where T1, T2 are (q−p)×(q−p)

and q× q invertible matrix, then the test statistics (Wald, Score or LRT) for testing β12 = 0

and β22 = 0 are equal under the technical assumptions given in Web Appendix B.

We prove Theorem 1 in Web Appendix B. To make the two test statistics equal, an intuitive

explanation of the requirements are: two design matrices must be invertible linear transfor-

mations of each other, and two submatrices of the covariates which are not being tested

must also be invertible linear transformations of each other. It needs to be noted that the

covariates being tested are not required to be linear transformation of each other, e.g., GA,R,N

and GA,r,N are not linear function of each other. Mathematically speaking, the uncertainty

problem arises because four different codings of GA have no linear transformations. When S

is included in the model, as we have illustrated above, two design matrices of (1, S,GA) with

different risk alleles but same XCI status become invertible linear transformations of each

other. Therefore, different risk alleles result in same test statistic by applying theorem 1. This

provides another reason to include sex as a covariate in the model. When sex is included,

unknown risk alleles of both females and males becomes not a problem. In conclusion, we

would recommend the following additive model including the sex effect at this moment:

Y ∼ S +GA.

3.2 Sex-genotype interaction and XCI uncertainty

For X-chromosome SNPs, genotype-sex interaction effect may exist, so that the unit effect

of one copy of r or R may not be the same for males and females. The interaction is defined
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by GS = GA × S. It is straightforward to check GS has two different codings depending on

the risk allele of males: GSR and GSr as defined in Table 1.

We have explained when S is included in the model, two design matrices with different

risk alleles become invertible linear transformations. Furthermore, when both S and GS are

included, we can easily show all four design matrices of (1, S,GA, GS) with different risk

alleles and XCI status are invertible linear transformations of each other, and for testing

the null hypothesis H0 : βA = βGS = 0, the design matrix of the covariates which are not

being tested, i.e., (1, S), remains unchanged between different coding schemes of GA and GS.

Therefore, we apply theorem 1 to show the tests with different risk alleles and XCI status

are equal, and choosing correct coding of GA and GS becomes not a issue. The relationship

of invertible linear transformation between codings are summarized in Figure 2.

[Figure 2 about here.]

Figure 2 implies that in terms of testing, switching risk allele has no effect when sex is

included, and the effect of inactivating X-chromosome alleles is indistinguishable to the effect

of sex-genotype interaction. With S and GS included in the model, we do not need to know

the risk allele and XCI status, and any one group of covariates of GA, GS and S simply

yields the same test statistic. Therefore, we now recommend including both S and GS in

regression models to override the uncertainty issues about risk allele and XCI:

Y ∼ S +GA +GS.

3.3 Dominant effects and skewed XCI

The dominant effect GD defined in Table 1 is invariant to risk allele and XCI status.

Similar to autosome SNPs, the first reason to include the dominant effect is to capture

any departure from the additive effect of the heterozygous genotype rR. For X-chromosome,
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another important reason is that the dominant effect may also characterize the skewness of

XCI.

Skewed XCI is the effect that one allele is more likely to be inactivated than the other

for female SNPs. For homozygous genotypes rr and RR, the genotype effects are always

reduced to a half because both alleles have same effect and which allele is inactivated makes

no difference. For heterozygous genotype rR, if one allele is more likely to be inactivated,

at population level the effect of rR will move towards to the effect of either rr or RR. For

example, we denote the effect of rr by 0 and effect of RR by 1. Then rR will have an effect

of either 0 or 1 at individual level depending on the inactivated allele. If two alleles are equal

likely to be inactivated, at population level we expect half of r and half of R are inactivated,

so that the averaged group effect of rR is 1/2. If r is more likely to be inactivated, we expect

more 1’s than 0’s on average, and rR has an average effect greater than 1/2. With skewed

inactivation, the effect of rR ranges from 0 to 1, so that the skewness is equivalent to a

dominant effect making the the effect of rR different from 1/2. In conclusion, including the

covariates GD not only captures real dominant effect, but also represents any skewness of

inactivation.

When XCI status is unknown, it is more likely that the amount of skewness of the

inactivated SNP is also unknown. In such case we recommend including the dominant

covariate GD to explain any possible skewness. Because the coding of GD is invariant to risk

allele and XCI status, including GD in the model does not change the linear transformation

relationships specified in Figure 2. When different covariates are chosen, Table 2 summarizes

for each model whether it has problem with inflated type I error and unknown risk allele

(Challenge C4 and C8), sex-genotype interaction and XCI uncertainty (Challenge C5 and

C6), and dominant effects and skewed XCI (Challenge C7). Other covariates representing

environmental effects can be freely added to each model. The ultimate model we recommend
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is

Y ∼ S +GA +GD +GS,

which resolves all X-chromosome specific challenges, as shown in Table 2.

[Table 2 about here.]

3.4 Analytic power comparison

It needs to be noted that all models with sex included as the covariate are valid to test the

genotype effects because the type I error is correct, even if they are not capable to handle

the XCI uncertainty or skewed XCI. The problem is they may have reduced test powers if

the XCI status and skewness of XCI are not correctly specified. On the other hand, the full

model M4 may also not be most powerful because it has more degree of freedoms. Hence,

a systematic power comparison of the most comprehensive model versus simpler models is

desired. In short, we want to compare test powers of M1 to M4 in Table 2.

Similar to autosome SNPs, we need to compute the asymptotic non-centrality parameters

of each test statistic for power comparison. After allowing for sex, dominant and interaction

effect, it becomes not a issue to specify the true risk allele, XCI status and skewness. We

assume HWE for female, equal sex frequency, but unequal allele frequencies for females and

males (pf and pm). Then genotype frequencies of [rr, rR,RR, r, R] are

[(1− pf )2/2, pf (1− pf ), p2f/2, (1− pm)/2, pm/2].

We use the same technique as described in section 2 to define β = (β0, βS, βA, βD, βGS) =

c/
√
n and fix the value of c so that the non-centrality parameter under alternative hypothesis

converges to finite number as n→∞. Then the non-centrality parameter for the tests under

model M4 can be similarly computed following Cox and Hinkley (1974). M1, M2 and M3

are misspecified models, and we need a re-parametrization of the covariates to simplify
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the computation of non-centrality parameters. The technical details are provided in Web

Appendix C and D.

The theoretical test power of all 4 tests are then computed from the non-centrality pa-

rameters. By comparing two chi-squared distributions of 1 and 3 degree of freedoms, we

show in Web Appendix A that the maximum power loss by omitting both GD and GS is

0.188, regardless of type I error, sample size and effect sizes. To see potential power gains

by including GD and GS, we want to compute test powers with different dominant effects

and interaction effects. Because the XCI status and risk allele are unknown, we specify

the averaged effect size (linear regression) or averaged log odds ratios (logistic regression)

under each genotype group, i.e., µrr, µrR, µRR, µr and µR, which can be estimated in practice

without knowing the XCI status and risk allele. We fix µrr = −0.3, µRR = 0.3 and µr = 0, and

change µrR and µR from -0.6 to 0.6. Fixing µrr and µRR is equivalent to fixing the additive

effect, and changing µrR is equivalent to changing the dominant effect, where µrR = 0

corresponds to no dominant effect. Similarly, different µR represent different strengths of

interaction effect. We show in Appendix A that the maximum power loss 0.188 is reached

when α = 0.0008, so we choose α = 0.0008 to represent the worst case scenario. We keep

n = 1000 and risk allele frequency pm = pf = 0.2 and 0.5. Results under other allele

frequencies are presented in Web Appendix E. The test statistics from M1 and M2 depend

on the coding of GA and GD. Without loss of generality, we use GA,R,I and GSR for all 4 tests.

One can easily choose the other codings of GA and GS and repeat the power computation.

Because the asymptotic non-centrality parameter under logistic model is equal to linear

model with variance of error σ2 = 4, Figure 3 represents test power comparisons under both

linear and logistic model.

[Figure 3 about here.]

The 1 df model M1 may have significant power loss compared to the full model as shown
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by all panels. When allele frequency is 0.2, model M2 may lose power dramatically when

both the dominant and interaction effects are strong. When allele frequency is 0.5, model

M3 may not perform as good as the full model when dominant effects are strong. Therefore,

we conclude that testing βA = βD = βGS = 0 from the full model M4 maintains overall

best performance. Compared to the maximum power loss of 0.188, the power gain can be

as much as 0.7 (e.g., when µrR = 0.6 and µR = −0.6) as shown in Figure 3. It implies the

full model is not only robust to all the challenges, but also powerful for testing the additive

effects along with various dominant and interaction effects. Therefore, it worths to consider

including all GA, GD and GGS as the covariates in practice when XCI status and/or skewness

is unknown and the strength of dominant and interaction effects is not clear. After the power

comparison, we still recommend the full model:

Y ∼ S +GA +GD +GS.

4. Discussion

The assumption that β → 0 under alternative hypothesis may not be quite intuitive, but it

seems to be a common assumption when studying the theoretical properties of chi-squared

tests (Cox and Hinkley, 1974; Begg and Lagakos, 1992, 1993; Neuhaus, 1998). Let β =

(β1, β2), where the null hypothesis is β1 = 0 and β2 is the nuisance parameter not being

tested. Among the common practices, there is no doubt to adopt a sequence of alternative

hypothesis of β1 converging to 0, but it is not quite clear whether β2 should also be assumed

to converge to 0. In the context of GWAS, we believe it is most reasonable to assume β1 and

β2 converge to 0 at similar rates, because both parameters denote the genotype effect of the

same SNP, and there is no reason to believe the additive, dominant and interaction effects

are on different scale for any sample size. Therefore, we assume both β1 and β2 converge to

0 as n→∞ at the rate of 1/
√
n.
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We have shown in X-chromosome association study, Sex should be included for correct type

I error. For autosome study, sex is usually not included, but the result from X-chromosome

suggests that when sex is a confounding variable, e.g., female and male allele frequencies

unequal, it should also be included as a covariate for autosome analysis. If the risk allele is

uncertain, we also recommend including sex to bypass the uncertainty.

When allele frequency difference is significant and females and males have different minor

alleles, it may become unclear that if females and males have the same risk allele or each

sex has its own risk allele. As the interaction effects being allowed in the models, we are

essentially allowing for different risk alleles for females and males. Switching the risk allele

for males is equivalent to adding an interaction effect. Following Theorem 1, it is also easy

to check when GS is included, switching the risk allele only for males or females will not

change the test statistic.

Although the full model on X-chromosome is robust to XCI uncertainty, it is not capable

to determine whether XCI occurs or not. It is possible to detect XCI by biological experi-

ments (Carrel and Willard, 2005), but statistical tests for XCI status may also be desired.

For quantitative trait, Ma et al. (2015) proposed a variance-based test for detecting XCI.

However, we do not find any statistical approach to testing XCI for binary trait up to date. It

is a more challenging problem, because the binary outcomes can only yield a point estimate

of percentage of cases, and do not have a variance structure similar to quantitative traits

under each genotype group. Further studies are required to develop a statistical test under

binary logistic model.
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Figure 1. Power comparison of the additive model and genotypic model for autosome
SNPs. Additive effect βA = 0.3; dominant effect βD changes from -0.6 to 0.6; allele frequency
p = 0.2, 0.5 or 0.8 for each column. Black dash lines for testing βA = 0 under additive model
and red solid lines for testing βA = βD = 0 under genotypic model.



22

(a)
Y ∼ β0 + βAGA

H0 : βA = 0

(b)
Y ∼ β0 + βAGA + βDGD

H0 : βA = 0 or H0 : βA = βD = 0

(a)
Y ∼ β0 + βSS + βAGA

H0 : βA = 0

(b)
Y ∼ β0 + βSS + βAGA + βDGD

H0 : βA = βD = 0

(a)
Y ∼ β0 + βSS + βAGA + βGSGS
H0 : βA = βGS = 0

(b)
Y ∼ β0 + βSS + βAGA + βDGD + βGSGS
H0 : βA = βD = βGS = 0

GA,R,I GA,r,I

GA,R,N GA,r,N

S,GA,R,I S,GA,r,I

S,GA,R,N S,GA,r,N

S,GA,R,I , GSR S,GA,r,I , GSr

S,GA,R,N , GSR S,GA,r,N , GSr

Z
Z
Z�
�
�

Figure 2. Linear transformations of regression models. The subscripts r or R represents
risk allele, and I or N denotes X-chromosome inactivated or not inactivated. Two group of
codings connected by a straight line implies an invertible linear transformation and they yield
same test statistic. Part (a) corresponds to models and tests without dominant covariate GD;
part (b) corresponds to models and tests with GD included. Whether including GD or not
has no effect to the linear relationships.
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3A. Allele frequency pf = pm = 0.2

3B. Allele frequency pf = pm = 0.5

Figure 3. Power comparison for X chromosome SNPs. Black dash lines for testing βA = 0,
green dotdash lines for testing βA = βD = 0, orange dotted lines for testing βA = βGS = 0
and red solid lines for testing βA = βD = βGS = 0. Upper panels: power vs. dominant effect
(represented by the mean effect of genotype group µrR); interaction effect (represented by the
mean effect of genotype group µR) is -0.6, 0 or 0.6 for each column. Lower panels: power
vs. interaction effect (represented by the mean effect of genotype group µR); dominant effect
(represented by the mean effect of genotype group µrR) is -0.6, 0 or 0.6 for each column.
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Table 1
Genotype coding of the additive, dominant, sex-genotype interaction and sex effects. The interaction effects

GS = GA × S. The subscripts R and r representing risk alleles, I or N denoting X-chromosome inactivated or not
inactivated.

X-chromosome Genotype coding
Effect Covariate Risk allele inactivated rr rR RR r R

GA,R,I R Yes 0 0.5 1 0 1
Additive GA,r,I r Yes 1 0.5 0 1 0
GA GA,R,N R No 0 1 2 0 1

GA,r,N r No 2 1 0 1 0

Dominant GD GD Either Either 0 1 0 0 0

Interaction GSR R Either 0 0 0 0 1
GS GSr r Either 0 0 0 1 0

Sex S S Either Either 0 0 0 1 1
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Table 2
Candidate models having a problem to X-specific challenges or not. Challenges C4: sex confounded, C5: genotype-sex

interaction, C6: X chromosome inactivation (XCI) vs. no inactivation, C7: Random vs. Skewed XCI and C8: risk
alleles unknown.

√
means no problem and × indicates a problem.

Model H0 C4/C8 C6/C7 C5

Y ∼ GA βA = 0 × × ×
M1 : Y ∼ S +GA βA = 0

√
× ×

M2 : Y ∼ S +GA +GD βA = βD = 0
√

×
√

M3 : Y ∼ S +GA +GS βA = βGS = 0
√ √

×
M4 : Y ∼ S +GA +GD +GS βA = βD = βGS = 0

√ √ √
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