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Abstract 

Copulas have evolved into a popular tool for modeling dependence in a 
large number of statistical models. Choosing a copula from an ever 
increasing set of possibilities presents difficulties that are well 
recognized in the literature. In this paper we investigate via simulation 
the effect of copula misspecification on various quantities of interest in 
the model such as conditional means and conditional variances. We also 
investigate methods to select among a number of candidate families of 
parametric copulas using nonparametric kernel smoothing and various 
distances between distributions. Both the Kullback-Leibler divergence 
and the Hellinger distance perform very well in this setting. 

1. Introduction 

Copulas have evolved into a widely used tool for modeling dependence 
for a large spectrum of statistical problems (e.g., Oakes [34-36]; Shih and 
Louis [40]; Hougaard [24]; Wang and Ding [46]; Escarela and Carrière 
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[14]; Breymann et al. [4]; Patton [37]). The term copula was first 
introduced by Sklar [41] following some initial ideas by Höffding [23]. The 
crux of the method is the ability to flexibly “couple” fixed marginal 
continuous distributions into a multivariate distribution via a copula 
function. There has been a considerable effort in designing new families 
of copulas such as the Archimedean copulas (Genest and MacKay [18]), 
copulas with polynomial sections (Quesada-Molina and Rodríguez-Lallena 
[38]; Nelsen et al. [33]). There exists a vast literature on connections 
between dependence concepts and various families of copulas (Joe [26]; 
Nelsen [32]). 

Given a data set and a particular setup in which the data has been 
collected, one needs to decide on a copula for the model considered and an 
estimation procedure for its parameters. The selection of an appropriate 
family of copulas is a notoriously difficult problem as was discussed by 
Durrleman et al. [13] in financial modeling context. Kim et al. [28] 
discuss the impact of marginal model misspecification on the estimation 
of the copula’s parameters. Recent progress has been achieved by 
Fermanian [15] who proposed a goodness-of-fit test for copulas and by 
Wang and Wells [47] and Genest et al. [21] who propose selection 
methods based on the Kendall process introduced by Genest and Rivest 
[19]. Techniques for estimation of copula parameters were initiated by 
Deheuvels [10] and followed by maximum likelihood methods, inference 
function for margins (Joe [27]), semiparametric methods (Genest et al. 
[20]; Tsukahara [42]), nonparametric methods (Capéraà et al. [6]), 
Bayesian methods (Romeo et al. [39]) and minimum distance density 
estimation (Biau and Wegkamp [3]). 

It is well known that estimation for the marginal distribution 
parameters are unaffected by the choice of the copula function used for 
modeling dependence. However, in some practical instances such as those 
discussed by Chaieb et al. [7] or Chen and Fan [8] we are interested in 
quantities which are related to the dependence structure between the 
variables under consideration. For instance, in the case of two dependent 
random variables X and Y whose joint distribution is specified using a 
copula model we may be interested in estimating the conditional means 
[ ]yYX =|E  and the conditional variances [ ]yYX =|Var  for different 
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values y. The conditional mean and conditional variance depend on the 
copula function used to model the dependence between X and Y. More 
precisely, if X, Y are continuous random variables with distribution 
functions (df) XF  and, respectively, YF  we specify the joint df using the 

copula [ ] [ ]1,01,0: ×C  [ ]1,0→  such that 

( ( ) ( )) ( ( ) ( )) ( ).,,P, 1111 vuCvFYuFXvFuFF YXYXXY =≤≤= −−−−  (1) 

Equation (1) illustrates the way in which the copula function “bridges” 
the marginal and the joint df ’s. The existence of such a map C is 
guaranteed by Sklar’s Theorem (Sklar [41]). The uniqueness of C, once we 
fix YX FF ,  and ,XYF  is ensured as long as the random variables are 
continuous. In many instances we have a good idea about the marginal 
df ’s and little or no idea about the joint df. In the present paper we begin 
by investigating via simulations the effect of the copula’s choice on 
conditional means and variances. We also propose a method for choosing 
among a set of parametric families of copulas using nonparametric 
smoothing combined with Monte Carlo-based estimation of distances 
between distributions. 

Section 2 contains a description of the simulation models and the 
empirical findings related to the effect of copula misspecification. In 
Section 3 we present the copula selection procedure based on Kullback-
Leibler (Kullback and Leibler [29]) and Hellinger distances. Further work 
is discussed in Section 4. 

2. Specification of the Simulation Model 

We consider a bivariate random vector ( )YX ,  with marginal df’s XF  
and .YF  We assume two parametric forms for the marginals, those given 
by the exponential and the Weibull distributions. These distributions are 
commonly used in survival data modeling, an area where copula models 
are also frequently used. The parameters of the marginals df ’s are not 
identical. As mentioned in the previous section, the purpose of this study 
is to measure the effect of copula misspecification. We generate the data 
( ){ }niyx ii ≤≤1:,  using the Clayton copula (Clayton [9]) 

( ) ( ) .1, 1 θ−θ−θ−
θ −+= vuvuC  (2) 
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However, we analyze the data produced using Frank’s copula (Frank [16]) 

( ) ( ) ( ) .
1

111log1, 



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



−

−−
+

α
−=

α−

α−α−

α
e

eevuC
vu
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Both θC  and αC  are members of the Archimedean family of copulas 
and both are intensively used to model dependencies in survival data 
studies. 

2.1. Data simulation 

Since both distributions have invertible df ’s, we can work directly 

on [ ] .1,0 2  In other words, we need to sample independently ~iv  
Uniform ( )1,0  and ii vu |  will need to be sampled from a conditional 
distribution such that ( )ii VU ,  has df given by (2). 

The copula density corresponding to (2) is 

( ) ( ) ( ) .11,
21

21
1

2
1

1 θ
θ+−θ−θ−−θ−−θ−

θ −+θ+∝ uuuuvuc  (4) 

In order to sample from ( ) ( )vucvup ,θ∝|  we use a Metropolis-Hastings 
algorithm (Hastings [22]) with Uniform ( )1,0  proposal distribution. The 
sampler performs very well having an acceptance rate uniformly greater 
than 40%. For each ni ≤≤1  we sample 2000=M  samples from 
( )ivup |  and retain the last sample point obtained, .Mi uu =  The final 

samples are obtained using ( ),1
iXi uFx −=  .1 ni ≤≤  In Figure 1 we 

overlap the histogram of a sample of size 500=n  from the conditional 
distribution of YX |  obtained using the Markov chain Monte Carlo 
(MCMC) method described with the true density which in this case is 

( ).2Exp  This approach also allows us to compute, for any value ,0y  the 
true [ ]0|E yYX =  and ( ).|Var 0yYX =  
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Figure 1. Sample of size 500 from the conditional distribution of 
.YX |  The continuous line is the true marginal density: Exponential 

(left) and Weibull (right). 

2.2. Copula-based conditional inference 

Given the data ( ){ }niyx ii ≤≤1:,  we need to estimate the parameter 

α of the copula given in (3). We will assume that the marginal parameters 
have been estimated perfectly from the two samples, in other words we 
will make partial use of the perfect knowledge we have as data creators. 
However, we do this because we want to assess directly and as accurately 
as possible the effect of copula misspecification. Since the marginal 
distributions are assumed known and the df ’s are invertible we can, once 

again work within the unit square, [ ] .1,0 2  

The copula density for Frank’s copula is 

( )
( )( )

( ( ) )
.1, 2vuvu

vu

eeee
eevuc

α−α−+α−α−

α−+α−

α
−−+

−α
∝  (5) 

The maximum likelihood estimator α̂  corresponding to the density (5) 
is obtained via a simple grid search. Other numerical methods can also be 
used (e.g., Newton-Raphson) but the grid search performed quite well in 
our analysis. Using α̂  we compute the best prediction for X given 

,0yY =  i.e., [ ]0E yYX =|  along with ( ).Var 0yYX =|  The calculation is 

completed in a manner similar to the one described in the simulation 
section by running a Metropolis-Hastings MCMC algorithm designed to 
sample from the conditional distribution ( )vup |  induced by (5). In order 
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to increase the accuracy of our results we consider samples of size 5,000 
from the densities of interest. 

2.3. Effect of copula misspecification: simulation results 

We performed the study described above with ,3=θ  ( )2Exp=XF  

and ( )1Exp=YF  as well as ( )2,1Weibull== YX FF  and we obtained 

the results as described in Table 1. Table 2 summarizes results in the 
case in which we generated data with sensibly larger values of ,12=θ  
the parameter in the Clayton copula. A slightly bigger similarity between 
Clayton and Frank copulas for larger values of θ and α results in slightly 
more accurate predictions for the conditional mean in the case in which 
the marginals are Weibull distributed. Predictions for the conditional 
variance remain significantly biased. In all situations presented as well 
as in other settings we explored and which are not reported here the 
effect of copula misspecification is significant and can have a large impact 
on inference. 

3. Copula Selection 

As we have seen in the previous section, the choice of the parametric 
family of copulas most suitable for the data at hand is important 
especially if the inference is concerned with parameters depending on the 
copula’s association parameters. In this section we propose an approach 
based on nonparametric kernel smoothing and distributional distances. 

3.1. General description of the method 

In the following we will assume that the samples are bivariate with 

support on the unit square ( ) .1,0 2  This assumption relies on the fact 
that the marginal df ’s are known or can be estimated accurately and are 
invertible (or can be inverted numerically). In principle the approach 
proposed here can be used in a more general setting where the samples 

are in 2R  without substantial difference. However, our simulations are 

done in the [ ]21,0  case. 

Given a general distributional distance D  and a sample of size n on 
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the unit square [ ]21,0  we would like to be able to select from a finite set 

of k parametric families of copulas one that is best representing the type 
of correlation exhibited by the data. Without loss of generality we assume 
that .2=k  The method will choose the family which yields the smallest 
distance between the nonparametric estimate of the “true” density to the 
best fit obtained within each family. To be more precise, by best fit we 
mean the member of the family indexed by the maximum likelihood 
estimator of the copula parameter for that family. In general, the distance 
cannot be computed in closed form so we need to rely on Monte Carlo 
approximations. To this end it is important to be able to generate samples 
from the candidate copulas and to be able to estimate the nonparametric 
density constructed from the original samples at these simulated values. 
In general, both of these requirements can be met in practice. 

One can see that central to our approach is: (a) the distributional 
distance chosen to measure the discrepancy between the nonparametric 
approximation to the true density and the fitted copulas as well as (b) the 
method used to construct the nonparametric approximation to the true 
density. In the remaining of this section we discuss the nonparametric 
kernel smoothing approximation and a couple of distributional distances 
which were used in simulations. 

3.2. Kernel density estimation 

In a practical setting in which we assume that marginal df ’s are 
known (or can be estimated accurately) suppose that we have available n 

samples from the copula density, ( )., vuc∗  We propose to use as an 

approximation of the true copula density, ,∗c  a bivariate kernel density 

estimate ( )vuc ,ˆ∗  of ( )vuc ,∗  constructed using the available samples 

{( ) [ ] }.1:1,0, 2 nivu ii ≤≤∈  

The nonparametric kernel density estimation of ∗c  is obtained using 
unconstrained and data-driven bandwidth matrices obtained as discussed 
in Wand and Jones [43, 45], Duong and Hazelton [11, 12] and as 
implemented in the R software package ks. If nXX ...,,1  are drawn from 
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a d-dimensional density f, then the kernel density is defined by 

( ) ( )∑
=

− −=
n

i
iH XxKnHxf

1

1 ,;ˆ  

where ( )Tdxxx ...,,1=  and ( ),...,,1 idii XXX =  ....,,2,1 ni =  The kernel 
K is a symmetric probability density function, the bandwidth matrix H is 

symmetric and positive definite and ( ) ( ).2121 xHKHxKH −−=  The 
choice of K is not crucial and we use the standard d-dimensional 
Gaussian density throughout the paper. Unlike the choice of K, the choice 

of H is central to the performance of the smoother .f̂  In the simulation 
we allow H to be non-diagonal acknowledging that there is large 
probability mass oriented away from the co-ordinate directions (Duong 
and Hazelton [11, 12]). The bandwidth is selected via least squares cross 
validation, for details see Wand and Jones [45]. 

3.3. Distributional distance and its estimation 

Definition 3.1. Given two densities f and g the Kullback-Leibler (KL) 
distance is defined as 

( ) ( ) ( )( ) ( ) .log,KL ∫= dxxfxgxfgf  (6) 

Hölder’s inequality guarantees that ( ) 0,KL ≥gf  and is zero if and 
only if .gf =  KL has been used intensively in statistics for model 
selection purposes (Burnham and Anderson [5]) most famously in the 
well-known Akaike Information Criterion (AIC) introduced by Akaike [1]. 
In the derivation of the AIC one makes the assumption that there exists 
a true model belonging to the family of models under consideration. 
Another widely used distance between distributions is the Hellinger 
distance. 

Definition 3.2. Given two densities f and g the Hellinger (HE) 
distance is defined as 

( ) [ ( ) ( )] .,HE 2
1

2






 −= ∫ dxxgxfgf  (7) 
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The form (7) can be rewritten as 

 ( ) ( ) ( )
( )

.1,HE
2

2 dx
xf
xgxfgf ∫ 








−=  (8) 

To simplify the discussion suppose we are interested in choosing 
between two families of copula densities { }Ac ∈α= α :A�  and =B  

{ }.: Bc ∈ββ  Using the available samples {( ) [ ] }nivu ii ≤≤∈ 1:1,0, 2  we 

estimate α̂  and β̂  via maximum likelihood methods. Estimate ( )∗α cc ˆ,KL ˆ  

using a sample {( ) }mivu ii ≤≤1:~,~  drawn from α̂c  and using 

( ) ( ) [ ( ( )) ( ( ))]ˆ ˆ ˆ
1

1ˆ ˆKL , , log , log , .
m

i i i i i i
i

c c c u v c u v c u vm
∗ ∗

α α α
=

= −∑  (9) 

Similarly we will estimate ( )∗β cc ˆ,KL ˆ  using 

( ) ( ) [ ( ( )) ( ( ))]ˆ ˆ ˆ
1

1ˆ ˆKL , , log , log , .
m

i i i i i i
i

c c c u v c u v c u vm
∗ ∗

β β β
=

= −∑  (10) 

One can notice that while the samples used in (9) and (10) are 
generated from α̂c  and ,β̂c  respectively, the distances depend on 

( ( )).~,~ˆlog ii vuc∗  Given the same samples as used in (9) and (10) we 
estimate 

( ) ( )
( )

2
2

ˆ
ˆ1

ˆ ,1ˆHE , 1
,

m
i i

i ii

c u vc c m c u v

∗
∗

α
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 
 = −
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and 

( ) ( )
( )

2
2

ˆ
ˆ1

ˆ ,1ˆHE , 1 .
,

m
i i

i ii

c u vc c m c u v

∗
∗

β
= β

 
 = −
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 

∑  (12) 

3.4. Performance of the copula selection procedure 

In Table 3 we report some of the simulation results. Each cell reports 
the correct number of selections, for different combinations of the value 
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for the true copula family, θ, sample size n and distributional distance, 
KL or HE. One can see that the criterions based on the KL distance and 
on the Hellinger distance are performing very well. It is well known that 
the Hellinger distance is sensitive to the way mass is allocated within the 
support of the distribution (Gelman and Meng [17]) and we suspect this is 
the reason for the good performance exhibited here. 

4. Conclusions and Further Work 

We have discussed the effect of copula misspecification on conditional 
inference. Simulations show that the effect can be significant and a 
careful choice of the copula family is needed. In the context of selection 
between a number of parametric families of copulas we propose a 
selection procedure that relies on the Kullback-Leibler divergence or 
Hellinger distance and a nonparametric kernel density estimate 
reconstructed from the available data. 

Further work is needed in order to compare the behavior of the 
current selection procedure with other existent copula selection methods 
as well as study the performance of the method proposed here in the case 
of multivariate copulas. 

References 

 [1] H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. 
Control 19 (1974), 716-723. 

 [2] P. Barbe, C. Genest, K. Ghoudi and B. Rémillard, On Kendall’s process, J. 
Multivariate Anal. 58 (1996), 197-229. 

 [3] G. Biau and M. Wegkamp, A note on minimum distance estimation of copula 
densities, Statist. Probab. Lett. 73 (2005), 105-114. 

 [4] W. Breymann, A. Dias and P. Embrechts, Dependence structures for multivariate 
high-frequency data in finance, Quantitative Finance 3(1) (2003), 1-14. 

 [5] K. P. Burnham and D. R. Anderson, Model Selection and Inference: A Practical 
Information-theoretic Approach, Springer, New York, 1999. 

 [6] P. Capéraà, A.-L. Fougères and C. Genest, A nonparametric estimation procedure for 
bivariate extreme value copulas, Biometrika 84 (1997), 567-577. 

 [7] L. L. Chaieb, L. P. Rivest and B. Abdous, Estimating survival under a dependent 
truncation, Biometrika 93 (2006), 655-669. 

 [8] X. H. Chen and Y. Q. Fan, Estimation and model selection of semiparametric      



CHOICE OF PARAMETRIC FAMILIES OF COPULAS 35 

copula-based multivariate dynamic models under copula misspecification, J. 
Econometr. 135 (2006), 125-154. 

 [9] D. Clayton, A model for association in bivariate life tables and its application                 
in epidemiological studies of familial tendency in chronic disease incidence, 
Biometrika 65 (1978), 141-151. 

 [10] P. Deheuvels, La fonction de dépendance empirique et ses propriétés. Un test non 
paramétrique d’indépendance, Acad. Roy. Belg. Bull. Cl. Sci. (5) 65 (1979), 274-292. 

 [11] T. Duong and M. L. Hazelton, Cross-validation bandwidth matrices for multivariate 
kernel density estimation, Scand. J. Statist. 32 (2005a), 485-506. 

 [12] T. Duong and M. L. Hazelton, Plug-in bandwidth matrices for bivariate kernel 
density estimation, J. Nonparametr. Statist. 15 (2005b), 17-30. 

 [13] V. Durrleman, A. Nikeghbali and T. Roncalli, Which copula is the right one? 
Technical Report, Groupe de Recherche Opèrationelle, Crédit Lyonnais, 2000. 

 [14] G. Escarela and J. F. Carrière, Fitting competing risks with an assumed copula, 
Stat. Methods Med. Res. 12 (2003), 333-349. 

 [15] J. D. Fermanian, Goodness-of-fit tests for copulas, J. Multivariate Anal. 95 (2005), 
119-152. 

 [16] M. J. Frank, On the simultaneous associativity of ( )yxf ,  and ( ),, yxfyx −+  
Aequationes Math. 19 (1979), 194-226. 

 [17] A. Gelman and X. L. Meng, Simulating normalizing constants: from importance 
sampling to bridge sampling to path sampling, Statist. Sci. 13 (1998), 163-185. 

 [18] C. Genest and R. J. MacKay, Copules archimédiennes et familles de lois 
bidimensionnelles dont les marges sont données, Canad. J. Statist. 14 (1986),          
145-159. 

 [19] C. Genest and L. P. Rivest, Statistical inference procedures for bivariate 
Archimedean copulas, J. Amer. Statist. Assoc. 88 (1993), 1034-1043. 

 [20] C. Genest, K. Ghoudi and L. Rivest, A semiparametric estimation procedure of 
dependence parameters in multivariate families of distributions, Biometrika 82 
(1995), 543-552. 

 [21] C. Genest, J. F. Quessy and B. Rémillard, Local efficiency of a Cramér-von Mises test 
of independence, J. Multivariate Anal. 97 (2006), 274-294. 

 [22] W. Hastings, Monte-Carlo sampling methods using Markov chains and their 
applications, Biometrika 57 (1970), 97-109. 

 [23] W. Höffding, Maszstabinvariante Korrelationstheorie, Schr. Math. Inst. u Inst. 
Angew. Math. Univ. Berlin 5 (1940), 181-233. 

 [24] P. Hougaard, Analysis of multivariate survival data, Statistics for Biology and 
Health, Springer-Verlag, New York, 2000. 

 [25] H. Joe, Parametric families of multivariate distributions with given margins,               
J. Multivariate Anal. 46 (1993), 262-282. 



MARIANA CRAIU and RADU V. CRAIU 36 

 [26] H. Joe, Multivariate models and dependence concepts, Monographs on Statistics and 
Applied Probability, Vol. 73, Chapman & Hall, London, 1997. 

 [27] H. Joe, Asymptotic efficiency of the two-stage estimation method for copula-based 
models, J. Multivariate Anal. 94 (2005), 401-419. 

 [28] G. Kim, J. M. Silvapulle and P. Silvapulle, Comparison of semiparametric and 
parametric methods for estimating copulas, Comput. Statist. Data. Anal. 51 (2007), 
2836-2850. 

 [29] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22 
(1951), 79-86. 

 [30] A. Müller and M. Scarsini, Stochastic comparison of random vectors with a common 
copula, Math. Oper. Res. 26 (2001), 723-740. 

 [31] A. Müller and M. Scarsini, Archimedean copulae and positive dependence,                     
J. Multivariate Anal. 93 (2005), 434-445. 

 [32] R. B. Nelsen, An Introduction to Copulas, 2nd ed., Springer Series in Statistics, 
Springer, New York, 2006. 

 [33] R. B. Nelsen, J. J. Quesada-Molina and J. A. Rodríguez-Lallena, Bivariate copulas 
with cubic sections, J. Nonparametr. Statist. 7 (1997), 205-220. 

 [34] D. Oakes, A model for association in bivariate survival data, J. Roy. Statist. Soc., 
Ser. B 44 (1982), 414-422. 

 [35] D. Oakes, Semiparametric inference in a model for association in bivariate survival 
data, Biometrika 73 (1986), 353-361. 

 [36] D. Oakes, Bivariate survival models induced by frailties, J. Amer. Statist. Assoc. 84 
(1989), 487-493. 

 [37] A. J. Patton, Modelling asymmetric exchange rate dependence, Internat. Econom. 
Rev. 47 (2006), 527-556. 

 [38] J. J. Quesada-Molina and J. A. Rodríguez-Lallena, Bivariate copulas with quadratic 
sections, J. Nonparametr. Statist. 5 (1995), 323-337. 

 [39] J. S. Romeo, N. I. Tanaka and A. C. Pedroso-de-Lima, Bivariate survival modeling: a 
Bayesian approach based on copulas, Lifetime Data Anal. 12(2) (2006), 205-222. 

 [40] J. H. Shih and T. A. Louis, Inferences on the association parameter in copula models 
for bivariate survival data, Biometrics 51 (1995), 1384-1399. 

 [41] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. 
Statist. Univ. Paris 8 (1959), 229-231. 

 [42] H. Tsukahara, Semiparametric estimation in copula models, Canad. J. Statist. 33 
(2005), 357-375. 

 [43] M. Wand and M. Jones, Comparison of smoothing parameterizations in bivariate 
kernel density estimation, J. Amer. Statist. Assoc. 88 (1993), 520-528. 

 [44] M. P. Wand and M. C. Jones, Multivariate plug-in bandwidth selection, Comput. 
Statist. 9 (1994), 97-116. 



CHOICE OF PARAMETRIC FAMILIES OF COPULAS 37 

 [45] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman & Hall, 1995. 

 [46] W. Wang and A. A. Ding, On assessing the association for bivariate current status 
data, Biometrika 87 (2000), 879-893. 

 [47] W. Wang and M. T. Wells, Model selection and semiparametric inference for 
bivariate failure-time data, J. Amer. Statist. Assoc. 95 (2000), 62-76. 

 

 

 

 

 

 

 

 



MARIANA CRAIU and RADU V. CRAIU 38 

T
ab

le
 1

. 
C

om
pa

ri
so

n 
be

tw
ee

n 
th

e 
tr

ue
 a

nd
 e

st
im

at
ed

 p
re

di
ct

or
s 

fo
r 
X 

an
d 

tr
ue

 a
nd

 e
st

im
at

ed
 c

on
di

tio
na

l 
va

ri
an

ce
s 

of
 X

 fo
r 

va
ri

ou
s 

va
lu

es
 o

f Y
 =

 y
0.

 E
ac

h 
ce

ll 
co

nt
ai

ns
 th

e 
bi

as
 e

st
im

at
ed

 o
ve

r 
10

0 
re

pl
ic

at
es

 a
nd

 b
et

w
ee

n 
br

ac
ke

ts
 is

 th
e 

M
on

te
 C

ar
lo

 s
ta

nd
ar

d 
er

ro
r 

fo
r 

th
e 

bi
as

 e
st

im
at

e 

 



CHOICE OF PARAMETRIC FAMILIES OF COPULAS 39 

T
ab

le
 2

. 
C

om
pa

ri
so

n 
be

tw
ee

n 
th

e 
tr

ue
 a

nd
 e

st
im

at
ed

 p
re

di
ct

or
s 

fo
r 
X 

an
d 

tr
ue

 a
nd

 e
st

im
at

ed
 c

on
di

tio
na

l 
va

ri
an

ce
s 

of
 X

 fo
r 

va
ri

ou
s 

va
lu

es
 o

f Y
 =

 y
0.

  

 



MARIANA CRAIU and RADU V. CRAIU 40 

Table 3. Performance of the copula selection procedure proposed 
with the distributional distance being Kullback-Leibler (KL) or 
Hellinger (HE). The numbers in each cell represent the percentage of 
correct selections. The data is generated using a Clayton copula and 
the candidate families are Clayton and Frank 
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