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We consider a survival analysis problem in which items are subject to failure from com-

peting risks. For some of the items, the failure cause is known only to belong to a subset

of the set of all possible causes, while for the remaining items the cause of death is known

precisely. In this chapter we investigate two complementary analyses based on models in

which the hazard rates are assumed piecewise constant. The approaches proposed rely on

the EM algorithm and its Bayesian counterpart, the data augmentation (DA) algorithm. An

example is used to illustrate the advantages of each analysis.

1 Introduction

In situations in which the survival data involve several different failure types, the analysis is

performed using the theory of competing risks. In most medical and industrial applications

the data includes the time of censoring or failure and an indicator of the failure cause for

each item/patient. However, it is often the case, especially with modular systems, that for

a certain subset of the items, the true cause of failure is not known exactly. Such items

are said to have a masked cause of failure. While in some cases the failure can be isolated
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down to a subset of causes, without any such additional information the masking group is

considered to be the entire set of causes. In certain experiments, a second stage analysis can

be conducted so that part of the items with a masked cause of failure are investigated and

an exact diagnostic of the failure cause is obtained.

The literature on competing risks with masked causes of failure has grown greatly in

the recent years. In the context of carcinogenecity studies, Racine-Poon and Hoel (1984)

establish a non-parametric estimate of the survival function, while Dinse (1986) proposes

non-parametric maximum likelihood estimators of prevalence and mortality. Several other

authors also discuss the problem of missing cause-of-death in carcinogenicity studies (Kodell

and Chen, 1987; Lagakos, 1982; Lagakos and Louis, 1988). Goetghebeur and Ryan (1990)

and Dewanji (1992) construct a log-rank test to assess the difference between survival func-

tions for subgroups of the population under study in the presence of covariates. Goetghebeur

and Ryan (1995) subsequently generalize the approach to proportional cause-specific hazards

regression models. Flehinger et al. (1998, 2002) consider the analysis of datasets in which

there are second stage data. They propose maximum likelihood estimation using a model

with non-parametric proportional cause-specific hazards (Flehinger et al., 1998) and a model

with completely parametric cause-specific hazards (Flehinger et al., 2002). The literature

regarding the Bayesian analyses of this problem is reviewed at the beginning of Section 4.

Proportionality between the cause-specific hazards or their complete parametric spec-

ification are assumptions which do not always mirror reality. In this chapter we propose

two approaches, both based on piecewise constant hazards. We assume no proportionality

between the hazards and only weak parametric assumptions are made, namely no particu-

lar shape is imposed on the hazards. The model is defined in Section 2. In Section 3 we

briefly describe an EM-based approach which is analyzed in detail in Craiu and Duchesne

(2004). The model described in Section 2 is the backbone of the Bayesian analysis presented

in Section 4 which represents the main contribution of this chapter. While pro’s and con’s

are discussed for each analysis, we hope that the illustration from Section 4 will empha-

size the advantages of each approach as well as the potential for combining their strengths.

Conclusions and further work are in Section 6.
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2 The Model

We consider a situation in which n independent items are observed in the time interval

[0, Tmax] and each of them can fail of exactly one of J possible causes. The data are collected

in two stages. In the first stage we observe for each item its failure time which may be

censored if at time Tmax the item was still functioning. For those items which have failed

while in the study, we can observe one of the following two situations: (1) item i fails due

to cause j at time t, (2) item i fails due to an unknown cause of failure which is known to

belong to a group of failure causes g(i) ⊂ {1, . . . , J}. The items that belong to the second

situation have a masked failure cause. In the second stage, a subset of the masked items are

sent for further analysis and the precise cause of failure is then determined. It is intuitive

that the masking parameters shall be estimated using those items that are sent to the second

stage of the experiment. In fact, if all the items were sent to the second stage, then all the

information needed for estimation would be available and no missing data procedure would

be necessary. Hence, we get a natural definition of the complete data as the dataset that

we would obtain if every masked item with an uncensored failure time were sent to a second

stage analysis. Suppose there are M masking groups in the dataset (including the groups

consisting of the individual failure causes). The observation for item i in the complete dataset

would be (ti, γig1 , . . . , γigM
, δi1, . . . , δiJ), where γig is the indicator that item i’s failure cause

was masked to group g at the first stage (if the failure cause is known to be j at the first

stage, then we say that it is masked to g = {j}), δij is the indicator that item i’s actual

failure cause is j (if an item is right-censored, then all the indicators δij, j = 1, . . . , J , take

on value 0). The groups containing more than one cause are called proper.

Here is a short example to set the notation straight. Suppose that we have two potential

causes of failure, say causes 1 and 2. Let us assume that at the first stage we either identify

the cause of failure directly (in which case we say that it is masked in group {1} or {2}
accordingly) or we only know that failure is due to one of causes 1 or 2 (in which case we

say that failure is masked in group {1, 2}). For item 1, we have failure at time 2.4 masked

in group {1, 2} at stage 1 with no second stage. Item 2 fails at time 6.3 of a cause masked

in group {1, 2} and it is found in a second stage analysis that failure was actually due to

cause 2. Item 3 is right-censored at time 4.1, and item 4 fails at time 7.2 and its failure is

diagnosed in stage 1 as being due to the first cause. These four observations would be coded
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as

(t1, γ1{1}, γ1{2}, γ1{12}, δ11, δ12) = (2.4, 0, 0, 1, ·, ·)

(t2, γ2{1}, γ2{2}, γ2{1,2}, δ21, δ22) = (6.3, 0, 0, 1, 0, 1)

(t3, γ3{1}, γ3{2}, γ3{1,2}, δ31, δ32) = (4.1, ·, ·, ·, 0, 0)

(t4, γ4{1}, γ4{2}, γ4{1,2}, δ41, δ42) = (7.2, 1, 0, 0, 1, 0)

where · represents missing data. We denote by M2 all masked items which have not been

sent to a second stage analysis and by Gj the set of all masking groups containing cause j.

The number of elements in Gj is denoted Lj and we define G∗
j = Gj\{j}.

The statistical model has a part involving the competing-risk aspect (failure times, hazard

rates) and a part due to masking (masking probabilities). If T ∗ and J∗ are random variables

that represent the failure time and the cause of failure, respectively, then the cause specific

hazards are

λj(t) = lim
h↓0

P [t < T ∗ ≤ t + h, J∗ = j|T ∗ ≥ t]

h
, j = 1, . . . , J. (1)

In this chapter we suppose that the cause-specific hazard functions are piecewise constant,

i.e., there exists a partition of the time interval [0, Tmax] given by 0 = a0 < a1 < · · · < aK =

Tmax such that, if 1k(t) is the indicator that t ∈ (ak−1, ak], then

λj(t) =
K∑

k=1

λjk1k(t). (2)

The choice of the same endpoints for the hazard intervals (ak−1, ak] is justified because it

allows testing for the proportionality of cause-specific hazards and symmetry, as shown in

Craiu and Duchesne (2004). However, if no such tests are necessary the analysis described

here can be carried on even if the intervals have different lengths for different cause-specific

hazards. In such a situation the notation for the end points would have to include a second

index, j, to show their dependence on the cause. Of ultimate interest are the diagnostic

probabilities

πj|g(i)(ti) = P [item i failed of j|failed at ti and was masked in g(i)],
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for all masked items i and all causes j ∈ g(i). In order to compute πj|g(t) we need the

masking probabilities

pg|j = P [cause masked to group g at stage 1| actual failure cause is j], j ∈ g.

With the Bayes’ rule we obtain

πj|g(t) =
λj(t)pg|j∑
l∈g λl(t)pg|l

. (3)

If θ is the vector of parameters that contains λjk, j = 1, . . . , J , k = 1, . . . , K and pgm|j,

j = 1, . . . , J , m = 1, . . . , M , then the log-likelihood function under complete data is

log pC(θ) =
n∑

i=1

J∑

j=1

{[
δij ln

K∑

k=1

λjk1k(ti)−
K∑

k=1

λjk

∫ ti

0
1k(u) du

]

+ δij


(1− ∑

g∈G∗j

γig) ln(1− ∑

g∈G∗j

pg|j) +
∑

g∈G∗j

γig ln pg|j








. (4)

The likelihood (4) contains a competing-risk part which involves the failure times and failure

causes (first line), and a masking part which involves the masking probabilities (second

line). Under complete data, these two parts would be maximized separately making the

maximum likelihood estimates of the masking probabilities robust to the specification of

hazard intervals. One can notice that for right-censored observations the term on the second

line of equation (4) vanishes and for such items there is no need to know γig.

3 EM-based Analysis

The EM algorithm (Dempster et al., 1977) has become a classic among the methods designed

to handle the maximization of intractable likelihood functions. The use of EM to maximize

(4) is recommended since the log-likelihood is linear in the missing data {δij : i ∈ M2, 1 ≤
j ≤ J} and the maximization required in the M-step can be performed in closed form, as

shown below.

The algorithm

For each i ∈ M2 with uncensored failure time ti and with a failure cause masked in g(i), we

have that

E[δij|YOBS, θ] = π̂j|g(i)(ti) =
λ̂j(ti)p̂g(i)|j∑
l∈gi

λ̂l(ti)p̂g(i)|l
.
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Since the complete data log-likelihood (4) is linear in the missing δij, substitution of the

missing δij with E[δij|YOBS, θ] constitutes the E-step of the algorithm. In addition, if we let

ek =
n∑

i=1

∫ ti

0
1k(u) du (5)

denote the k-th interval exposure, i.e. the total time lived by all items in the interval

(ak−1, ak], then one easily obtains that (4) is maximized when

λ̂jk =

∑n
i=1 δij 1k(ti)

ek

and p̂g|j =

∑n
i=1 δij γig∑n

i=1 δij

.

Hence, once the starting points have been chosen, the algorithm iterates between the E-step

described above and the M-step given by

λ̂
(l)
jk =

∑n
i=1 Eθ̂(l−1) [δij|YOBS] 1k(ti)

ek

and p̂
(l)
g|j =

∑n
i=1 Eθ̂(l−1) [δij|YOBS] γig∑n

i=1 Eθ̂(l−1) [δij|YOBS]
. (6)

The algorithm can be easily extended to include time-varying masking probabilities pg|j(t)

(see Craiu and Duchesne, 2004).

In all situations encountered with relatively large sample sizes and a 30-50% percentage

of masked items sent to the second stage analysis, the algorithm converges in less than 10-20

iterations. Caution is required in situations where there are no data collected in the second

stage and the cause-specific hazard rates are proportional. In such a case, the parameters are

unidentifiable conditional on the observed data (Flehinger et al. 1998) but are identifiable

given the complete data. If the parameters are identifiable only in the complete data model

there is a ridge of local maxima in the likelihood surface and the EM algorithm will converge

to one of the points on the ridge, depending on the starting point. The erratic behavior of the

EM can be detected by using multiple starting points. Previous authors (Goetghebeur and

Ryan, 1990; Dewanji, 1992; Lo, 1991) propose a working hypothesis of symmetry to reduce

the number of parameters and obtain identifiability. The symmetry assumption assumes

that the masking probabilities pg|j does not depend on the cause j, i.e., pg|j = pg for any

group g and any j ∈ g.

Craiu and Duschesne (2004) prove results regarding the convergence of the EM algorithm,

develop inference methods such as likelihood ratio tests for the assumptions of symmetry

and proportionality of hazards, and apply the supplementary EM (SEM) algorithm (Meng

and Rubin, 1991) for the estimation of the asymptotic variance matrix of the maximum

likelihood estimators.
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However, even if the cause-specific hazards are not proportional, with little or non-existent

second stage data, the information about the pg|j’s is obtained via the hazard rate estimates,

which are time dependent. As a result, if the intervals for the hazards are misspecified then

the maximum likelihood estimates can be far from the true values. Equations (6) require that

the hazard intervals are chosen so that for each interval 1 ≤ k ≤ K and for each failure cause

1 ≤ j ≤ J , there exists an i such that j ∈ gi and 1k(ti) = 1. In most cases this implies that

the intervals for the piecewise hazards are fairly large leading naturally to misspecification.

We expect that combining the previous approach with the Bayesian analysis proposed in

the next section will remedy this problem since, due to the prior specifications, there are no

restrictions on the number and size of intervals for each cause-specific hazard.

4 Bayesian Analysis

Most of the Bayesian inferences presented in the literature of competing hazards allow para-

metric models for the hazard rates. Reiser et al. (1995) assume that the component lifetimes

are exponentially distributed, Kuo and Yang (2000) consider also Weibull distributed life-

times, while Basu et al. (2003) incorporate in their analysis all commonly used parametric

distributions. In recent years the non-parametric Bayesian analysis of survival models has

spurred a lot of work. Following the ideas of beta and gamma processes devised by Hjort

(1990), Kalbfleisch (1978), Dykstra and Laud (1981), statisticians have increased the com-

plexity of the prior elicitation for the hazards rates in the competing risks models. We refer

the reader to Arjas and Gasbarra (1994), Walker and Mallick (1997), Gasbarra and Karia

(2000), Salinas-Torres et al. (2002), Nieto-Barajas and Walker (2002), Ibrahim et al. (2001).

While the EM-based inference offers simplicity and robustness to the misspecification of

the hazards rate when there are enough second stage data, it can also produce the wrong

estimates when there is not enough information (sparse second stage data, large percentage

of masked items, etc). It is therefore important to be able to incorporate in the model the

knowledge accumulated from past similar experiments. In addition, the performance may

be improved with a more flexible choice of the intervals for the hazards.

In the following we construct a Bayesian analysis structured on the model (4) that uses

the work of Nieto-Barajas and Walker (2002) to define the prior distribution on the hazard

rates. More precisely, their discrete gamma process is used to model piecewise constant

hazard rates as we adapt their method to the context of competing proportional cause-

7



specific hazards.

Prior Distributions

As before, assume that for each cause j ∈ {1, . . . , J} we define K intervals on which the j-th

hazard is constant and equal to λjk, 1 ≤ k ≤ K. If we consider these intervals to be shorter,

then it is likely that the values of the hazards in two successive pieces are not independent.

We follow Nieto-Barajas and Walker (2002) and assume a latent process ujk so that for each

cause j, there is a Markovian dependence summarized by the graph

λj1 → uj1 → λj2 → . . . → ujK−1 → λjK .

Adding the latent variables ujk allows one to model and control the dependence between

values taken by one cause-specific hazard rate on adjacent intervals. Such dependence is

important in situations in which we choose the intervals without a good knowledge of the

underlying process (as is usually the case in practice). Alternatively, one may interpret the

ujk’s as virtual failures of a process identical in nature to the one under study; this point of

view is attractive as it allows an intuitive interpretation of the model.

Formally, take the following conditional distributions

λj1 ∼ Gamma(αj1, βj1),

ujk|λjk ∼ Poisson(cjkλjk)

λj,k+1|ujk ∼ Gamma(αjk+1 + ujk, βjk+1 + cjk) (7)

with αjK+1 = βjK+1 = 0 for all 1 ≤ j ≤ J and 1 ≤ k ≤ K. The cjk regulates the smoothing of

the hazard λj so that if cjk = 0 then λjk and λjk+1 are independent. In general 10 ≤ cjk ≤ 20

is enough to produce smoother hazards, while taking c = 0 will result in approximately the

same inference as the EM based one. The choice of the cjk’s has to be done in connection

with the width of the intervals, e.g. a succession of larger intervals requires a smaller value of

the smoothing parameter. One can also let the data decide by considering the c’s as part of

the parameter vector and assigning exponential priors to them as suggested in Nieto-Barajas

and Walker (2002). In the absence of prior information the αjk and βjk are recommended to

be small. If we have prior information regarding the process λj, say we know E[λjk] = ψjk

then we can choose the αjk, βjk and cjk such that

αjk+1

βjk+1

=
ψjk+1 − ξjk+1ψjk

1− ξjk+1
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where ξjk+1 = cjk/(βjk+1 + cjk). We refer to Nieto-Barajas and Walker (2002) for other

properties of the gamma process prior.

A natural conjugate prior assigned to the masking probabilities is

(pg1|j, pg2|j, . . . , pgLj
|j) ∼ Dirichlet(η1j, . . . , ηLjj) (8)

for all 1 ≤ j ≤ J causes. Lack of information on the masking probabilities will produce

ηij = constant for all 1 ≤ i ≤ Lj and all causes j, while prior information can be included

as E[pgi|j] = ηij/
∑Lj

h=1 ηhj.

Data Augmentation Algorithm

There are two sets of latent variables in the model. For each item i ∈ M2, there are

J unobserved random variables (δi1, . . . , δiJ). In addition the prior (7) introduces K − 1

additional latent variables, (uj1, . . . , ujK−1), for each cause j. In the initialization step we

need to input initial guesses for all the latent variables. For the set of δ’s one can use

the output from the EM algorithm described in the previous section. Although the δEM
ij

computed in the E-step are not integers, we can choose for each i ∈ M2 the j0 with the

largest δEM
ij and assign δ

(0)
ij0 = 1, δ

(0)
ij = 0, j 6= j0. In our applications we use u

(0)
jk = 1 for all

j, k.

The data augmentation algorithm (Tanner and Wong, 1987) consists in the following

steps at iteration t:

Masking probabilities For each j ∈ {1, . . . , J} sample

(p
(t)
g1|j, . . . , p

(t)
gLj

|j) ∼ Dirichlet

(
η1j +

N∑

i=1

γig1δ
(t−1)
ij , . . . , ηLjj +

N∑

i=1

γigLj
δ
(t−1)
ij

)

Hazard rates For each j ∈ {1, . . . , J}

λ
(t)
j1 ∼ Gamma(αj1 + u

(t−1)
j1 + nj1, βj1 + cj1 + e

(t−1)
1 )

λ
(t)
jk ∼ Gamma(αjk + u

(t−1)
jk−1 + u

(t−1)
jk + n

(t−1)
jk , βjk + cjk−1 + cjk + e

(t−1)
k )

where n
(t−1)
jk is the number of items which fail in the k-th interval due to cause j, e

(t)
k

is defined by equation (5), and cjK = ujK = 0. The supraindex t− 1 means that these

numbers are estimated using the latent variables imputed at step t− 1.
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Latent variables For each item i ∈ M2

(δ
(t)
i1 , . . . , δ

(t)
iJ ) ∼ Multin


1,

p
(t)
g(i)|1λ

(t)
1 (ti)

∑
j∈g(i) p

(t)
g(i)|jλ

(t)
j (ti)

, . . . ,
p

(t)
g(i)|Jλ

(t)
J (ti)

∑
j∈g(i) p

(t)
g(i)|jλ

(t)
j (ti)




For each cause j ∈ {1, . . . , J} and for each interval k ∈ {1, ..., K}

Pr(u
(t)
jk = u) ∝ [cjk(cjk + βjk+1)λ

(t)
jk λ

(t)
jk+1]

u

Γ(u + 1)Γ(αjk + u)
.

The Proportional Hazards case

The assumption of proportional cause-specific hazards, denoted here APH , is recurrent in the

literature of competing risks. However, tests to assess the correctness of such a hypothesis

are rare. Craiu and Duchesne (2004) develop a likelihood ratio test for the hypothesis APH .

In the present context one needs first to construct a data augmentation algorithm to sample

from the parameter subspace defined by the constraints

APH : λjk = φjλ1k

for all 2 ≤ j ≤ J and all 1 ≤ k ≤ K. The masking part of the model as well as the

prior specification of λ1 remain the same. For each j ≥ 2 the prior distribution of φj is

Gamma(νj, χj). The DA algorithm for the unrestricted model changes in that only the

{u1k : 1 ≤ k ≤ K − 1} is imputed and the hazard rates step becomes:

Hazard rates

λ
(t)
11 ∼ Gamma(α11 + u

(t−1)
11 + n11, β11 + c11 + e

(t−1)
1 )

λ
(t)
1k ∼ Gamma(α1k + u

(t−1)
1k−1 + u

(t−1)
1k + n

(t−1)
1k , β1k + c1k−1 + c1k + e

(t−1)
k )

φ
(t)
j ∼ Gamma(νj +

N∑

i=1

δij, χj +
K∑

k=1

λ
(t)
1kek).

We denote APC the general model with piecewise constant hazards. In assessing the validity

of APH of interest is the Bayes factor

BPH =
p(YOBS|APC)

p(YOBS|APH)
(9)

It is well known (for example, Kass and Raftery, 1995; Meng and Wong, 1996; Chen et al.

2000) that

p(YOBS|APH) =
∫

p(YOBS|θPH , APH)p(θPH |APH)dθPH
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is just the normalizing constant of the posterior density p(θPH |YOBS, APH). As a result, the

estimation of (9) is equivalent to the estimation of a ratio of two normalizing constants.

The latter problem has been intensively studied in the last years, particularly in sit-

uations in which only samples (independent or dependent) from the two distributions of

interest are available to the analyst. A simple but often highly variable solution is based

on importance sampling (Geweke, 1989). Meng and Wong (1996) develop bridge sampling

as a generalization of importance sampling that exploits optimally the overlap between the

supports of the distributions. Recently, Gelman and Meng (1998) introduced path sampling

as the limit of an infinite sequence of bridge samplers. While the theory of bridge sampling

has been developed for situations in which independent realizations from each distribution

are available, subsequent applications and studies (Servidea, 2002) have shown that the

method also works well with dependent samples. In the context of the present analysis,

we have reasonable confidence that the two models have a significant overlap since the two

parameter spaces share the subset of masking probabilities. It is worth adding that the un-

normalized posterior density can be computed at any point because p(YOBS|θPH , APH) and

p(YOBS|θ, APC) can be expressed in closed form (Craiu and Duchesne, 2004).

5 Example

To assess the importance of transferring information between adjacent intervals, we consider

a simulation example in which the hazards rates are Weibull distributed and there is no

proportionality among them. There are 300 observations with times of failure between 0

and 15. Only 20% of the masked items are sent to a second stage analysis. There are three

possible causes of failure and there are three masking groups: g1 = {1, 2}, g2 = {1, 3} and

g3 = {1, 2, 3}. The probability to have the cause masked are: 60% for cause 1, 80% for cause

2 and 70% for cause 3. We implement the Bayesian analysis with 10 or 20 intervals. In the

absence of prior information we take cjk = C, αjk = βjk = 0.001 for all causes j and all

intervals k.
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Figure 1: Plot of the posterior mean of the diagnostic probability π1|{1,2,3} against time as

the number of intervals and the value of the smoothing parameter C vary. The true curve

is represented by the dashed line, and the estimates within each interval are rendered with

the solid lines.
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Figure 2: Plot of the posterior mean of the diagnostic probability π2|{1,2,3} against time as

the number of intervals and the value of the smoothing parameter C vary. The true curve

is represented by the dashed line, and the estimates within each interval are rendered with

the solid lines.
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The DA algorithm has been used to generate 4000 iterations out of which we used the

last 2000 for estimation. The convergence assessment has been done following the ideas

of Gelman and Rubin (1992) using Andrew Gelman’s itsim function in S-plus applied to 4

parallel chains. The simulation lasted approximately one hour. Figures 1 and 2 illustrate

the effect of increasing the “smoothing parameter” C from 0 to 10 when the number of

intervals is relatively moderate (10-20). Under consideration are the posterior means of the

estimators for the diagnostic probability π̂1|{1,2,3}(t) and π̂2|{1,2,3}(t). Each plot shows in solid

line the true value, and in dotted line the piecewise constant estimator. The C = 0 value

corresponds roughly to the EM-based inference. It is seen here that if we increase the number

of intervals, the EM estimator is too rough due to the lack of sufficient data in some of the

intervals. Raising the value of the smoothing parameter noticeably increases the precision

of the estimate. It can also be seen from the plot that the difference between the estimators

obtained for C = 5 and C = 10 is quite small.

The Bayes factor (9) can be calculated following the iterative construction of Meng and

Wong (1996). This calculation is possible since one can compute the observed likelihood in

any point as shown in Craiu and Duchesne (2004). With any of the above values for C, (9)

ranges between 25 and 40 and shows no support for APH .

6 Discussion and Further Work

The two methods presented are complementary and should be used together to increase the

strength of the analysis. While the EM analysis produces robust inference of the masking

probabilities and can be used to test for the symmetry and proportional hazards assumptions,

it can also be used to determine the posterior modes for some or all of the model parameters

as suggested in Gelman et al. (2003, Ch. 12). The Bayesian analysis is particularly useful in

producing more sensible estimates of the hazard rates when the data are sparse. In addition,

the calculation of the posterior variance of the diagnostic probabilities is more straightforward

once it is possible to sample from the posterior distribution of the parameters.

Within the Bayesian framework, it may be of interest to produce an automatic sequential

design procedure to help the experimenter decide which masked items should be sent to the

second stage analysis so that a certain given utility function is maximized.

We would like to enrich the class of possible models by relaxing the condition of piecewise

linearity of the hazards. However, the computation complexity increases rapidly once we give
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up linearity and needs further investigation.
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