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Abstract The paper considers the problem of establishing data support for the sim-
plifying assumption (SA) in a bivariate conditional copula model. It is known that
SA greatly simplifies the inference for a conditional copula model, but standard tools
and methods for testing SA in a Bayesian setting tend to not provide reliable results.
After splitting the observed data into training and test sets, the method proposed will
use a flexible Bayesian model fit to the training data to define tests based on random-
ization and standard asymptotic theory. Its performance is studied using simulated
data. The paper’s supplementary material also discusses theoretical justification for
the method and implementations in alternative models of interest, e.g. Gaussian,
Logistic and Quantile regressions.

Keywords Calibration function · Conditional copula · Permutation · Simplifying
assumption

1 Introduction

A copula is a mathematical concept often used to model the joint distribution of
several random variables. The applications of copula models permeate a number of
fields where of interest is the simultaneous study of dependent variables, e.g. [8,
10, 13, 17]. The propagation of copula-related ideas in probability and statistics
started with [19] which proved that for a random vector (Y1, . . . ,Yk) with cumu-
lative distribution function (CDF) H(y1, . . . , yk) and marginal continuous CDFs
Fi (yi ), i = 1, . . . , k, there exists a unique copula C : [0, 1]k → [0, 1] such that
H(y1, . . . , yk) = C(F1(y1), . . . , Fk(yk)). For statistical modelling, it is also use-
ful to note that a k-dimensional copula C and marginal continuous CDFs Fi (yi ), i =
1, . . . , k are building blocks for a valid k-dimensional CDF, C(F1(y1), . . . , Fk(yk))
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with i th marginal CDF equal to Fi (yi ), thus providing much-needed flexibility in
modelling multivariate distributions. The previous construction can be extended
when conditioning on a covariate vector X ∈ Rq [14, 17] so that

H(y1, . . . , yk |X) = CX (F1(y1|X), . . . , Fk(yk |X)), (1)

where all CDFs and the copula are conditional on X . For the rest of this paper, we
follow [16] and assume: (1) that the copula in (1) belongs to a parametric family
that remains the same across the whole range of X , and (2) its one-dimensional
parameter depends on X through some unknown function θ(X) : Rq → Θ ⊂ R.
The range of θ(X) is usually restricted, so we introduce a known one-to-one link
function g : Θ → R such that the calibration function, η : Rq → R, defined as
η(X) = g(θ(X)) has unrestricted range. Sometimes, it is convenient to parametrize
a copula family in terms of Kendall’s tau, τ(X) : Rq → [−1, 1], which, for any given
value of X , is in one-to-one correspondence with θ(X) when the copula parameter
is one-dimensional. Thus, there is also a known one-to-one function g′(·) such that
η(X) = g′(τ (X)).

The simplifying assumption (SA) [5] states that copula CX in (1) is indepen-
dent of X , or that η(X) is constant. Clearly, SA greatly simplifies the estimation in
conditional copula models, including their use in vines (see, for instance, [1]). Acar
et al. [2] showed that assuming SAwhen the data generative process has non-constant
calibration may bias the inference, while Levi and Craiu [16] showed that SA is vio-
lated when important covariates are not included in the model (1). In light of these
results, there is a genuine demand for strategies that effectively test whether the
SA is appropriate or not. A number of research contributions address this issue for
frequentist analyses, e.g. [3, 6, 9, 11].

This contribution belongs within the Bayesian paradigm, following the general
philosophy expounded also in Klein and Kneib [12]. In this setting, it was observed
in Craiu and Sabeti [4] that generic model selection criteria tend to choose a more
complex model even when SA holds. In the next section, we present the problem
in mathematical terms and review some of the Bayesian model selection procedures
used for SA. A new approach, based on permutations, is described in Sect. 3. The
Appendix contains a theoretical justification of the proposed algorithm and a dis-
cussion of extensions to other regression problems. A merit of the proposal is that it
is quite general in its applicability, but this comes, unsurprisingly, at the expense of
power. In order to investigate whether the trade-off is reasonable, we design a sim-
ulation study and present its conclusions in Sect. 4. The paper ends with a summary
and discussion of future work.
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2 Problem Setup

We consider observed data that consist of n independent tripletsD = {(xi , y1i , y2i ),
i = 1, . . . , n} where y ji ∈ R, j = 1, 2, and xi ∈ Rq . Denote y1 = (y11, . . . , y1n),
y2 = (y21, . . . , y2n) and X ∈ Rn×q the matrix with i th row equal to xTi . We rely on
(1) to express the full conditional model density for Y1 and Y2 given X

p(y1, y2|X, ω) =
n∏

i=1

f1(y1i |ω, xi ) f2(y2i |ω, xi )cθ(xi ) (F1(y1i |ω, xi ), F2(y2i |ω, xi )) ,

(2)

where f j , Fj are the density and, respectively, the CDF for Y j , and ω denotes all
the parameters and latent variables in the joint and marginals models. The copula
density function is denoted by c, and it depends on X through unknown function
θ(X) = g−1(η(X)). The copula family can be selected using several model selection
criteria (e.g. [16, 18]). Once the copula family is selected, the objective is to check
whether the SA is valid, in other words whether (2) becomes the reduced model

P(y1, y2|X, ω) =
n∏

i=1

f1(y1i |ω, xi ) f2(y2i |ω, xi )cθ (F1(y1i |ω, xi ), F2(y2i |ω, xi )) ,

(3)

in which the copula depends only on one parameter, θ . Flexible Bayesian models
usually yield posteriors that are analytically intractable, so their characteristicswill be
estimated using draws {ω(t)}Mt=1 obtained via a Markov chain Monte Carlo (MCMC)
algorithm (e.g. [16, 18]). Data support for the full and reduced models, (2) and (3),
may be established using predictive power as a criterion.

2.1 The Cross-Validated Pseudo Marginal Likelihood and Its
Conditional Variant

The cross-validated pseudo marginal likelihood (CVML) [7] calculates the average
(over parameter values) prediction power for model M via

CVML(M ) =
n∑

i=1

log (P(y1i , y2i |D−i ,M )) , (4)

where D−i is the data set from which the i th observation has been removed. An
estimate of (4) for a given model is estimated using posterior draws ω(t) given the
whole data set D , (detailed derivations can be found in Levi and Craiu [16]) via
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CVMLest (M ) = −
n∑

i=1

log

(
1

M

M∑

t=1

P(y1i , y2i |ω(t),M )−1

)
. (5)

The model with the largest CVML is preferred.
The conditional CVML (CCVML), introduced by Levi andCraiu [16] specifically

for copula models, exploits conditional rather than joint predictions

CCVML(M ) = 1

2

⎧
⎨

⎩

n∑

i=1

log
[
P(y1i |y2i ,D−i ,M )

] +
n∑

i=1

log
[
P(y2i |y1i ,D−i ,M )

]
⎫
⎬

⎭ .

Again this criterion can be estimated from posterior samples using

CCVMLest (M ) = − 1
2

∑n
i=1

{
log

[
1
M

∑M
t=1

P(y2i |ω(t),M )

P(y1i ,y2i |ω(t),M )

]

+ log
[

1
M

∑M
t=1

P(y1i |ω(t),M )

P(y1i ,y2i |ω(t),M )

]}
. (6)

Similar to CVML, the model with the largest CCVML is selected.

2.2 Watanabe–Akaike Information Criterion

The Watanabe–Akaike Information Criterion [21] is an information-based criterion
that is closely related to CVML, as discussed in [20]. The WAIC is defined as

WAIC(M ) = −2fit(M ) + 2p(M ), (7)

where the model fitness is

fit(M ) =
n∑

i=1

log E [P(y1i , y2i |ω,M )] , (8)

and the penalty

p(M ) =
n∑

i=1

Var[log P(y1i , y2i |ω,M )]. (9)

The expectation in (8) and the variance in (9) are with respect to the conditional
distribution of ω given the data and can easily be estimated using the ω(t) draws. The
model with the smallest WAIC measure is preferred.
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3 Detecting Data Support for SA

As will be shown in Sect. 4, the criteria described above exhibit unsatisfactory per-
formances when the reduced model is the generative one. While it is expected that
the flexibility of the full model will yield good predictions even when SA holds, it
was surprising to see that the penalty term in (9) is not large enough to downgrade
the full model under the SA null. Therefore, we base our diagnostics on some of the
properties that are invariant to the group of permutations when SA holds.

In the first stage, we randomly divide the dataD into training and test sets,D1 and
D2, with n1 and n2 sample sizes, respectively. The full model defined by (2) is fitted
on D1, and we denote ω(t) the t th draw sampled from the posterior. For the i th item
inD2, compute point estimates η̂i and Ûi = (Û1i , Û2i ), where Û ji = Fj (y ji |ω̂ j , xi ),
j = 1, 2, i = 1, . . . , n2, and ω j denotes the vector of all the parameters and latent
variables related to the j th marginal distribution. The marginal parameter estimates,
ω̂ j , are obtained from the training data posterior draws. For instance, if the marginal
models are Y1i ∼ N ( f1(xi ), σ 2

1 ) and Y2i ∼ N ( f2(xi ), σ 2
2 ), then each of theMCMC

sample ω(t) leads to an estimate f̂ t1 (xi ), f̂ t2 (xi ), σ̂
t
1, σ̂

t
2, η̂

t (xi ). Then Ûi = (Û1i , Û2i )

are obtained using

(Û1i , Û2i ) = (Φ((y1i − f̂1(xi ))/σ̂1),Φ((y2i − f̂2(xi ))/σ̂2)),

where the overline a signifies the averages of Monte Carlo draws at .
Given the vector of calibration function evaluations at the test points, η̂ =

(η̂1, . . . , η̂n2), and a partition min(η̂) = a1 < . . . < aK+1 = max(η̂) of the range of
η into K disjoint intervals, define the set of observations in D2 that yield calibration
function values between ak and ak+1, Bk = {i : ak ≤ η̂i < ak+1} k = 1, . . . , K . We
choose the partition such that each “bin” Bk has approximately the same number of
elements, n2/K .

Under SA, the bin-specific estimates for various measures of dependence, e.g.
Kendall’s τ or Spearman’s ρ, computed from the samples Ûi , are invariant to permu-
tations, or swaps across bins. Based on this observation, we consider the procedure
described in Table1 for identifying data support for SA. The distribution of the result-
ing test statistics obtained in Method 1 is determined empirically, via permutations.
Alternatively, one can rely on the asymptotic properties of the bin-specific depen-
dence parameter estimates and construct a Chi-square test. Specifically, suppose the
bin-specific Pearson correlations ρ̂k are computed from samples {Ûi : i ∈ Bk}), for
all k = 1, . . . , K , and let ρ̂ = (ρ̂1, . . . , ρ̂K )T and ñ = n2/K be the number of points
in each bin. It is known that ρ̂k is asymptotically normal distributed for each k so
that √

ñ(ρ̂k − ρk)
d→ N (0, (1 − ρ2

k )
2),

where ρk is the true correlation in bin k. If we assume that {ρ̂k : k = 1, . . . , K } are
independent, and set ρ = (ρ1, . . . , ρK )T and
 = diag((1 − ρ2

1 )
2, . . . , (1 − ρ2

K )2),
then we have
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Table 1 Method 1: A permutation-based procedure for assessing data support in favour of SA

√
ñ(ρ̂ − ρ)

d→ N (0, 
).

In order to combine evidence across bins, we define the matrix A ∈ R(K−1)×K as

A =

⎡

⎢⎢⎢⎣

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1

⎤

⎥⎥⎥⎦ . (10)

Since under the null hypothesis SA holds, one gets ρ1 = . . . = ρK , implying

ñ(Aρ̂)T (A
At )−1(Aρ̂)
d→ χ2

K−1.

Method 2, with its steps detailed in Table2, relies on the ideas above to test SA.
Method 1 evaluates the p-value using a randomization procedure [15], while the

second is based on the asymptotic normal theory of Pearson correlations. To get
reliable results, it is essential to assign test observations to “correct” bins which is
true when calibration predictions are as close as possible to the true unknown values,
i.e. η̂(xi ) ≈ η(xi ). The latter heavily depends on the estimation procedure and sample
size of the training set. Therefore, it is advisable to apply very flexible models for the
calibration function estimation and have enough data points in the training set. The
trade-off we notice is that as more observations are assigned to D, the calibration
test predictions improve, even as power decreases due to a smaller sample size in
D2. For our simulations, we have used n1 ≈ 0.5n and n2 ≈ 0.5n, and K ∈ {2, 3}.
Remarks: The equivalence between SA and equality of η(x) across bins is central
to both methods and requires some discussion. Below, we assume that only two bins
are used and that the estimation is based on very large data so that finite-sample
variability is ignored.

1. Necessity If SA is true then indeed η must be constant across bins as long as the
copula family is the same across the whole range of X .
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Table 2 Method 2: A Chi-square test for assessing data support in favour of SA

2. Sufficiency If SA does not hold, assume that the calibration function takes two
values. Assuming consistency of the calibration’s estimator, it is expected that
bin 1 and bin 2 will contain pairs (u1, u2) following distributions π1(u1, u2)
and π2(u1, u2) with corresponding correlations ρ1 < ρ2, respectively. After
a random permutation, pairs in each bin will follow a mixture distribution
λπ1(u1, u2) + (1 − λ)π2(u1, u2) and (1 − λ)π1(u1, u2) + λπ2(u1, u2) in bins 1
and 2, respectively, with λ ∈ (0, 1). Thus, the post-permutation correlations in
bins 1 and 2 are λρ1 + (1 − λ)ρ2 and (1 − λ)ρ1 + λρ2. Observe that each corre-
lation is between ρ1 and ρ2 which implies that the absolute difference between
themwill be less thanρ2 − ρ1, sowe expect to reject the null. This argument offers
heuristic support for the method, but obviously cannot be extended to cases where
η is non-constant in each bin and finite sample variability must be accounted for.

A theoretical justification forMethod 2 and extensions of this idea to other models
are available in Appendix.

4 Simulations

In this section, we present the performance of the proposedmethods and comparisons
with generic CVML and WAIC criteria on simulated data sets. Different functional
forms of calibration function, sample sizes and magnitude of deviation from SA will
be explored.

4.1 Simulation Details

We generate samples of sizes n = 500 and n = 1000 from 3 scenarios described
below. For all scenarios, the Clayton copula will be used to model dependence
between responses, while covariates are independently sampled from U [0, 1]. For
all scenarios, the covariate dimension q = 2.Marginal conditional distributionsY1|X
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and Y2|X are modelled as Gaussian with constant variances σ 2
1 , σ 2

2 and conditional
means f1(X), f2(X), respectively. The model parameters must be estimated jointly
with the calibration function η(X). For convenience, we parametrize calibration on
Kendall’s tau τ(X) scale.

Sc1 f1(X) = 0.6 sin(5x1) − 0.9 sin(2x2),
f2(X) = 0.6 sin(3x1 + 5x2),
τ(X) = 0.5,σ1 = σ2 = 0.2.

Sc2 f1(X) = 0.6 sin(5x1) − 0.9 sin(2x2),
f2(X) = 0.6 sin(3x1 + 5x2),
τ(X) = δ + γ × sin(10XTβ)

β = (1, 3)T /
√
10, σ1 = σ2 = 0.2.

Sc3 f1(X) = 0.6 sin(5x1) − 0.9 sin(2x2),
f2(X) = 0.6 sin(3x1 + 5x2),
τ(X) = δ + γ × 2(x1 + cos(6x2) − 0.45)/3
σ1 = σ2 = 0.2.

Sc1 corresponds to SA since Kendall’s τ is independent of covariate level. The
calibration function in Sc2 has single index form for the calibration function, while
in Sc3 it has an additive structure on τ scale (generally not additive on η scale); these
simulations are useful to evaluate performance under model misspecification. We
note that τ in Sc2 and Sc3 depends on parameters δ (average correlation strength)
and γ (deviation from SA), which in this study take values δ ∈ {0.25, 0.75} and
γ ∈ {0.1, 0.2}, respectively.

4.2 Simulation Results

For each sample size and scenario, we have repeated the analysis using 250 indepen-
dently replicated data sets. For each data, the GP-SIM model suggested by Levi and
Craiu [16] is fitted. This method implements sparse Gaussian Process (GP) priors
for marginal conditional means and sparse GP-Single Index for calibration function.
These non-parametric models are more flexible than parametric ones and can effec-
tively capture various patterns. The inference is based on 5000MCMCsamples for all
scenarios, as the chains were run for 10,000 iterations with 5000 samples discarded
as burn-in. The number of inducing inputs was set to 30 for all GP. For generic SA
testing, GP-SIM fitting is done for the whole data sets, and posterior draws are used
to estimate CVML and WAIC. Since the proposed methods requires data splitting,
we first randomly divide the data equally into training and testing sets. We fit GP-
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Table 3 Simulation results: generic, proportion of rejection of SA for each scenario, sample size
and model selection criterion

Scenario n = 500 n = 1000

CVML
(%)

CCVML
(%)

WAIC
(%)

CVML
(%)

CCVML
(%)

WAIC
(%)

Sc1 33.3 31.1 34.7 38.2 37.3 37.8

Sc2 (δ = 0.75, γ = 0.1) 99.1 98.7 99.1 100 100 100

Sc2 (δ = 0.75, γ = 0.2) 100 100 100 100 100 100

Sc2 (δ = 0.25, γ = 0.1) 80.1 84.4 80.1 99.1 100 99.1

Sc2 (δ = 0.25, γ = 0.2) 100 100 100 100 100 100

Sc3 (δ = 0.75, γ = 0.1) 76.9 73.3 77.8 85.7 82.2 85.8

Sc3 (δ = 0.75, γ = 0.2) 99.1 97.3 99.1 99.1 97.8 99.1

Sc3 (δ = 0.25, γ = 0.1) 54.7 56.4 55.6 65.3 68.4 64.9

Sc3 (δ = 0.25, γ = 0.2) 89.8 92.0 91.1 99.6 100 99.6

SIM on the training set and then use the obtained posterior draws to construct point
estimates of F1(y1i |xi ), F2(y2i |xi ) and η(xi ) for every observation in the test set. In
Method 1, we used 500 permutations. Table 3 shows the percentage of SA rejections
for generic Bayesian selection criteria. The presented results clearly illustrate that
generic methods have difficulties identifying SA. This leads to a loss of statistical
efficiency since a complex model is selected over a much simpler one. Moreover,
CVML or CCVML fails to identify SA as both measures do not penalize directly for
the complexity of the model. The simulations summarized in Table 4 show that the
proposed methods (setting α = 0.05) have much smaller probability of Type I error
which vary around the threshold of 0.05. It must be pointed, however, that under SA
the performance of χ2 test worsens with the number of bins K , which is not sur-
prising since as K increases, the number of observations in each bin goes down, and
normal approximation for the distribution of Pearson correlation becomes tenuous,
while the permutation-based test is more robust to small samples. The performance
of both methods improves with sample size. We also notice a loss of power between
Scenarios 2 and 3, which is due to model misspecification, since in the latter case
the generative model is different from the postulated one. All methods break down
when the departure from SA is not large, e.g. γ = 0.1. Although not desirable, this
has limited impact in practice since, in our experience, in this case the predictions
produced by either model are very similar.
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Table 4 Simulation results: proposed method, proportion of rejection of SA for each scenario,
sample size, number of bins (K ) and method

Scenario Permutation test χ2 test

n = 500 n = 1000 n = 500 n = 1000

K = 2
(%)

K = 3
(%)

K = 2
(%)

K = 3
(%)

K = 2
(%)

K = 3
(%)

K = 2
(%)

K = 3
(%)

Sc1 4.9 6.2 3.5 5.3 9.7 11.1 10.7 13.7

Sc2(δ = 0.75, γ = 0.1) 90.2 80.4 99.6 99.1 94.7 94.2 99.6 99.1

Sc2(δ = 0.75, γ = 0.2) 100 100 100 100 100 100 100 100

Sc2(δ = 0.25, γ = 0.1) 25.8 18.7 55.1 47.1 30.2 21.8 58.7 53.8

Sc2(δ = 0.25, γ = 0.2) 91.6 84.9 99.6 99.6 92.4 91.1 99.6 99.6

Sc3(δ = 0.75, γ = 0.1) 28.0 24.0 57.3 52.9 41.3 45.8 72.4 72.9

Sc3(δ = 0.75, γ = 0.2) 88.4 85.8 98.7 98.7 94.2 92.0 100 99.1

Sc3(δ = 0.25, γ = 0.1) 8.0 7.5 11.1 10.7 9.8 10.7 15.1 12.9

Sc3(δ = 0.25, γ = 0.2) 19.6 18.2 63.6 60.9 24.9 23.6 70.2 69.3

5 Conclusion

We propose two methods to check data support for the simplifying assumption in
conditional bivariate copula problems. Both are based on data splitting into training
and test sets, partitioning the test set into bins using calibration values obtained
in training and using randomization or χ2 tests to determine if the dependence is
constant across bins. Empirically, it was shown that the probability of Type I error is
controlled when SA holds. When the generative process does not satisfy SA, these
two methods also perform well, showing larger power than generic model selection
criteria. Future work will address questions related to the proportion of data that
should be assigned to training and test sets as well as bin sizes.

Acknowledgments We thank Stanislav Volgushev and an anonymous referee for suggestions that
have greatly improved the paper. Financial support for this work was provided by the Canadian
Statistical Sciences Institute (CANSSI) and by NSERC of Canada.

Appendix

Theoretical Discussion

In this section, we prove that under canonical assumptions, the probability of Type
I error for Method 2 in Sect. 3 converges to α when SA is true.
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Suppose we have independent samples from K populations (groups),
(u11i , u

1
2i )

n1
i=1 ∼ (U 1

1 ,U 1
2 ),…,(uK

1i , u
K
2i )

nK
i=1 ∼ (UK

1 ,UK
2 ), the goal is to testρ1 = · · · =

ρK (here ρ is Pearson correlation).
To simplify notation, we assume n1 = . . . , nK = n. Let ρ̂ = (ρ̂1, . . . , ρ̂K ) be

the vector of sample correlations , 
 = diag((1 − ρ2
1 )

2, . . . , (1 − ρ2
K )2) and (K −

1) × K matrix A as defined in Sect. 3, then canonical asymptotic results imply that
if ρ1 = · · · = ρK and as n → ∞,

T = n(Aρ̂)T (A
AT )−1(Aρ̂)
d→ χ2

K−1. (11)

Based on the model fitted onD1, we define estimates of F1(y1i |xi ) and F2(y2i |xi ) by
Û = {Ûi = (F̂1(y1i |xi ), F̂2(y2i |xi ))}n2i=1. Note that Û depends onD1 and X . Given a
fixed number of bins K and assuming, without loss of generality, equal sample sizes
in each bin ñ = n2/K , we define a test statistic T (Û ) as in (11) with ρ̂ j estimated
from {Û( j−1)ñ+1, . . . , Û j ñ}, for 1 ≤ j ≤ K .

Note that in Method 2, test cases are assigned to “bins” based on the value of
predicted calibration function η̂(xi ) which is not taken into account in the generic
definition of test statistic T (Û ) above. To close this gap, we introduce a permutation
λ∗ : {1, . . . , n2} → {1, . . . , n2} that “sorts” Û from smallest η̂(x) value to largest,
i.e. Ûλ∗ = {Ûλ∗(i)}n2i=1 with η̂(xλ∗(1)) < η̂(xλ∗(2)) < · · · < η̂(xλ∗(n2)). Hence, the test
statistic in Method 2 has the form T (Ûλ∗) as in (11) but in this case test cases with
smallest predicted calibrations are assigned to the first group, or bin, and with largest
calibrations to the K th group/bin. Finally, define a test function φ with specified
significance level α to test SA:

φ(Û |λ∗) =
{
1 if T (Ûλ∗) > χ2

K−1(1 − α),

0 if T (Ûλ∗) ≤ χ2
K−1(1 − α).

(12)

Intuitively, if SA is false then we would expect T (Ûλ∗) to be larger then the critical
value χ2

K−1(1 − α).
The goal is to show that this procedure have probability of type I error equal to

α, which is equivalent to the expectation of the test function:

P(Type I error) =
∫

φ(Û |λ∗)P(λ∗|D1, X)P(Û |D1, X)P(D1)P(X)dÛdD1dXdλ∗.
(13)

Note that λ∗ does not depend on Û because of the data splitting to training and test
sets. Also usually P(λ∗|D1, X) is just a point mass at some particular permutation.
In general the above integral cannot be evaluated, however if we assume that for all
test cases:

F̂1(y1i |xi ) p→ F1(y1i |xi ) as n → ∞ ∀i,
F̂2(y2i |xi ) p→ F2(y2i |xi ) as n → ∞ ∀i,

(14)
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then under SA and as n → ∞, P(Û |D1, X) = P(Û ) ≈ ∏n2
i=1 c(û1i , û2i ) where c is

a copula density and the expectation becomes

P(Type I error) =
∫

φ(Û |λ∗)P(λ∗|D1, X)P(Û )P(D1)P(X)dÛdD1dXdλ∗ =

=
∫ (∫

φ(Û |λ∗)P(Û )dÛ

)
P(λ∗|D1, X)P(D1)P(X)dD1dXdλ∗ = α.

(15)

Since if SA is true,
∫

φ(Û |λ∗)P(Û )dÛ = α for any λ∗. Therefore, if marginal CDF
predictions for test cases are consistent then this procedure has the required proba-
bility of Type I error for sufficiently large sample size.

Extensions to Other Models

The proposed idea of dividing the data into training and test subsets, splitting the
observations on the test set to bins defined in first stage and then using a test to
check distributional difference between bins can be extended to other models. For
example, one can use a similar construction in a regression problem with conditional
mean f (X) and constant variance. First assign test cases to bins by the values of
f̂ (X), and then compare means in each bin either by randomization procedures or
using χ2 test. This approach can be especially useful when f (X) is assumed to
have a complex form, such as generalized additive models, including additive tree
structures, splines or based on Bayesian non-parametric methods. Simulations we
conducted (not reported here) suggest that for large covariate dimensions, standard
F-tests for Gaussian error regression yield large Type I error probabilities, a problem
that is attenuated using the permutation-based ideas described in the paper.
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