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1 What are Fractals?

The name fractal, coined in 1975 by the mathematician Benoit Mandelbrot, known as the godfather
of fractals, comes from the Latin adjective fractus. The corresponding Latin verb frangere means “to
break” or “to create irregular fragments,” as Mandelbrot put it. To our best knowledge, there is no
unitary mathematical definition of a fractal, although many attempts have been made. In layman’s
terms, a fractal is a “picture” with an incredible level of detail. No matter how deep one zooms in
to it, one will find irregular details as well as miniatures of parts of the original picture. Since 1975,
the subject has received a great deal of research as well as public attention. Many articles and books
have been written, for experts as well as for general public, among which Mandelbrot’s 1977 book,
The Fractal Geometry of Nature, is a must for anyone who is interested in the subject. A selection of
further reading is given in the sidebar. For general audiences, fractals are often presented as a kind
of “computer art”, as they are computer-generated, colorful, with fascinating geometric shapes. The
most captivating aspect of a fractal is that, at first sight, it may appear to have a highly irregular
geometric shape, but with a closer look one will find that it is in fact exceedingly regular in the
sense that at any detailed level the same pattern repeats. Perhaps this is best summarized by the

title of Lauwerier’s book, Fractals: Endlessly Repeated Geometrical Figures.
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2 Fractals and Monte Carlo

The title of this article was inspired by a chapter title of the aforementioned Lauwerier’s book,
“Chance in Fractals”, by which he means that in order to create fractals that can resemble reality
(e.g., the west coastline of Britain), one needs to introduce a random component, that is chance,
into fractals, and hence stochastic fractals (the term stochastic comes from a Greek verb meaning
“guessing”). Or as Mandelbrot wrote in the first chapter of his 1977 book, “The most useful fractals
involve chance and both their regularities and their irregularities are statistical.” (The emphasis of
chance was Mandelbrot’s.) The reason is that deterministic fractals are too “regular”, and thus
cannot realistically describe certain patterns and shapes created by nature, which are at the mercy
of chance. Instead of requiring that different parts of a fractal have the exact same geometrical
shape, we can require them to have the same statistical properties. For example, instead of having
a line segment always oriented to a particular direction, we can require its orientation angle (with
respect to a well-defined axis) to follow a particular statistical distribution at any level.

The theoretical study of stochastic fractals is typically rather complicated, as one may expect.
However, such fractals are usually easy to simulate on a computer using the so-called Monte Carlo
method. To quote a key inventor of the method, Stanislaw Ulam, “Laplace asserted that the theory
of probability is nothing but calculus applied to common sense. Monte Carlo is common sense
applied to mathematical formulations of physical laws and processes.” It is common sense because
it allows us to actually follow a mathematically formulated physical process via computer simulation.
As a result we are able to observe the dynamics and outcome of the process, and therefore to analyze
various properties of the process even if we are unable to write down any precise formulae for these
properties.

At the core of any Monte Carlo method is the generation of random numbers; by that we typically
mean a sequence of independent numbers, each of them following the uniform distribution on the
unit interval (0,1). It is not surprising that fractals are connected to the generation of such a

sequence because an infinite set of random numbers is an extreme sort of stochastic fractal: at a



first glance the sequence looks completely “chaotic” in the sense that there is no apparent pattern
to speak of, yet it is extremely regular in the statistical sense because any random subsequence of it
follows the exact same uniform distribution. Such sequences are usually generated by a dynamical
system, which typically builds upon a single deterministic (or stochastic) map, say f : X' — X (X
is some set, for example the (0,1) interval). We take an element Xy from X and by recursively
applying the map f, we will obtain X; = f(Xo), X2 = f(X1) = f(f(Xo)),..., and so on. The set
{Xo0,X1,X2,...,...} is called the orbit of X, under the map f. Many fractals are just graphical
representations of orbits and quite a few of the pseudorandom generators in use are based on a
particular dynamical system, that is, the numbers produced by the generator are just elements from
an orbit. Note that these generators are called pseudorandom generators because their output is
not really random since the entire orbit is determined by the seed Xy. However, with appropriately
constructed dynamical systems, the resulting pseudorandom numbers are “random” enough to be

useful in many applications.

3 Antithetic Variates and Latin Hypercube Sampling

We stumbled upon fractals when we were looking for effective ways to generate antithetic variates,
which are useful for reducing simulation errors in Monte Carlo estimation. The word antithetic
refers to the main objective of the method, that is, to produce random numbers that are negatively
correlated; the idea was introduced by Hammersley and Morton in a paper published in 1956. The
reason for us to seek such negative correlation is clear from the following simple example. Suppose
we have a draw X from a distribution symmetric about zero. Then we know X = —X is also a
draw from the same distribution because of the symmetry. Consequently, if we can make sure that
for every draw X in our Monte Carlo sample there is the “opposite” (and hence antithetic) draw
—X in the sample, then the sample average will be a perfect estimate of the actual mean of the
distribution, that is, zero. In other words, in this extreme case the Monte Carlo mean estimator

will have no error because X and X are perfectly negatively correlated, that is, Corr(X, X ) =—L



In reality, we do not have such perfect estimators when we need Monte Carlo methods (e.g., if we
know a distribution is symmetric about zero, then we know the mean of the distribution has to be
zero as long as the distribution has a mean), but the idea of using antithetic variates to “balance
out” noise and thus improve Monte Carlo efficiency is generally quite useful.

Generating a pair of antithetic variates is typically straightforward. For a pair of antithetic
uniform variates on the unit interval (0, 1), we only need to take X; = u and Xo = 1 — u, where
w is uniformly distributed on (0,1) (which we will denote henceforth by u ~ U(0,1)). Clearly, if
u~ U(0,1), then 1 —u ~ U(0,1). Furthermore, since mathematically the correlation is the same as
the cosine of the angle between the two directions defined by v and 1 — u, which are opposite to one
another with respect to the center of the unit interval (0,1), the correlation between X; and X» is
Corr(X1, X2) = cos(180°) = —1. Thus the pair {X1, X»} achieves extreme antithesis (EA), that is,
the two components are as “opposite” as they can possibly be. However, it is a harder problem to
generate antithetic uniform variates {Xi,..., X} when k£ > 2 such that they achieve EA, namely,
such that the correlation between any pair of X; and X; is —1/(k — 1), where ¢ # i'. Note that for
k > 2, it is impossible to have all pair-wise correlations to be —1, because it is impossible to have,
say, three directions that are pair-wise opposites. The best one can do is to have the three directions
in the same plane, at a 120° angle apart from each other, where the angle between two directions
is defined as the one not exceeding 180°. This gives the pair-wise correlation cos(120%) = —1/2.
Note that in order for { X1, ..., X\} to achieve EA, the sum Sy = X; + - - + X}, must be a constant
(which is its mean, k/2), because EA is equivalent to the variance of S, being zero. Recall for k = 2,
X1+Xo=u+(1—-u)=1.

Among the techniques that we have investigated, we find that the Latin hypercube sampling
method of McKay, Beckman and Conover is quite appealing for a variety of practical and theoretical
reasons. The method has two steps. In the first step, we generate k independent random numbers,
denoted by uq,...,ug, from U(0,1). In the second step, we randomly permute (i.e., “stir”) the
set {0,1,...,k — 1} into {j1,J2,-..,Jk} and then let X; = (u; + j;)/k, @ = 1,...,k. It is clear

that because 0 < j; < k —1, all X;’s are in (0,1), and thus {X,..., X} represents a point in the



k-dimensional hypercube X}, = (0,1)*. In fact, it can be shown that X; ~ U(0,1) foralli =1,...,k

and Corr(X;, Xy) = —(k + 1)/k* < 0 for any i # i'.

4 Iterative Latin Hypercube Sampling and Fractals

Although the Latin hypercube sampling method produces negatively correlated random variates, it
does not achieve EA, namely, Corr(X;, X;/) does not achieve the minimal possible value —1/(k —1).
It turns out that we can get arbitrarily close to this goal by iterating the Latin hypercube sampling
method. That is, we can treat the {Xi,..., X} obtained by the Latin hypercube sampling as
the {uy,...,ug} from its first step, and then repeat the second step. More precisely, we define a

stochastic map from X} to X} via
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where ¢ indexes the iteration (with ¢ = 1 corresponding to the Latin hypercube sampling method),
and {jft), ... ,j,(ct)} is a new permutation of {0, 1, ..., k— 1} independent of all previous permutations.
It can be shown (by induction, for example) that any Xi(t) follows the U (0, 1) distribution, and that
for any i # ', Corr(Xl-(t), Xi(,t)) = —(1—k~2Y)/(k — 1), which approaches —1/(k — 1) rapidly as ¢ gets
large, i.e., as the iteration goes on.

The iterative scheme (1) defines a stochastic dynamical system, whose attractor, namely the
collection of all possible limiting points as ¢ approaches oo, is a so-called self-similar fractal, whose
shape depends on the value of k. We will call such a fractal the antihype fractal, highlighting its
use (antithetic coupling) and its origin (hypercube sampling). Figure 1 displays the antihype fractal
with k = 3 on its sitting plane z; + 2 + x3 = 3/2. Figure 2 plots the projection of the fractal on
to the (X1, X5)-plane, where the effect of projection is seen in the elongation at the 135° direction.
It is also the support of the joint distribution of {X 1(t), Xét)} as t approaches oo, namely, the set of
points with positive probability density. Because it is impossible to use the ideal ¢ = oo iterations,

the two plots were actually based on ¢ = 10, which is still too fine a resolution for visualization as we



can only see 4 or 5 levels of detail out of the 10 possible. Nevertheless, the self-similarity is evident.
The fractal is hexagon-shaped and consists of six smaller identical shapes, each of which consists of
yet again six smaller but identical shapes, and the pattern repeats an infinite number of times as
the scale approaches zero (at least in our minds).

The reason that the dynamical system (1) achieves EA at the limit can be understood by ob-
serving how at each iteration it forbids the pair (X, X2) to take certain values. In Figure 3 we
use colors to illustrate this process. Suppose we start by having the entire unit square colored in
black, which represents that the initial (Xl(o),Xéo)) is uniformly distributed on the square (0, 1)2.
However, after the first iteration, (Xl(l),Xél)) can only take values outside the three light green
squares along the main diagonal; it is actually uniformly distributed on the region outside the light
green squares. This makes sense as the elimination of the light green squares clearly does not alter
the marginal uniformity of Xl(l) (and thus any margin given the symmetry) since for any value
of Xl(l) inside (0,1), the corresponding cumulative “height” of the allowable Xz(l) is the same 2/3.
However, the elimination of the light green areas makes X 1(1) and Xz(l) negatively correlated because
these areas are responsible for the positive correlation between Xl(l) and X2(1). Viewing this way,
it is obvious that we can further reduce the correlation by repeating the same elimination process
on the remaining six blocks (which again will not alter the marginal uniformity). This is achieved
by the second iteration, which takes out the 6 x 3 = 18 blue blocks. We can continue this process
by then taking out the 62 x 3 = 108 green blocks (¢ = 3), and then the 6 x 3 = 648 red blocks
(t = 4), and then the 6* x 3 = 3,888 yellow blocks (¢t = 5). In our mind, we can continue this
elimination process indefinitely, but the graphical resolution does not allow us to go beyond five
iterations. Nevertheless, we can see the black “dust specks” left in Figure 3 form the same geometric

shape as the ones in Figure 2, which was based on 10 iterations. The term dust is used purposely

here because any antihype fractal obtained as above is in fact a case of the so called “Cantor dust”.



5 More Fun Fractals . . .

We conclude by mentioning that once we obtain one fractal, a well-known technique for creating
more fascinating looking fractals is to mix various similar transformations, that is, transformations
that preserve the geometric shape but not necessarily the size or the orientation of a set. Figure 4
plots a 2-D fractal, which is the support of the equal-weight mixture of the uniform distribution on
the 2-D fractal in Figure 2 and its 90° rotation with respect to the center (0.5, 0.5). The mixture
distribution is the uniform distribution on this new fractal, because the original fractal (grey) and
the rotated fractal (black) have no overlap. This is easiest to prove by observing that the two
fractals do not overlap at the four corner blocks in Figure 4 and thus, by self-similarity, they do not
overlap anywhere because the remaining four blocks (excluding the middle empty block) are just
smaller versions of the same mixture fractal. Consequently, this beautiful table-cloth-design looking

fractal has the same °

‘marginal uniformity” property as the one in Figure 2, namely, the uniform
distribution on it has both margins distributed as U(0,1). We leave it as an exercise to reader to
figure out the new correlation between X; and X, (Hint: no calculation is needed!), and to consider

whether it is possible to have a different rotation (i.e., other than 90° and its equivalences such as

270°) that preserves the marginal uniformity after the same mixture transformation.
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Figure 1: The 2-D Perspective View of the Antihype Fractal with & = 3 on Its Sitting Plane
X1+ Xo+X35-3/2=0. (The new coordinates (X{, X}) are related to old coordinates (X1, X5, X3)
via X| = (X; + Xy — 2X3)/v6 and X} = (X1 — X2)/v2 )
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Figure 2: The 2-D Projection of the Antihype Fractal with k£ = 3.
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Figure 3: Sequential Elimination of Regions By the Iterative Latin Hypercube Sampling with k = 3

and t = 5.
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Figure 4: A New Fractal Via Rotation and Mixture.
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