
1 Supplementary Figures

Figure 1: Proportion of correctly estimated k over 100 replicates as a function of ζ2 assuming the first
k∗ squared singular values are equal. The colored lines indicate the proportion of correctly estimated
values for all methods.

Figure 2: Proportion of correctly estimated k over 100 replicates as a function of ζ2 assuming a linear
decay in the first k∗ squared singular values.
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Figure 3: Proportion of correctly estimated dimension over 100 replicates as a function of ζ2 assuming
an exponential decay in the first k∗ squared singular values when error terms are correlated.

Figure 4: Proportion of correctly estimated dimension over 100 replicates as a function of ζ2 assuming
an exponential decay in the first k∗ squared singular values when error follows a student’s t distribution.
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Figure 5: A summary of the sample variance and gene feature variance, skewness and kurtosis for the
NCI60 gene expression data.
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2 Supplementary Materials

2.1 An illustration of the voting strategy

I demonstrate the utility of theoretical results on two simulated scenarios, assuming k∗ = 10 and
fixing the number of observations at m = 10, 000 and number of samples n = 100. The covariance
structure was generated according to a singular value decomposition using random orthogonal ma-
trices and specified squared singular values d2 equal to (15, 12, 11.5, 8, 7, 6, 5, 3, 2, 0.5) (Figure 6) and
(6, 5, 4, 3.5, 3.5, 3.25, 2, 1.5, 0.75, 0.5) (Figure 7), corresponding to ζ2k∗ = 0.3 and ζ2k∗ = 0.7, respectively.
The signal-to-noise ratio (SNR) is defined as the ratio of the last non-zero squared singular value and
the noise variance, evaluated at 0.5/0.3 = 1.6 and 0.5/0.7 = 0.7 for these two scenarios, respectively.

Figure 6: An illustration of the voting procedure under scenario 1.
The true dimension k∗ = 10 is marked by the vertical dashed line in red and the maximum of penalized
log-likelihood at each penalty tuning parameter is identified by the black vertical line. In C) and D),
the black vertical line on the left corresponds to the log(δ) value such that lp(k, δ̃) − lp(k + 1, δ̃)
becomes positive for each k, while the vertical line on the right corresponds to the value such that
lp(k, δ̃)− lp(k− 1, δ̃) becomes negative. In E), the horizontal lines mark the values of log (δ̃) for which
the correct value (k∗ = 10) maximizes the penalized log-likelihood.

Figures 6A and 7A show the sample eigenvalue with respect to each of the principal dimension
with k∗ = 10 marked by the vertical dashed line in red. Figures 6B and 7B on bottom left show lp(k, δ̃)
at various δ̃-values as a function of k, and clearly as the penalty tuning parameter value increases, a
maximum emerges (identified by the black vertical lines) and some choices of δ̃ identifies the correct
dimension k∗ = 10 as marked by the vertical dashed line in red.

Since k = k̃ maximizes the penalized profile log-likelihood for a particular δ̃ value only when

• lp(k, δ̃)− lp(k + 1, δ̃) > 0 and

• lp(k, δ̃)− lp(k − 1, δ̃) > 0,

simultaneously, the range of δ̃ where these hold can be visualized for a few possible k’s including k∗

(Figures 6-C,D and 7-C,D). Visibly, lp(k, δ) − lp(k − 1, δ) is a smooth function of δ monotonic as
proven in Lemma 2. Similar observations can be made for lp(k, δ) − lp(k + 1, δ). With little or no
penalty, lp(k, δ̃)− lp(k+1, δ̃) is negative and lp(k, δ̃)− lp(k−1, δ̃) positive for all k’s. As δ̃ increases, the
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difference in penalized log-likelihood between k and k + 1 increases and eventually becomes positive
while the difference between k and k − 1 decreases as (δ̃) reaches (1/k − 1/n).

Figure 7: An illustration of the voting procedure under scenario 2.
The true dimension k∗ = 10 is marked by the vertical dashed line in red and the maximum of penalized
log-likelihood at each penalty tuning parameter is identified by the black vertical line. In C) and D),
the black vertical line on the left corresponds to the log(δ) value such that lp(k, δ̃) − lp(k + 1, δ̃)
becomes positive for each k, while the vertical line on the right corresponds to the value such that
lp(k, δ̃)− lp(k− 1, δ̃) becomes negative. In E), the horizontal lines mark the values of log (δ̃) for which
the correct value (k∗ = 10) maximizes the penalized log-likelihood.

The differences lp(k, δ̃) − lp(k − 1, δ̃) and lp(k, δ̃) − lp(k + 1, δ̃) for k = 9, 10, 11 as functions of
log(δ) are illustrated in Figures 6-C,D and Figures 7-C,D, where the black vertical line on the left
corresponds to the log(δ) value such that lp(k, δ̃)− lp(k + 1, δ̃) becomes positive for k = 10, while the
vertical line on the right corresponds to the value such that lp(k, δ̃)− lp(k− 1, δ̃) becomes negative for
k = 10. When both differences are positive, the numerically approximated (ãk, b̃k) are formed and the
vertical distance represents the amount of evidence for each possible k (Figure 6-E and Figure 7-E).
The horizontal lines mark the values of log (δ̃) for which the correct value (k∗ = 10) maximizes the
penalized log-likelihood. The shorter distance between the two lines suggest recovery of the correct k
in scenario 2 is more difficult than scenario 1.

It is easy to confirm visually that the numerically evaluated sets (ãk, b̃k) are non-overlapping and k
is indeed monotonically decreasing in δ̃. Notice that the log difference in δ̃ is the largest for k = k∗ = 10
as compared to k = 9 or k = 11, suggesting that for a grid-set of equidistant values constructed on log
scale, the majority would support k∗. Consequently, with the search grid constructed as proposed, the
procedure would estimate the dimension by a majority vote, which is expected given the relationship
between the log distance log (b̃k)−log (ãk) and the number of votes for a particular k (Figures 6 and 7).

ζ̃2k =

∑n
i=k+1 λ̂i

n− k − δk
=

n− k
n− k − δk

ζ̂2k . (1)

{
lp(k; δ̃o)− lp(k − 1; δ̃o) > 0

lp(k; δ̃o)− lp(k + 1; δ̃o) > 0.
(2)
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Finally, the restriction embedded in (1) and (2) imposes a relationship whereby the maximum
possible k is non-increasing in ∆k, shown by the area in gray (Figures 6-F and 7-F).

2.2 Proofs of Lemmas

Lemma 1. Consider a sample X ∈ Rn×m with each column following a multivariate Gaussian distri-
bution N (0,WW T + ζ2I). Suppose W has rank k∗ and further, the sample covariance matrix of XT

is positive semi-definite. Then, the penalized maximum log-likelihood at each fixed k ∈ {1, . . . , n − 1}
is a smooth function of δ̃ on the interval (0, 1/k − 1/n) and is monotonically decreasing on

(0, (1/k − 1/n)[1− ζ̂2k ]),

where ζ̂2k = (
∑n

i=k+1 λ̂i)/(n− k).

Proof (Lemma 1). The penalized profile log-likelihood is a smooth function of the scaled tuning pa-
rameter δ̃ for each k, provided that it is differentiable with respect to δ̃ and all derivatives of lp(k, δ̃)
exist on δ̃ ∈ (0, 1/k − 1/n).

The penalized profile log-likelihood at k = k′ is

lp(k
′; δ̃) = lp(k

′)− m

2

{
(n− k′) log

(
1− k′

n

)
− (n− k′) log

(
1− k′

n
− k′δ̃

)
− nk′δ̃

[
1 + log ζ̂2(k′) + log

(
1− k′

n

)
− log

(
1− k′

n
− kδ̃

)]}
and the first order derivative with respect to δ̃ is given by:

∂l

∂δ̃
= −mnk

′

2
log
[ n− k′ − nk′δ̃

(n− k′)ζ̂2(k′)

]
, (3)

the second order derivative with respect to δ̃ is:

∂2l

∂δ̃2
=
mnk′

2

nk′

n− k′ − nk′δ̃
.

Consequently, the tth order derivative is

∂tl

∂δ̃t
=
mnk′

2
(−1)t

(t− 2)!(nk′)t−1

(n− k′ − nk′δ̃)t−1
. (4)

Since (4) is a rational function of δ̃ on (0, 1/k′ − 1/n) and all derivatives of lp(k
′, δ̃) exist, lp(k, δ̃) is

a smooth function of δ̃ on the same range.
Observe the first order derivative (3) is negative for any k ∈ {1, 2, . . . , n− 1} whenever:

log
(

1− k

n
− kδ̃

)
− log

(
1− k

n

)
− log ζ̂2k > 0,

δ̃ <
(1

k
− 1

n

)
[1− ζ̂2k ], (5)

and equals to zero when δ̃ = (1/k− 1/n)[1− ζ̂2k ]. Thus, lp(k; δ̃) is a monotonically decreasing function

of δ̃ for any k ∈ {1, 2, . . . , n − 1} on (0, (1/k − 1/n)[1 − ζ̂2k ]), and notice that on this range we also
have ζ̃2(k) < 1.

Lemma 2. Consider δ̃ ∈ G(k + 1), where

G(k + 1) =
(

0,
1

n

(n− k − 1)(λ̂k+1 − ζ̂2k+1)

(k + 1)λ̂k+1 + (n− k − 1)ζ̂2k+1

)
.

Then, G(k+ 1) ⊂ G(k) and for any fixed k ∈ {2, 3, . . . , n− 2}, lp(k; δ̃)− lp(k+ 1; δ̃) is a monotonically
increasing and concave function of δ̃ ∈ G(k+1) and lp(k; δ̃)− lp(k−1; δ̃) is a monotonically decreasing
and convex function of δ̃ ∈ G(k + 1).
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Proof (Lemma 2). Lemma 1 proves that lp(k; δ̃), lp(k − 1; δ̃), and lp(k + 1; δ̃) are smooth and mono-

tonically decreasing on δ̃ ∈ (0, (1/(k + 1)− 1/n)[1− ζ̂2k+1]) for any fixed k ∈ {2, . . . , n− 1}. Since

( 1

k + 1
− 1

n

)
[1− ζ̂2k+1] >

1

n

(n− k − 1)[λ̂k+1 − ζ̂2k+1]

(k + 1)λ̂k+1 + (n− k − 1)ζ̂2k+1

,

and
1

n

(n− k)[λ̂k − ζ̂2k ]

kλ̂k + (n− k)ζ̂2k
>

1

n

(n− k − 1)[λ̂k+1 − ζ̂2k+1]

(k + 1)λ̂k+1 + (n− k − 1)ζ̂2k+1

,

G(k + 1) ⊂ G(k) holds.
The difference between the penalized profile log-likelihood at k and k−1 or k+1 is a simple function.

Thus lp(k; δ̃)− lp(k−1; δ̃) is smooth on G(k+1) ⊂ G(k). Similarly, lp(k; δ̃)− lp(k+1; δ̃) is also smooth
on G(k + 1).

Next, I investigate the behaviours of these two functions separately:
A: Show that lp(k; δ̃)− lp(k − 1; δ̃) is convex on G(k)

The first order derivative with respect to δ̃, which is the difference between the first order derivative
of lp(k; δ̃) and lp(k − 1; δ̃), is

∂lp(k; δ̃)− lp(k − 1; δ̃)

∂δ̃
= −mnk

2
log

1− k
n − kδ̃

(1− k
n)ζ̂2(k)

+
mn(k − 1)

2
log

1− k−1
n − (k − 1)δ̃

(1− k−1
n )ζ̂2(k − 1)

=
mnk

2
log

ζ̃2(k)

ζ̃2(k − 1)
+
mn

2
log ζ̃2(k − 1). (6)

Notice that ζ̃2(k)

ζ̃2(k−1) can be greater or less than 1 depending on δ̃:

ζ̃2(k)

ζ̃2(k − 1)
=
n− k + 1− n(k − 1)δ̃

n− k − nkδ̃
n− k

n− k + 1

ζ̂2k
ζ̂2k−1

. (7)

However, its first order derivative

n2

(n− k − nkδ̃)2
(n− k)

(n− k + 1)

ζ̂2k
ζ̂2k−1

> 0,

which indicates that (7) is increasing in δ̃. In order for (7) to be less than 1, solve for the maximum

δ̃ that satisfies ζ̃2(k)

ζ̃2(k−1) < 1 gives:

δ̃ <
n− k
n

λ̂k − ζ̂2k
kλ̂k + (n− k)ζ̂2k

Thus, δ̃ ∈ G(k) such that (7) is less than 1, while ζ̃2(k − 1) < 1 due to maxδ̃{G(k)} < (1/k −
1/n)[1 − ζ̂2k ]. Thus, I conclude the first order derivative is negative on δ̃ ∈ G(k). The second order
derivative can be shown to be positive,

∂2lp(k; δ̃)− lp(k − 1; δ̃)

∂δ̃2
=
mnk

2

k

1− k
n − kδ̃

− mn(k − 1)

2

k − 1

1− k−1
n − (k − 1)δ̃

=
mn

2

[ nk2

n− k − nkδ̃
− n(k − 1)2

n− (k − 1)− n(k − 1)δ̃

]
> 0, (8)

and I conclude that lp(k; δ̃)− lp(k − 1; δ̃) is a convex function of δ̃ ∈ G(k) for any fixed k.
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B: Show that lp(k; δ̃)− lp(k + 1; δ̃) is concave on G(k + 1)
The first order derivative with respect to δ̃:

∂lp(k; δ̃)− lp(k + 1; δ̃)

∂δ̃
= −mnk

2
log

n− k − nkδ̃
(n− k)ζ̂2(k)

+
mn(k + 1)

2

[
− log

n− (k + 1)

n− (k + 1)− n(k + 1)δ̃
− log ζ̂2k+1

]
=
mn(k + 1)

2
log

ζ̃2(k)

ζ̃2(k + 1)
− mn

2
log ζ̃2(k). (9)

It can be shown similarly to the first case by taking k′ = k + 1 and taking the opposite sign, we

can conclude
∂lp(k;δ̃)−lp(k+1;δ̃)

∂δ̃
> 0 on δ̃ ∈ G(k + 1). The second order derivative can be shown to be

negative,

∂2lp(k; δ̃)− lp(k + 1; δ̃)

∂δ̃2
=
mnk

2

k

1− k
n − kδ̃

− mn(k + 1)

2

k + 1

1− k+1
n − (k + 1)δ̃

=
mn

2

[ nk2

n− k − nkδ̃
− n(k + 1)2

n− k − 1− n(k + 1)δ̃

]
< 0, (10)

and that lp(k; δ̃)− lp(k + 1; δ̃) is a concave function of δ̃ ∈ G(k + 1) for any fixed k.
Finally, I conclude that for any fixed k ∈ {2, 3, . . . , n− 2}, lp(k; δ̃)− lp(k− 1; δ̃) is a monotonically

decreasing and convex function of δ̃ ∈ G(k + 1) ⊂ G(k), taking positive value when δ̃ = 0; lp(k; δ̃) −
lp(k + 1; δ̃) is a monotonically increasing and concave function of δ̃ ∈ G(k + 1), taking negative value
when δ̃ = 0.

Lemma 3. Assume the same notation from Lemma 2. For some k ∈ {2, . . . , n − 2}, there exists
δ̃o ∈ ∪kG(k + 1) such that k = argmaxk′ lp(k

′; δ̃o) if and only if{
lp(k; δ̃o)− lp(k − 1; δ̃o) > 0

lp(k; δ̃o)− lp(k + 1; δ̃o) > 0.
(11)

Proof (Lemma 3). For a given δ̃o value, there is a restricted subset of possible k ∈ {1, 2, 3, . . . , k(δ̃o)}.
Following Lemma 2, lp(k; δ̃) > lp(k−1; δ̃) and lp(k; δ̃)− l(k + 1; δ̃) are smooth and monotone functions
of δ̃o ∈ ∪kG(k + 1).

For some k ∈ {2 ≤ k ≤ n− 2}, define

∆k = (ak, bk) ⊂ ∪kG(k + 1)

where
ak = min

{
δ̃ ∈ ∪kG(k + 1); l(k; δ̃)− lp(k + 1; δ̃) > 0

}
and

bk = max
{
δ̃ ∈ ∪kG(k + 1); l(k; δ̃)− lp(k − 1; δ̃) > 0

}
.

The existence of bk is clear as lp(k; δ̃)− lp(k−1; δ̃) is a smooth and decreasing function on G(k+1)
and {lp(k; δ̃) − lp(k − 1; δ̃)}δ̃=0 > 0. Thus, bk is bounded between δ̃ = 0 and the solution to lp(k; δ̃) −
lp(k − 1; δ̃) = 0.

The existence of ak ∈ G(k + 1) is unclear depending on whether λ̂k+1 < 1 as shown below:

lp(k; δ̃)− lp(k + 1; δ̃) > {lp(k; δ̃)− lp(k + 1; δ̃)}δ̃=maxG(k+1)

= −m
2

{
log

ζ̃2(k + 1)

λ̂k+1

+ δ̃n[log ζ̃2(k + 1) + 1]
}

> −m
2

{n− k − 1

n
[ζ̂2k+1 − λ̂k+1](1/λ̂k+1 − 1)

}
(12)
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Consider k ∈ {i : λ̂i+1 < 1} and suppose for any δ̃o ∈ ∆k′ = (ak′ , bk′) ⊂ G(k′), lp(k; δ̃) takes its
maximum at k = k′. Then clearly lp(k

′; δ̃) > lp(k
′− 1; δ̃) and lp(k

′; δ̃) > l(k′ + 1; δ̃). In other words, if

λ̂k+1 < 1, then lp(k; δ̃)− lp(k + 1; δ̃) > 0 on G(k + 1), otherwise it is undetermined.

Thus, it might not always be that ak < bk ∈ G(k + 1) for k such that λ̂k+1 > 1. But for k such
that λ̂k+1 < 1, according to this definition, ak−1 = bk whenever ak−1 exists since G(k + 1) ∈ G(k)
and combined with the fact that the first order derivative of lp(k; δ̃) − l(k + 1; δ̃) is smaller than that
of −{lp(k; δ̃)− l(k − 1; δ̃)}, implying that ak < ak−1 = bk. Thus, the interval ∆k = (ak, bk) ⊂ G(k+ 1)
is not empty and gives the range of δ̃-values in G(k + 1) such that conditions (2) hold.

For k’s such that λ̂k+1 > 1, they could still be the maximizer of the penalized profile log-likelihood
for some δ̃ such that lp(k; δ̃)− lp(k + 1; δ̃) > 0.

On the other hand, if conditions (2) hold for some δ̃o ∈ ∆k′ = (ak′ , bk′), we need to show lp(k
′; δ̃)−

lp(k
′′; δ̃) > 0 for any k′′ < k′ by showing the following sum is greater than zero:

lp(k
′; δ̃)− lp(k′′; δ̃) = [lp(k

′; δ̃)− lp(k′ − 1; δ̃)] + [lp(k
′ − 1; δ̃)− lp(k′ − 2; δ̃)]

+ · · ·+ [lp(k
′′ + 1; δ̃)− lp(k′′; δ̃)] > 0, (13)

Since lp(k
′; δ̃)− lp(k′ − 1; δ̃) is positive on (a′k, b

′
k), we only need to show lp(k

′ − 1; δ̃)− lp(k′ − 2; δ̃)
and all other telescoping terms are positive on (a′k, b

′
k). This is straightforward to show according to

the definitions of (ak′−1, bk′−1) and ak′−1 = bk′. This implies for each k′′ < k′, lp(k
′′; δ̃)− lp(k′′ − 1; δ̃)

is positive on (0, bk′′) ⊂ (0, bk′).
Similarly, lp(k

′; δ̃o)− lp(k′′; δ̃o) > 0 is equivalent to the telescoping sum being greater than zero:

lp(k
′; δ̃o)− lp(k′′; δ̃o) = [lp(k

′; δ̃o)− lp(k′ + 1; δ̃o)] + [lp(k
′ + 1; δ̃o)− lp(k′ + 2; δ̃o)]

+ · · ·+ [lp(k
′′ − 1; δ̃o)− lp(k′′; δ̃o)] > 0, (14)

where we must have lp(k
′; δ̃o)− lp(k′ + 1; δ̃o) > 0 on ∆k = (a′k, b

′
k).

It is sufficient to show lp(k
′ + 1; δ̃) − lp(k′ + 2; δ̃) and all other telescoping terms are positive on

(a′k, b
′
k). According to the definitions of (ak′+1, bk′+1) and the result that ak′ = bk′+1. This implies for

each k′′ > k′, lp(k
′′; δ̃)− lp(k′′ + 1; δ̃) is positive when δ̃ > ak′′, and (ak′′ , bk′′) ⊂ (a′k, b

′
k).

I conclude the proof with a comment on the choice of k(δ̃o). Observe that n − k − nkδ̃ > 0 poses
a restriction on both k and δ̃, for any given δ̃o, the maximum k searchable is kmax′ = (δ̃o + n−1)−1.
However, for this k = kmax′, the penalized profile log-likelihoods lp(kmax′ ; δ̃) and lp(kmax′ + 1; δ̃) are
smooth, but not monotonically decreasing on (0, δ̃o). However, these choices of k are ruled out by
condition (2).

Lemma 4. Consider

∆k =
{
δ̃ ∈ G(k + 1); conditions (2) are satisfied

}
= (ak, bk),

whenever ak exists. Then ∆k can be approximated by (ua(k), ub(k)) ⊂ ∆k ⊂ G(k + 1), where ua(k)
denote an upper bound for ak, and ub(k) a lower bound for bk, such that bk/ak > ub(k)/ua(k).

Proof (Lemma 4). Since ak and bk are not analytically tractable, we approximate the differences in
penalized log-likelihoods using Taylor series, and then find roots to the Taylor approximations.
A: lp(k; δ̃)− lp(k − 1; δ̃) > 0
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Expanding the difference in penalized profile log-likelihoods in terms of ζ̂2k−1, ζ̂2k , λ̂k and k :

lp(k; δ̃)− lp(k − 1; δ̃) = −m
2

{
log

λ̂k

ζ̂2k−1
+ (n− k) log

ζ̂2k
ζ̂2k−1

+ (n− k) log
(

1− k

n

)
− (n− k + 1) log

(
1− k − 1

n

)
− nδ̃

[
k log

ζ̂2k
ζ̂2k−1

+ k log
n− k

n− (k − 1)
+

log(ζ̂2k−1) + log
(

1− k − 1

n

)
+ 1
]

+ (n− k + 1) log
[
1− k − 1

n
− (k − 1)δ̃

]
− (n− k) log

(
1− k

n
− kδ̃

)
+ nkδ̃ log

(
1− k

n
− kδ̃

)
− n(k − 1)δ̃ log

[
1− k − 1

n
− (k − 1)δ̃

]}
The following approximations can be obtained for any k by Taylor expansion at δ̃ = 0:

log (1− k
n − kδ̃) = log (1− k

n)− nkδ̃
n−k +O(δ̃2), (15a)

log [1− k−1
n − (k − 1)δ̃] = log (1− k−1

n )− n(k−1)δ̃
n−k+1 +O(δ̃2), (15b)

and they respectively converge if δ̃ < 1/k−1/n and δ̃ < 1/(k−1)−1/n. The difference is approximated
by

lp(k; δ̃)− lp(k − 1; δ̃) = −m
2

[
ζ(δ̃) +O(δ̃2)

]
= −m

2

{
log

λ̂k

ζ̂2k−1
+ (n− k) log

ζ̂2k
ζ̂2k−1

− nδ̃
[
k log

ζ̂2k
ζ̂2k−1

+ log ζ̂2k−1

]
+ δ̃2

[n2(k − 1)2

n− k + 1
− n2k2

n− k

]
+O(δ̃3)

}
(16)

Now we need to solve the inequality and find the smallest δ̃ such that ζ(δ̃) ≤ 0. Clearly, ζ(δ̃) is a
quadratic function of δ̃ for fixed k and when δ̃ = 0, ζ(δ̃) < 0. In quadratic equation representation, we
can rewrite ζ(δ̃) = c2δ̃

2 + c1δ̃ + c0, where

c2 =
n2(k − 1)2

n− k + 1
− n2k2

n− k
=
n(1− 2k)− k(1− k)

(n− k + 1)(n− k)
< 0 (17)

c1 = −n
[
k log

ζ̂2k
ζ̂2k−1

+ log ζ̂2k−1

]
> 0 (18)

c0 = log
λ̂k

ζ̂2k−1
+ (n− k) log

ζ̂2k
ζ̂2k−1

< 0 (19)

Clearly, the discriminant c1
2−4c2c0 > 0 is positive and c2 < 0, then there are two positive roots, r1(k)

and r2(k), where {
ζ(δ̃) < 0 for δ̃ ∈ (0, r1(k)) ∪ (r2(k),max(G(k + 1))),

ζ(δ̃) > 0 for δ̃ ∈ (r1(k), r2(k)).
(20)

B: lp(k; δ̃)− lp(k + 1; δ̃) > 0
Similarly, expanding the difference:
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lp(k; δ̃)− lp(k + 1; δ̃) = −m
2

{
− log

λ̂k+1

ζ̂2k
+ (n− k − 1) log

ζ̂2k
ζ̂2k+1

(21)

+ nδ̃ + [(n− k) log
n− k

n− k − nkδ̃
− (n− k − 1) log

n− k − 1

n− k − 1− n(k + 1)δ̃
] (22)

− nδ̃
[
k log

ζ̂2k
ζ̂2k+1

+ k log n− kn− k − nkδ̃ (23)

− log ζ̂2k+1 − (k + 1) log
n− k − 1

n− k − 1− n(k + 1)δ̃

]}
(24)

The following approximation is obtained for any k by Taylor expansion at δ̃ = 0:

log
[
1− k + 1

n
− (k + 1)δ̃

]
= log

(
1− k′ + 1

n

)
− n(k + 1)δ̃

n− k − 1
+O(δ̃2), (25)

and it converges if δ̃ < 1/(k + 1)− 1/n.
Again, define ζ ′(δ̃) and the approximated difference is:

lp(k; δ̃)− lp(k + 1; δ̃) = −m
2

[
ζ ′(δ̃) +O(δ̃2)

]
= −m

2

{
− log

λ̂k+1

ζ̂2(k′)
+ (n− k′ − 1) log

ζ̂2(k′)

ζ̂2(k′ + 1)

− nδ̃
[
k log

ζ̂2k
ζ̂2k+1

− log ζ̂2k+1

]
+ δ̃2

[n2(k + 1)2

n− k − 1
− n2k2

n− k

]
+O(δ̃3)

}
(26)

Again, rewrite ζ ′(δ̃) = c′2δ̃
2 + c′1δ̃ + c′0, where

c′2 =
n2(k + 1)2

n− k − 1
− n2k2

n− k
=
n− k + (2n− k)k

(n− k − 1)(n− k)
> 0

c′1 = n
[
(k + 1) log

ζ̂2k+1

ζ̂2k
+ log ζ̂2k

]
< 0

c′0 = − log
λ̂k+1

ζ̂2k
+ (n− k − 1) log

ζ̂2k
ζ̂2k+1

> 0

Now solve the inequality and find the smallest δ̃ such that ζ ′(δ̃) ≤ 0. Clearly, when δ̃ = 0, ζ ′(δ̃) > 0.
Since the discriminant c′1

2 − 4c′2c
′
0 > 0 is positive and c′2 > 0, there are two positive roots, r3(k) and

r4(k), where {
ζ ′(δ̃) < 0 for δ ∈ (r3(k), r4(k))

ζ ′(δ̃) > 0 for δ ∈, (0, r3(k)) ∪ (r4(k),max(G(k + 1))).

Since δ̃ ∈ (0, 1/(k+ 1)−1/n), the root near 0 can be approximated by the Vieta’s solution − c0
c1

and

− c′0
c′1

. So finally we have

ub(k) = −
log λ̂k

ζ̂2k−1

+ (n− k) log
ζ̂2k
ζ̂2k−1

n[k log ζ̂2k − (k − 1) log ζ̂2k−1]

and

ua(k) = −
log

λ̂k+1

ζ̂2k
+ (n− k − 1) log

ζ̂2k
ζ̂2k+1

n[(k + 1) log ζ̂2k+1 − k log ζ̂2k ]
.

Since ub(k) = ua(k − 1), these approximated intervals are also non-overlapping.
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Lemma 5. Suppose k∗ is the true rank of W , and denote ζ2 = ζ2k∗, then as m→∞,

• ub(k∗)/ua(k∗)→∞ in probability

• |ub(k)− ua(k)| → 0 in probability for k > k∗.

Proof (Lemma 5). It is useful to have the following:

λ̂k+1

ζ̂2k
=

n− k∑n
i=k+2 λ̂i/λ̂k+1 + 1

> 1,

λ̂k

ζ̂2k−1
=

n− k − 1∑n
i=k+1 λ̂i/λ̂k + 1

> 1,

ζ̂2k
ζ̂2k+1

=
λ̂k+1

(n− k)ζ̂2k+1

+ 1− 1

n− k
> 1,

and
ζ̂2k
ζ̂2k−1

=
(n− k + 1)ζ̂2k
λ̂k + (n− k)ζ̂2k

< 1.

To show ub(k
∗)/ua(k

∗)→∞ in probability, it suffices to show that ua(k
∗)/ub(k

∗)→ 0 in probability.
Suppose ua(k

∗) and ub(k
∗) converges in probability to 0 and a constant cc > 0, respectively, then every

subsequence of these two sequences converges almost surely to 0 and cc, respectively. Thus, every
subsequence of ua(k

∗)/ub(k
∗) now has a further subsequence converging almost surely to 0. This

completes the proof that ub(k
∗)/ua(k

∗)→∞ in probability.
On the other hand, to show |ub(k) − ua(k)| → 0 in probability for k > k∗, it suffices to show

ua(k)→ 0 and ub(k)→ 0 in probability as both ub(k) and ua(k) are positive.
Now, I will show both ua(k

∗) and ua(k
∗ + 1) converge in probability to 0 and ub(k

∗) converges in
probability to some constant a > 0. For these to hold, it suffices to show c′0(k

∗) → 0, c′0(k
∗ + 1) → 0

while c′1(k
∗)→ ζ2 > 0, c′1(k

∗+ 1)→ ζ2 > 0 and c0(k
∗)→ aa > 0, c1(k

∗)→ aa′ > 0, where aa and aa′

are non-zero constants.
Note that the denominators c1, c′1 and numerators c0, c′0 of ub(k) and ua(k) are smooth functions

of ζ̂2k , ζ̂2k−1 and ζ̂2k+1 on (0, 1) as both first derivatives with respect to these random variables exist.

∂c0

∂ζ̂2k
= (λ̂k − ζ̂2k)

n− k
(ζ̂2k)2(n− k + λ̂k

ζ̂2
)

∂c′0

∂ζ̂2k
= (λ̂k+1 − ζ̂2k)

n− k

(ζ̂2k)2(n− k − λ̂k+1

ζ̂2
)

∂c1

∂ζ̂2k
= −

kλ̂k + ζ̂2k(n− k)

ζ̂2k [(n− k)ζ̂2k − λ̂k]

∂c′1

∂ζ̂2k
= −

kλ̂k+1 + ζ̂2k(n− k)

ζ̂2k [(n− k)ζ̂2k − λ̂k+1]

Since the population value of the n − k last eigenvalues are equal to ζ2(k), Theorem 8.3.2 of [?]
implies that for normal data, the maximum likelihood estimator ζ̂2k = (

∑n
i=k+1 λ̂i)/(n−k) converges to

ζ2k almost surely. Similarly, the maximum likelihood estimator of ζ2(k+1) is ζ̂2k+1 = (
∑n

i=k+2 λ̂i)/(n−
k − 1) and also converges to ζ2k , combined with the fact that:

1

ζ̂2k
1ζ̂2k 6=0 →

1

ζ2k
1ζ2k 6=0
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and log is a continuous function on (0,∞), the continuous mapping theorem suggests the following
result:

log
ζ̂2k+1

ζ̂2k
→ 0.

These together proves c′1(k
∗)→ ζ2 > 0 in probability and similarly c′1(k

∗)→ ζ2 in probability.
On the other hand, for k > k∗, the kth sample eigenvalue λ̂k → ζ2 almost surely combined with (2.2)

via continuous mapping theorem suggests:

log
λ̂2k+1

ζ̂2k
→ 0.

These together then proves c′0(k
∗)→ 0 and similarly c′0(k

∗ + 1)→ ζ2 in probability.
Lastly, since the k∗th sample eigenvalue λ̂k∗ → ζ2 + d2k almost surely and thus:

ζ̂2k−1 →
d2k + (n− k + 1)ζ2

n− k + 1
in probability,

and implying
ζ̂2k
ζ̂2k−1

→ (n− k + 1)ζ2

d2k + (n− k)ζ2
< 1 in probability,

Similarly,
λ̂k

ζ̂2k−1
→

(n− k + 1)(ζ2 + d2k)

d2k + (n− k + 1)ζ2
> 1 in probability.

These together then proves c0(k
∗) → aa, where aa = log

(n−k+1)(ζ2+d2k)

d2k+(n−k+1)
and c1(k

∗) → aa′ in

probability, where aa′ = (k − 1) log (n−k+1)ζ2

d2k+(n−k)ζ2 + ζ2.

2.3 Proofs

Proof (of Proposition 1). Following [?], we have:

λ̂n = ζ̂2n−1

λ̂n−1 = 2ζ̂2n−2 − λ̂n = 2ζ̂2n−2 − ζ̂2n−1
...

...
...

λ̂k = (n− k + 1)ζ̂2k−1 − (n− k)ζ̂2k

Notice that the sample eigenvalues are decreasing λ̂1 > · · · > λ̂n > 0, thus implying ζ̂21 > · · · > ζ̂2n−1.
Therefore,

λ̂k = (n− k + 1)ζ̂2k−1 − (n− k)ζ̂2k > ζ̂2k−1.

For k ∈ {2, . . . , n− 1}, based on the inequality x
1+x < log(1 + x) < x, for any x > −1, we obtain

lp(k)− lp(k − 1) = −m
2

[log λ̂k + (n− k) log ζ̂2k − (n− k + 1) log ζ̂2k−1]

> −m
2

[
(n− k)(1−

ζ̂2k
ζ̂2k−1

) + (n− k)
( ζ̂2k
ζ̂2k−1

− 1
)]

= 0

Proof (of Proposition 2). Though in theory, δ̃ ∈ (0,∞), the practical consideration that the penalized
MLE of ζ2 needs to be between 0 and 1 restricts δ̃ to be in (0, 1− 1/n).

(27)
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As shown in Lemma 1 and Lemma 2, when δ̃ ∈ G(k + 1), where

G(k + 1) =
(

0,
n(n− k − 1)(λ̂k+1 − ζ̂2k+1)

(k + 1)λ̂k+1 + (n− k − 1)ζ̂2k+1

)
, (28)

and ∪kG(k + 1) ⊂ (0, 1− 1/n), the difference lp(k; δ̃)− lp(k + 1; δ̃) is a smooth and concave function
of δ̃ and is increasing. Similarly, lp(k; δ̃) − lp(k − 1; δ̃) is a smooth and convex function of δ̃ and is
decreasing. Naturally, an interval can be defined:

∆k =
{
δ̃ ∈ G(k); conditions (2) are satisfied

}
= (ak, bk) (29)

for some k ∈ {2, . . . , n− 2}.
Lemma 3 implies that on this interval, there exists δ̃o ∈ G(k) such that k∗ = argmaxk′ lp(k

′; δ̃o),
where k∗ denote the rank of the parameter W .

Following Lemmas 3 and 4, since ak∗ < u(ak∗) < u(bk∗) < bk∗ or ∆k∗ 6= ∅, there must exist
δ̃o ∈ ∆k∗, such that lp(k

∗; δ̃o)− lp(k∗ + 1; δ̃o) > 0 and lp(k
∗; δ̃o)− lp(k∗ − 1; δ̃o) > 0.

Since the probability that two sample eigenvalues are identical is 0, then ua(k
∗) < ub(k

∗) implies
the existence of some

δ̃o ∈ (u(ak∗), u(bk∗)) ⊂ (ak∗ , bk∗) ⊂ G(k∗ + 1) ⊂ (0, 1− 1/n), (30)

which concludes the proof.

A final note, relating to the use of the data averaging heuristic, is that as m → ∞, we have
ub(k

∗)
ua(k∗)

→ ∞ and |ub(k) − ua(k)| → 0 for k > k∗ such that k∗ = argmaxk′ lp(k
′; δ̃o). In other words,

the consistency of the data averaging procedure hinges on the convergence of sample eigenvalues to
the true population values. In finite samples, the correct estimate will depend on both the rate of
convergence, the signal-to-noise ratio, and additional factors that impact the behaviours of the sample
eigenvalues.
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