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ABSTRACT

Multi-collinearity is a wide-spread phenomenon in modern statistical applications and when ignored,
can negatively impact model selection and statistical inference. Classic tools and measures that
were developed for “n > p” data are not applicable nor interpretable in the high-dimensional
regime. Here we propose 1) new individualized measures that can be used to visualize patterns
of multi-collinearity, and subsequently 2) global measures to assess the overall burden of multi-
collinearity without limiting the observed data dimensions. We applied these measures to genomic
applications to investigate patterns of multi-collinearity in genetic variations across individuals with
diverse ancestral backgrounds. The measures were able to visually distinguish genomic regions of
excessive multi-collinearity and contrast the level of multi-collinearity between different continental
populations.

Keywords genomic data · high-dimensional · multi-collinearity

1 Introduction

In the current age of information, statisticians often benefit from the ubiquitous capacity to measure multiple features
or covariates for each unit in a sample. For example, large-scale genomic analyses typically measure tens of millions
genetic features for tens of thousands of samples and proteomic assay can characterize thousands of circulating proteins
for hundreds of individuals [Suhre et al., 2021]. A somewhat reversal of this fortune occurs when the number of units n
does not keep pace with the number of features p, thus leading to the high-dimensional data matrices X ∈ Rn×p for
which n < p [Donoho et al., 2000]. For such data, the multi-collinearity phenomenon, in which one feature vector is
highly correlated to linear combinations of the remaining ones, is inevitable and often produces damaging effects on
model selection and statistical inference [Fan and Lv, 2008]. However, assessing the severity of multi-collinearity in
high dimensions is not straightforward as such a measure must factor in both the number of variables involved as well
as the degree of collinearity among variables. The absence of a severity measure in high-dimensional settings seems
disconnected from the fact that variable selection remains pivotal in balancing model accuracy and interpretability
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[George, 2000, Wasserman and Roeder, 2009]. Moreover, identifying which covariates are correlated or even redundant
can be as important as finding a subset with high explanatory power.

There are some potential candidates for measuring multi-collinearity in high dimensions. The Red indicator [Kovács
et al., 2005] has been proposed to quantify the average level of correlation in the data. An almost identical quantity is
the root mean square correlation over all p(p− 1)/2 pairs variables introduced in Efron [2010], also a key component in
the approximation of covariance. These are single number measures that do not point to any specific variables, but cast
light on the appropriate next-steps. For example, they can guide the implementation of regularization or penalization
techniques in the context of high-dimensional linear regression, such as least absolute shrinkage and selection operator
(lasso; Santosa and Symes, 1986, Tibshirani, 1996) or elastic net regularization [Zou and Hastie, 2005].

We can perhaps learn from the more accessible scenario of n > p, where diagnostic measures to assess severity of
multi-collinearity have been reliably used, especially in the context of linear regression [Farrar and Glauber, 1967,
Marquaridt, 1970, Belsley, 2014]. These measures fall into two categories, one relying on a collection of numbers
measuring the impact or burden of multi-collinearity on each individual variable, and the other category that uses a
single number to summarize the severity of multi-collinearity of all variables or a subset of the variables.

Examples of the former include a class of measures that incorporate various functions of the estimated coefficient of
determination R2

j from linear regression models. In essence, this type of measure leverages information on how well
the jth variable is explained by linear combinations of the others as an indicator of the severity of collinearity. Among
them, the most commonly used is the variance inflation factor (VIF; Marquaridt, 1970), defined by

VIFj =
1

1−R2
j

,

intuitively interpreted as the inflating factor for the variance of the estimated regression coefficient for the jthe variable.
VIF not only captures the degree of multi-collinearity for each variable, but also illustrates a direct impact on inference
in linear regression models [Fox, 1984]. Departing from examining X alone for multi-collinearity, a corrected VIF
(denoted CVIF; Curto and Pinto, 2011) was proposed to differentiate variables based on whether the redundant
information is predictive of the response variable or not. The corrected CVIF is preferred over VIF when the redundancy
among variables is unrelated to the response variable [Curto and Pinto, 2011]. These individual-valued measures offer a
mechanism to remove variables implicated in near or perfect multi-collinearity according to a pre-defined threshold
(e.g. VIFj or CVIFj > 10), and thus ensure coefficient estimates of the remaining variables using ordinary least square
(OLS) are numerically stable.

The second class of measures uses a single number to summarize multi-collinearity. The most notable being the
condition number, defined by the ratio of the largest and smallest singular values of a data matrix [Rice, 1966, Geurts,
1982]. It is directly related to the matrix solution of a linear system and describes the degree to which the matrix
XTX is ill-conditioned. For a scaled data matrix with unit variance in each column, a value between 15 and 30 is
considered moderately problematic and severe if above 100 [Belsley et al., 2005]. Closely related is the condition
index [Belsley, 2014], which is defined by the square root of ratio of the largest eigenvalue and each of the remaining
eigenvalue of XTX . The number of condition indices above a threshold further indicates the number of near or perfect
multi-collinear relationships in the data. Other global measures include those examining the determinant of XTX , such
as the Farrar-Glauber test statistic [Farrar and Glauber, 1967] that evaluates a function of the determinant of XTX .

In practice, application of the two classes of measures need not be mutually exclusive. In fact, it has been shown that
VIFs are bounded above by the squared condition number [Berk, 1977, Salmerón et al., 2018], implying that there
could be additional information in condition number that is not captured by VIFs. Indeed, sometimes problematic
variables are restricted to a particular subset while their individual VIFs might not all be strong enough to be picked up
at the recommended threshold. A generalization of the VIF has been proposed by Fox and Monette [1992] to measure
an arbitrary subset of variables for evidence of multi-collinearity, which can be used to identify specific sources of
imprecision.

Under n < p, measures such as VIF cannot be reliably calculated, while overall measures that rely on the sample
eigenvalues or singular values could be misleading, as we demonstrate in Section 3.2. Further, the usual approach to
visualize pairwise relationship quickly becomes cumbersome as the number of combinations increases exponentially.
Finally, though the Red indicator or the root mean square correlation can be useful as an overall summary, they do not
fully address the complexity of multi-collinearity in high-dimensional settings.

This paper contributes in two new ways to the study of multi-collinearity in the case of high-dimensional data. First, it
introduces new measures for the severity of multi-collinearity derived via the singular value decomposition (SVD) of
X . Second, it uses these novel measures to establish whether the multi-collinearity is due to all or just a few of the
variables. The remaining paper is organized as follows. Section 2 introduces the individual-valued measures, presents
their empirical properties, and motivates an overall summary measure. Section 3 illustrates the utility of these measures
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to visualize and characterize multi-collinearity, making them an attractive option for exploratory data analysis on
high-dimensional data. Section 4 demonstrates their application to genotype data from the 1000 Genomes Project [1000
Genomes Project Consortium and others, 2015] to learn about the different patterns of multi-collinearity in genetic
variations arising from diverse ancestral backgrounds.

2 A severity measure of multi-collinearity

Let X ∈ Rn×p be the observed data matrix with each column standardized to have sample mean 0 and variance 1. We
are interested in the high-dimensional data setting (n < p) that is the signature of large-scale data such as those arising
from genomic applications, but results also naturally generalize to the data rich setting (n > p). Denote the SVD of X
by UDV T , where columns of U ∈ Rn×(n−1) are the left singular vectors, D is a diagonal matrix with singular values
d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ 0, and columns of V ∈ Rp×(n−1) are the right singular vectors. The column standardization
results in the loss of one degree of freedom such that

∑n−1
i′=1 d

2
i′ = (n− 1)p, which is the sum of the main diagonal

elements of XTX ∈ Rp×p. Notice that by permitting di′ = 0, the matrix X is allowed to be rank deficient, which
would be the consequence of perfect collinearity involving two or more variables.

Define the right severity measure of multi-collinearity by

SRj = Vj.D
4V T

j. =

n−1∑
i′=1

v2ji′d
4
i′ ,

where Vj. denotes the jth row and vji′ the (j, i′)th entry of V .

Naturally, the duality of SVD allows the definition a left severity:

SLi = Ui.D
4UT

i. =

n−1∑
i′=1

u2ii′d
4
i′ ,

where Ui. denotes the ith row and and uii′ the (i, i′)th entry of U .

Notice that these two measures are equal when X is symmetric (i.e. X = XT ). Both SR and SL leverage the spectrum
of singular values of X , similar to other measures of multi-collinearity, but also the singular vectors, which are used to
assign a value to each variable/sample through the weighted l2 norm of the corresponding right/left singular vector. In
this construction, the singular values comprehensively capture the variance spectrum, and weighting by their respective
singular vectors creates individualized measures irrespective of the data dimensions. Since the top singular values bear
the higher burden of capturing the variance in XTX and contribute more weight to the measures, SLi and SRj are
termed the univariate burden of variance adjustment (uBVA) measure for left and right severity, respectively.

2.1 Basic properties

Without invoking any distributional or data dimensions assumptions, we first establish three basic properties of
{SRj}j=1,...,p given any observed X ∈ Rn×p with each column standardized to have sample mean 0 and variance 1.
Property 2.1.

p∑
j=1

SRj =

n∑
i=1

SLi =

n−1∑
i′=1

d4i′ (2.1)

Remark 2.1. Though the sums of SRj and SLi are the same, the collective pattern of these values is influenced by the
underlying column and row dependence, respectively.
Property 2.2.

SRj =

n−1∑
i′=1

v2ji′d
4
i′ = (n− 1)2

p∑
j′=1

r2jj′ , (2.2)

where rjj′ denotes the sample Pearson’s correlation coefficient between the jth and j′th columns. Note that since the
data had been column-standardized, we have r2jj = 1 for all j = 1, . . . , p.
Remark 2.2. The equivalent expression of SRj , shown in equation (2.2), offers some intuition to the construction of
the measure. The magnitude of SRj scales with the variance of the jth column itself as well as any redundancy due
to its correlation with all other columns. The larger SRj is, the more the jth column is involved in multi-collinearity,
quantified by the number and severity of these collinear relationships.
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Remark 2.3. Since r2jj′ ∈ [0, 1], the maximum value of SRj is bounded by (n− 1)2p, while the minimum possible
value is bounded by (n − 1)2. These bounds apply to any X ∈ Rn×p, irrespective of n > p or n < p. However, a
tighter bound is established in the next property when we restrict data dimensions to be n < p.
Property 2.3. When n < p,

SRj ∈

[
(n− 1)2∑n−1
i′=1 v

2
ji′

, d21(n− 1)

]
.

Remark 2.4. When n > p, the lower bound becomes (n − 1)2 assuming all p columns are mutually orthogonal.
However, when n < p, X has at most min(n, p)− 1 orthogonal columns; the restriction of dimension (n < p) leads to
a tighter lower bound than (n− 1)2 because the squared row norm of a column orthogonal matrix is strictly less than
1 (i.e.

∑n−1
i′=1 v

2
ji′ < 1). In fact, following from

∑p
j=1

∑n−1
i′=1 v

2
ji′ = n− 1, the lower bound (n−1)2∑n−1

i′=1
v2
ji′

is expected to

vary for each j, but the smallest such lower bound is strictly smaller than (n− 1)p. In other words, the smallest value
SRj can take under a high-dimensional data setting is greater than that under the one with n > p, the result of spurious
correlation as discussed in Fan et al. [2012]. Clearly, the severity increases with an increasing p/n ratio. Meanwhile, as∑n−1

i′=1 d
2
i′ = (n− 1)p, the upper bound d21(n− 1) is also bounded above by the naive upper bound of (n− 1)2p, but

these two are equivalent when columns of X are identical and
∑n−1

i′=1 d
2
i′ = d21.

Remark 2.5. Under column standardization, the bounds of SLi are not directly informative as the singular values are
scaled to have unit column variance. Thus, we provide bounds for SLi assuming row standardization and n < p, which
implies that

∑n−1
i′=1 d

2
i′ = n(p− 1) and

∑n−1
i′=1 u

2
ii′d

2
i′ = p− 1. The upper bound is then:

SLi =

n−1∑
i′=1

u2ii′d
4
i′ ≤ d21

n−1∑
i′=1

u2ii′d
2
i′ ≤ d21(p− 1),

and the lower bound follows from the Cauchy-Schwarz inequality:

SLi =

n−1∑
i′=1

u2ii′d
4
i′ ≥

( n−1∑
i′=1

u2ii′
)( n−1∑

i′=1

u2ii′d
2
i′

)2
≥ (p− 1)2.

Thus far, we have not invoked any distributional assumptions. By assuming each row ofX follows a multivariate normal
distribution, the expected value of SRj can be expressed in terms of the true covariance matrix and data dimensions
when n > p− 1.
Lemma 2.1. Suppose rows of X ∈ Rn×p are independent and identically distributed (i.i.d) normal random vectors,
i.e. for i ∈ {1, . . . , n}, xi ∼ N (0,Σ), where Σ is positive definite with rank p and Σj is the j column of Σ, then

E(SRj) = (n− 1)Σjj tr(Σ) + n(n− 1)ΣT
j Σj .

This result suggests that the expected value of the proposed measure SRj has two components, one that is driven by
data dimensions (n and p) and the other by the non-zero off-diagonal entries in the corresponding columns of Σ.
Remark 2.6. The above result does not apply to the n < p setting as the scaled sample covariance XTX no longer
follows a Wishart distribution due to the insufficient degrees of freedom [Wishart, 1928]. In this case, XTX is said to
have a singular Wishart distribution and explicit moments are not available [Srivastava, 2003]. An alternative solution is
to consider a low-rank approximation of XTX with rank r (r < n) and compute the approximated expectation, at the
cost of slightly underestimating E(SRj).

Though the main focus here was on the empirical properties of these measures without distributional assumptions, it is
possible to further characterize the statistical properties of SRj or SLi according to behaviours of the singular values
and vectors using random matrix theory such as in Bai [2008]. This will be the subject of future work.

Following property 2.2, it is natural to define a scaled measure:

sRj =
SRj

(n− 1)2
=

p∑
j′=1

r2jj′ ∈ [1, p], (2.3)

as it has a more natural interpretation of being the sum of squared pairwise Pearson’s correlation coefficients. From the
row perspective, sLi can also be defined similarly, provided the data had been row standardized:

sLi =
SLi

(p− 1)2
∈ [1, n]. (2.4)
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As the results in Section 2.1 can be conveniently expressed by a rescaling, the bounds on sRj become:

sRj ∈

[
1∑n−1

i′=1 v
2
ji′

,
d21

n− 1

]
, (2.5)

where 1∑n−1

i′=1
v2
ji′
≤ 1, taking equality when n > p; and d2

1

n−1 ≤ p, taking equality when all columns are identical (i.e.∑n−1
i′=1 d

2
i′ = d21 = (n− 1)p). The upper and lower bounds are expected to be numerically close when multi-collinearity

is driven by spurious correlation due to n < p alone, but further apart as both the number and strength of multi-collinear
relationships increase.

The result in Lemma 2.1 becomes:
E(sRj) =

p

n− 1
+

n

n− 1
ΣT

j Σj , (2.6)

which reveals the direct impact of relative data dimensions, p/(n− 1), on the severity of multi-collinearity.

2.2 sRs: a unifying measure of multi-collinearity

Since {sRj} is considered the individualized measure of multi-collinearity, we propose a summary measure sRs as a
weighted sum of sRj with two components:

sRs =

∑p
j=1 sRj − p
p(p− 1)

× w1 + w2

2
+

∑p
j=1 sRj − p

p[d21(n− 1)−1 − 1]
×
(

1− w1 + w2

2

)
∈ [0, 1],

(2.7)
where

w1 =

∑
d2
i>p d

2
i∑

d2i
adjusts the weight of ‘bulk” behaviour more heavily when n < p and

w2 =

∑
d2
i>(
√
n−√p)2 d

−2
i∑

d−2i

,

so that 1− w2 adjusts the weight of “local” behaviour more pronouncedly when n > p.

We refer to the first component in (2.7) as bulk sRs (BsRs):

BsRs =

∑p
j=1 sRj − p
p(p− 1)

, (2.8)

which captures the overall burden of multi-collinearity, weighted by the proportion of singular values exceeding their
averaged value (maximum of n or p). The second component in (2.7) is designed specifically to account for the number
of “locally” strong relationships and defined as local sRs (LsRs):

LsRs =

∑p
j=1 sRj − p

p[d21(n− 1)−1 − 1]
. (2.9)

Notice that, p is used as the upper bound for sRj when the “bulk” behaviour dominates, i.e. the majority of variance is
in the leading singular values, while the maximum given by (2.5) is used when the top singular values do not dominate
others. In other words, the combined measure includes each sRj but weighs the signal relatively.

The sRs “bulk” component is mathematically equivalent to the squared Red, defined as

Red =

√
tr[XTXXTX − (n− 1)2Ip]

p(p− 1)(n− 1)2
, (2.10)

and both describe the “average correlation” of all variables. But the addition of a “local component” in sRs helps
account for strong “local” collinearity that involves only a subset of the variables.

The lower bound of sRs = 0 is achieved when n > p and columns of X are mutually orthogonal; the upper bound
of sRs = 1 is achieved when columns of X are identical. Our proposed sRs, along with LsRs and BsRs, have better
interpretation as compared to the Red indicator, e.g. a value closer to 0 suggests no evidence of multi-collinearity. In
contrast, a value closer to 1 indicates severe multi-collinearity due to 1) a subset of variables (local), a scenario that Red
was unable to capture; 2) a large number of variables (bulk); 3) both 1) and 2). The relative contribution of LsRs and
BsRs to sRs can be used to suggest which one of the scenarios constitutes the main driver of observed multi-collinearity.
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3 On the use of right severity measure for data exploratory analysis

This section focuses on the utility of sRj and sRs (LsRs and BsRs) through simulation studies. In section 3.1, we applied
sRj to high-dimensional data simulated under different covariance structures to confirm basic properties of sRj and to
explore its use for initial data analysis. In Section 3.2, we compared sRs (LsRs and BsRs) with existing measures to
assess multi-collinearity in data generated under various multi-collinearity patterns assuming either a high-dimensional
(n < p) or data rich scenario (n > p).

3.1 Visualizing data covariance structure

As each sRj is a weighted sum of singular values and that the spectrum of singular values is driven by the covariance
structure from which the data were sampled, it is tempting to use {sRj}j=1,...,p to identify certain “signatures” in
the sample covariance through a visual inspection. Property 2.2 (i.e. sRj =

∑p
j′=1 r

2
jj′), suggests that the observed

range of {sRj}j=1,...,p is directly related to the number and strength of squared pairwise correlation coefficients.
While Property 2.3 implies that the observed extremes of {sRj}j=1,...,p are specific to the data beyond dimensions. In
summary, the observed patterns of sRj are reflective of the singular values and can be visualized to give a fuller picture
of the covariance structure.

With simulated examples, we demonstrate the usefulness of this measure to differentiate some representative covariance
structures. The data dimensions were fixed at n = 500 and p = 1, 000. Following the standard notation, we use Jp to
denote an p×p matrix of ones and Ip a p×p identity matrix. Each row of X was generated according to xi ∼ N (0,Σ),
where

A. Σ = Ip denotes a case of identity covariance,

B. Σ = Jpρ+ (1− ρ)Ip, a compound symmetric structure with ρ = 0.2,

C. Σi,j = ρ|j−i|, a first order autoregressive (AR1) structure with ρ = 0.8.

D. Σ = diag[(0.1 × Jp/2 + 0.9Ip/2), (0.4 × Jp/4 + 0.6Ip/4), (0.6 × 1p/4 + 0.4Ip/4)], a covariance with three
compound symmetric blocks,

E. Σ = LLT + ζ2Ip, a spiked covariance with two distinct eigenvalues; the low-rank representation L = V,1:kO

is given by the first k columns of the right singular vectors, k = 10, O = 1√
n

diag[
√

10, . . . ,
√

10], and
ζ2 = 0.4,

F. Σ = LLT + ζ2Ip, a spiked covariance with k + 1 distinct eigenvalues; k = 10, O = [o1, . . . , ok], where
o2k = 2 + ζ2 and ζ2 = 0.4.

For the spiked covariance models, when O is not given explicitly, we assumed o21, . . . , o
2
k−1 follow an exponential

decay, which uniquely determined the values via the constraints imposed by o2k = 1 + ζ2 and
∑k

i=1 o
2
i + pζ2 = p.

The sample eigenvalues (or normalized squared singular values) shown in Figure 1 (A-F) have distinct patterns under
each structure: a relatively smooth decay in the case of an identity covariance (A) and AR1 structure (C); a sharp drop
is identified for the compound symmetry case (B), the block-wise compound symmetric covariance (D), and the spiked
covariance with two identical true eigenvalues (E); and finally a visible “elbow” for the spiked covariance with k + 1
unique true eigenvalues (F). However, these might not be sufficient to differentiate the block-diagonal and the low-rank
spiked covariance cases. This is where {sRj} could lend additional information.

The identity case (Figure 1-A) is equivalent to each entry having a standard normal distribution and Marchenko-Pastur
law [Marchenko and Pastur, 1967] applies. We expected the observed sRj and sLi to fall between ( p

n , (1 +
√
n/p)2 p

n )

and (1,
d2
1

p ), which translate to (2.00, 5.83) and (1.00, 2.91), respectively. These are consistent with the observed ranges
of (2.72, 3.31) for sRj and (1.15, 1.81) for sLi (Figure 1-A). The observed sRj had a tight symmetrical shape, with
most values centred around its observed median (3.005), which was approximately the same as its observed mean
(3.007).

The sample eigenvalues of an AR1 structure (Figure 1-C) behaved similarly to that of an identity covariance with the
additional variance for each principal direction contributed by only nearby variables. The empirical pattern should also
be unimodal and symmetric around its mean/median, but differ in the extremes from the identity case. In practice, for
large p, the majority of sRj should have expected values close or equal to the maximum because ρ|j−i| diminishes
quickly as |j− i| increases. For fixed data dimensions, the observed range of (3.65, 5.70) was attributed to the parameter
value ρ = 0.3. As ρ increases, the range will become wider with a smaller minimum and a larger maximum.

6
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Figure 1: Empirical distributions of sample eigenvalues, sLi and sRj under different data covariance structures.
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When the true covariance matrix Σ = (1− ρ)Ip + 1pρ has a compound symmetric structure (Figure 1-B), the largest
population singular value is

√
n[1 + (p− 1)ρ] and the remaining n − 1 singular values are

√
(1− ρ)(p− 1). For

small ρ values, sRj is influenced mostly by the top singular values and their corresponding singular vectors. Since
all pairwise variables have the same 2 × 2 covariance, as expected, the empirical distribution of sRj was roughly
symmetric with a unimodal shape that peaked around the mean (42.84) and median (42.81).

When Σ exhibits a block structure and each block is compound symmetric:

Σ =

[
Σ1 0 0
0 Σ2 0
0 0 Σ3

]
,

the empirical patterns of {sRj}j should feature three visible modes corresponding to each block similarly described for
a compound symmetric structure (Figure 1-D). However, note that if any two blocks are identical, sRj would simply
be duplicated for the identically distributed variables in these two blocks. As a result, two of the three modes would
completely overlap, forming a single mode. In general, the number of modes corresponding to the number of unique
blocks while the within block pattern depends on the structure of that block.

The last scenario focused on variables with varying magnitudes of pairwise correlation such that the true covariance
followed a spiked structure whereby Σ = V O2V T + ζ2Ip (Figure 1-E,F). Though challenging to estimate sample
covariance directly, the empirical patterns of sRj was mostly be driven by the top singular values whose true values are
proportional to diagonal elements of V . As a result, the empirical patterns spread much wider (ranging from 8.13 to
138.43) and no modes would be unambiguously identified unless the top singular values were truly identical. Indeed,
when the true covariance has equal eigenvalues, the observed {sRj} (ranging from 5.76 to 30.26) can be made to
resemble a compound symmetry covariance by varying the two unique eigenvalues. Nevertheless, it can be argued that
the compound symmetry covariance is actually a special case of a spiked covariance model with only one spike.

3.2 Measuring the severity of multi-collinearity

We have proposed {sRj} and sRs as individual-valued and summary-level measures, respectively, to assess severity of
multi-collinearity in high dimensions where existing measures fall short. Here we benchmark their performance against
alternatives under high-dimensional settings (n < p) and data rich settings (n > p). Sample size of the simulated data
was varied (n = 100 and n = 500), and the number of variables was fixed at p = 1, 000 for the high-dimensional or
p = 50 for the data rich scenarios.

In contrast to the previous simulation study of general covariance structures, we specified covariance matrix to represent
no multi-collinearity via an identity matrix (orthogonal design), multi-collinearity through two near-collinear variables
(collinear), a moderate level of multi-collinearity impacting all variables through a compound-symmetric covariance
matrix (CS), a severe multi-collinearity impacting all variables through a spiked covariance model (spiked covariance),
and the most severe case of nearly all variables are identical (almost perfect multi-collinear). To make a more interesting
comparison, we also included a block-wise scenario where two variables are near-collinear but the remaining variables
follow a compound-symmetric covariance structure. Similar to the simulations in Section 3.1, each row of X was
generated according to xi ∼ N (0,Σ), where

1. Σ = Ip,

2. (local) Σ = diag[0.99× 12 +
√

1− 0.992I2, Ip−2],

3. (bulk) Σ = ρ1p + (1− ρ)Ip with ρ = 0.3 or ρ = 0.99,

4. (bulk and local) Σ = diag[0.99× 12 +
√

1− 0.992I2, ρ1p−2 + (1− ρ)Ip−2] with ρ = 0.3,

5. (local) Σ = LLT + ζ2Ip with k = 10, o2k = 1 + ζ2, and ζ2 = 0.4.

The alternative measures include VIF, the condition number, and the Red indicator. As VIF can only be sensibly applied
when n > p, it was only included for comparisons in the data rich scenarios. The condition number is defined by the
ratio of the largest and smallest singular values of a data matrix and describes the degree to which the matrix XTX is
ill-conditioned. For the high-dimensional case, it was taken to be d1

dn−1
due to the column standardization; while for

the data rich case, it was calculated as d1

dp
. By design, the condition number captures the degree of multi-collinearity

rather than the number of collinear relationships. In other words, it evaluates the worst case scenario and as a result, one
perfect collinear relationship is all it takes to reach infinity, i.e. when dp or dn−1 is exactly zero.

8
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High-dimensional settings We compared the Red indicator and the proposed overall measure sRs (Equation (2.7)) to
the condition number for assessing severity of multi-collinearity (Figure 2a). Unsurprisingly, the size of the condition
number did not fully correspond to the severity of multi-collinearity under the impact of spurious correlations associated
with high-dimensional data. In all scenarios, the Red indicator was identical to BsRs. But under n < p, when data
matrices are necessarily under rank, and the LsRs component received a boost through the trailing singular values
that were very close to zero. Indeed, the main advantage sRs had over the Red indicator and condition number is
its sensitivity to near-collinearity ρ = 0.99 due to the added LsRs component. This contrast was expected since a
global measure of “averaged linear relationship” might be less sensitive to local collinearity, for example, when two
variables are near collinear. Given a fixed sample size, Red ranked the compound symmetry structure to be less severely
multi-collinear than the spiked covariance structure as opposed to the other way around for sRs. This is because sRs
puts more weight on the bulk of correlations through their contributions to d1, as well as locally strong correlation
through their influences on dp or dn−1. In the case of a low rank structure, the larger sRs was due to the strong
regional (between local and bulk) correlations, which contributed to the first a few leading singular values. In contrast,
multi-collinearity under a compound symmetry structure has only one leading singular value, and thus the advantage of
sRs was less pronounced.

(a) High-dimensional settings

(b) Data rich settings

Figure 2: Measuring overall severity of multi-collinearity using condition number, Red indicator and sRs. The vertical
line marks the condition number cut-off at 10 to suggest presence of possible multi-collinearity.

9
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Data rich settings When n > p, sRs showed better agreement with the commonly used condition number than
Red as reflected by points being closer to the line of reference, especially for the detection of two collinear variables
(Figure 2b). On the other hand, Red was unable distinguish the scenarios of a compound symmetric covariance and
that combined with two near collinear variables. Notice that a compound symmetric covariance with ρ = 0.3 is not
considered to have a concerning level of multi-collinearity as these are p very weak collinear relationships, all of the
same size.

Figure 3: A scatterplot of VIFj and sRj under data rich settings. The horizontal line indicates a detection threshold of 5
for VIFj .

In terms of individualized measures, though VIFj and sRj were designed to capture slightly different features of
data, they did correlate to some extent, especially when sample size is large (n = 500; Figure 3). As discussed in
Supplementary Section 6, the numerical difference between the two measures is due to the joint correlation structure
in the remaining p− 1 variables. The results in fact suggested these two measures are complementary to each other.
Given the same VIFj value by varying the remaining p− 1 variables, the pairwise correlation of jth variable with each
of the p − 1 variables can vary. For example, two variables having the same VIFj value means they can be equally
explained by the other p− 1 variables. At the same time, the same two variables could have similar or very different
sRj values, with a larger sRj suggesting the involvement of a larger number of individually weak relationships and a
smaller sRj suggesting the involvement of a few, but stronger relationships.

4 Application to the 1000 Genomes Project Data

The population genetics equivalent of multi-collinearity is linkage disequilibrium (LD), reflecting correlation between
different genetic markers. For any pair of bi-allelic markers, the LD can be quantified by the squared Pearson’s
correlation coefficient. LD can be interpreted at the genome-wide scale to reflect population history, breeding system
and the geographic subdivision within human populations [Slatkin, 2008]. At the same time, it can be viewed at a
regional level indicating influences from selection, mutation and gene conversion [Slatkin, 2008]. Thus, as the number
of genetic markers involved increased, the large numbers of pairwise Pearson’s correlation coefficients make the
studying of LD pattern over genomic regions of arbitrary size a challenging task.

The 1000 Genomes Project [1000 Genomes Project Consortium and others, 2015] is a well-established reference
for genetic variations and contains samples from several continental and sub-region populations. We applied the
individual-valued uBVA and sRs, along with LsRs and BsRs, measures to understand the severity of multi-collinearity
within genetically homogeneous populations, as well as contrasting these measures across populations. The univariate
sRj allows the comparison at each genetic marker, while the overall measures can be used to inform the overall burden
of multi-collinearity.

10



New measures of multi-collinearity severity A PREPRINT

Figure 4: A Manhattan type plot for {sRj} as a function of the genomic location within each chromosome.

4.1 Data information and quality controls

Standard quality controls on the genotype data are outlined in Roslin et al. [2016] and the data are publicly available
(http://www.tcag.ca/tools/1000genomes.html). This set of data contains individuals from Africa (AFR; n =
353), East Asia (EAS; n = 480), Europe (EUR; n = 522), South Asia (SAS; n = 100), and the Latin America (AMR;
n = 269). The analyses were restricted to bi-alleleic markers on autosomes. For each continental population, we
applied additional data filtering steps to exclude single nucleotide polymorphisms (SNPs) with minor allele frequency
(MAF) less than 0.01, with any missingness, and Hardy-Weinberg Equilibrium p-value < 1E−5. To harmonize the
analysis in the combined sample, we retained only SNPs present in all continental populations, leaving 193,744 SNPs
in the analysis, representing 20%-50% of the SNPs originally available in each population. The genomic coordinates
are based on the GRCh37/hg19 build. As a control step, we produced the first two genetic principal components
using the subset of overlapping SNPs, and confirmed that they are sufficient to stratify samples at the continental and
sub-population level (Figure S1).

4.2 Chromosome specific patterns of multi-collinearity

The uBVA measures (i.e. {sRj}) were calculated for each chromosome separately and presented in a similar manner
to a Manhattan plot (Figure 4), typical for genome-wide applications. We expected them to roughly follow the
chromosome size (number of SNPs), but with varying peaks and valleys highlighting specific regions of high/low local
multi-collinearity. Interestingly, there are a large number of visible peaks in the Europeans, only some of them are
shared with other populations, in particular those well-known long range LD regions at chromosome 6, 8 and 11 [Price
et al., 2008] with slight differences in the exact location for different populations. For example, the region identified on
chromosome 6 overlaps with the human leukocyte antigen (HLA) region. In Europeans, the peak region ranged from
25.9MB to 32.7MB, similar to the 26.4MB to 33.5MB in East Asians, but was much shorter in South Asians, only
between 31.0MB to 32.3MB.

In general, East Asian, European and South Asian have sporadic long-range LD regions, represented by the occasional
peaks in Figure 4, while populations in Latin America and Africa seemed to have more complex patterns of long and
short range LD, corroborating the findings in Park [2019].

We observed two types of collective patterns of {sRj} across chromosomes and populations: those from populations
in East Asia, Europe, and South Asian can be classified as being roughly symmetric (Figures S10, S4, and S6) and
those from Africa and Latin America tended to have heavier tails for most chromosomes (Figures S2, S8). The shift
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in the overall distribution should not be heavily influenced by outliers, such as the presence of a few long range LDs
regions or strong LD blocks. Rather, considering the high-level of admixture in these populations, we hypothesized that
these were probably the result of enriched genetic diversity manifested as a handful of large eigenvalues within each
population (Figures S3, S11, S5, S9, and S7).

4.3 Genome-wide summaries of multi-collinearity

We then examined the overall level of multi-collinearity using genome-wide data (all 193,744 SNPs) and the results
suggested the majority of multi-collinearity patterns were due to local relationships rather than global. The RED
indicator gave a slightly higher level of “averaged correlation" in South Asia population and a lower level in Europeans
and East Asians. On the other hand, sRs offered better granularity in the type of forces driving the averaged correlation.
Specifically, though both Europeans and East Asians had similar RED values, their sRs and LsRs values collectively
suggested a stronger local multi-collinearity in Europeans than in East Asians.

RED sRs LsRs BsRs
Combined 0.01325 0.00180 0.00451 0.00018

SAS 0.02365 0.01298 0.03674 0.00056
EAS 0.01140 0.00396 0.01187 0.00013
AFR 0.01323 0.00485 0.01465 0.00017

AMR 0.01792 0.00363 0.00826 0.00032
EUR 0.01092 0.00506 0.01608 0.00012

Table 1: A genome-wide summary of multi-collinearity for each continental population and the combined samples.

5 Discussion

Originally intended for detecting multi-collinearity under n > p, the Red indicator is equally adaptable to rank the
severity of multi-collinearity in high-dimensional settings (n < p). As a measure of “averaged” correlation in the data,
Red is sensitive to multi-collinearity that severely affects a large number of variables, but tends to ignore strong local
relationships in the presence of moderate bulk relationships. Indeed, unlike sRs, Red does not have a mechanism to
distinguish local and bulk relationships. On the other hand, the condition number is perhaps more specific to detect
ill-posed problems as it is directly related to the numerical accuracy of the inverse of XTX . Though these measures are
sometimes useful as indicators of the overall multi-collinearity, they fall short in generating variable-specific information.
As compared to sRj , the individual-valued VIFj can also identify specific variables involved in ill-conditioned problems
and is capable of harvesting both local and global linear relationships, but can only be applied when n < p. In
conclusion, the proposed sRs, BsRs and LsRs, combined with {sRj} are recommended as measures of multi-collinearity
in high-dimensional settings.

We want to highlight some potential improvements that are of interest for future research work. Firstly, sRj are
empirical measures and a natural next step is to leverage theoretical results from random matrix theory to further derive
their statistical properties. Secondly, it would be of interest to construct two-sample or multiple-sample statistical tests
for quantities such as sRs, BsRs and LsRs, thus enabling a formal statistical comparison of the severity and sources
of multi-collinearity. Finally, though the application to autosomal markers yielded insightful results, the same might
not translate to the X-chromosome due to differences in the number of chromosomal copies between sexes. One of
the complications is that since females carry two copies and males carry only one copy of the X-chromosome, the
multi-collinearity measures derived from the observed data are expected to vary with respect to the sex ratios. As a
result, though the measures are still valid in the sense that they can be computed and reflect the observed severity of
multi-collinearity, they cannot be reliably used to compare LD patterns between samples.

It is worth noting that similar measures to sRj have been proposed in genetic applications: LDadj was used in the
construction of polygenic risk scores (PRS) for prediction [Pare et al., 2016, 2017], and LDscore was used to demonstrate
the polygenicity of a trait, such as in LD-score regression [Bulik-Sullivan et al., 2015]. Both are in fact truncated
versions of the sRj and are denoted by the sum of squared Pearson’s correlation coefficients:

LDadj(j) =

j+t∑
j′=j−t

r2j′j , (5.1)
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and

LDscore(j) =

j+t∑
j′=j−t

r2j′j −
1− r2j′j
n− 2

, (5.2)

where LDscore has an additional term such that each squared Pearson’s correlation remains unbiased (under n > t).
The value of t is defined by assuming the neighbouring t genetic variants up- and down-stream are sufficient to capture
the local LD (or covariance) structure, thus the choice is subjective. A window of radius 1 centiMorgan around the
index variant was recommended [Bulik-Sullivan et al., 2015]. Contrary to uBVA, LDadj or LDscore do not intend to
capture the systematic effect, but only the local effect of multi-collinearity. Consequently, these truncated measures are
restricted to analyses within a homogeneous population and are not tailored for comparisons across samples of distinct
populations; further, since the truncation occurs through a rolling window, the measures are not directly comparable
from variable to variable.

6 Concluding remarks

Our multi-collinearity measures {sRj} offer an alternative univariate perspective to visualize multi-collinearity patterns.
They also enable the construction of a high-level summary measure sRs that sheds light on the sources of multi-
collinearity through the relative contribution from LsRs and BsRs, which can inform the choice of an appropriate
data learning strategy. The fact that these can be applied regardless of data dimensions is an attractive feature in
high-dimensional data applications. Besides providing a visual inspection and numerical summary of multi-collinearity
in high-dimensions, the proposed measures are amendable to various downstream analyses and potential applications,
for example, as informative shrinkage weights to construct high-dimensional estimators. Finally, the simplicity in their
construction also enables convenient data sharing for open science research.
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Supplementary Materials

Proofs

Proof of property 2.1

Proof. : Since XXTXXT is a square matrix with non-negative eigenvalues d41, . . . , d
4
n−1, the trace is simply the sum

of eigenvalues:

tr(XXTXXT ) =

n−1∑
i′=1

d4i′ .

It then follows from the cyclic property of trace that:
p∑

j=1

SRj = tr(XTXXTX) = tr(XXTXXT ) = tr(UD4UT ) =

n∑
i=1

SLi.

Proof of property 2.2

Proof. :

diag[cor(X)2]j = diag
[
XTXXTX

(n− 1)2

]
j

=
SRj

(n− 1)2
,

13
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and

diag[cor(X)2]j =

p∑
j′=1

r2jj′ .

Proof of property 2.2

Proof. : Following the Cauchy-Schwarz inequality, the lower bound is given by:

SRj =

n−1∑
i′=1

v2ji′d
4
i′ =

n−1∑
i′=1

(v2ji′d
2
i′)

2

v2ji′

≥
(
∑n−1

i′=1 v
2
ji′d

2
i′)

2∑n−1
i′=1 v

2
ji′

=
(n− 1)2∑n−1
i′=1 v

2
ji′

≥ (n− 1)2,

while the upper bound is:

SRj =

n−1∑
i′=1

v2ji′d
4
i′

≤ d21
n−1∑
i′=1

v2ji′d
2
i′

= d21(n− 1).

Proof of Lemma 2.1

Proof. Since SRj is simply the jth diagonal element of XTXXTX , we approach this by calculating the expected
value of SRj = eTj X

TXXTXej , where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rp is a standard basis vector with value 1 at
the jth place. Further, it follows that (n− 1)Σ̂ = XTX ∼ Wp(Σ, n) has a Wishart distribution with parameters Σ and
degrees of freedom n.

Following Proposition S1 of [Dicker, 2014], where explicit expressions for the expectation of moments of a Wishart
random matrix were derived, it is easy to write down the expectation of SRj as:

E(eTj X
TXXTXej) = p(n− 1)

tr(Σp)

p
eTj Σpej + n(n− 1)eTj ΣpΣpej

= (n− 1)(Σp)jj tr(Σp) + n(n− 1)(Σp)T.j(Σp).j .

The expectation can be further simplified if the true covariance Σ has diagonal elements 1:

E(SRj) = (n− 1)p+ n(n− 1)ΣT
j Σj .

Relationship with existing measures of multi-collinearity

Since measures are often derived from sample eigenvalues, which are closely related to singular values, here we reveal
the relationship between proposed and existing measures of multi-collinearity.

The Red indicator Both the Red indicator [Kovács et al., 2005] and sRj can be used without dimension restrictions
and it turns out the two are closely related:

Red =

√
tr[XTXXTX − (n− 1)2Ip]

p(p− 1)(n− 1)2
=

√∑p
j=1 sRj − p
p(p− 1)

,

where Red ∈ [0, 1] and sRj ∈ [1, p] following Equation (2.3). It is regarded as a global measure of average correlation
in the data over all pairwise variables or the proportion of redundant information, with values closer to 1 indicating
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a large number of near or perfect multi-collinearity relationships and values closer to 0 indicating little evidence
of multi-collinearity. Given how Red is defined, the authors did not provide a recommended threshold at which a
concerning level of multi-collinearity is present.

In relation to Red, sRj can be seen as its individual-level counterpart and is potentially more useful for contrasting
variables for their relative involvement in multi-collinearity. It should emphasized that individual sRj values alone
cannot distinguish between the “bulk weak” and “local strong” scenarios as the same sRj value could be given by many
weak relationships or a few strong relationships. In reality, the ambiguity also remains for Red indicator values that
are closer to the middle. For example, a Red value of 0.4 can be achieved by either a large number of weak collinear
relationships or a small number of perfect or near collinear relationships, with the latter having a bigger impact on
matrix solutions to linear regression problems.

Variance Inflation Factor (VIF) Though the VIF is restricted to the setting of n > p, it is still of interest to compare
sRj and VIFj on an equal footing as individual-valued measures. Note that when n > p, components of the SVD of X
have different dimensions: U ∈ Rn×p, V ∈ Rp×p, and D = diag[d1, . . . , dp] ∈ Rp×p. In this case, dp does not equal
to 0 following the column-wise mean and variance standardization. It should be noted that VIFj is only suitable when
the data matrix is full rank, while sRj can be calculated without such restriction.

The VIF of the jth predictor can be expressed as:

VIFj =
1

1−R2
j

=
xTj xj

xTj xj − xTj X−j(XT
−jX−j)

−1XT
−jxj

=
1

1− (n− 1)bT−j(X
T
−jX−j)

−1b−j
, (6.1)

where xj denotes the jth column of X , X−j the data matrix with jth column removed, and b−j = 1
n−1X

T
−jxj the

vectorized univariate regression coefficients estimated between the jth variable and each of the other p− 1 variables.
Using the same notation, the multivariate regression coefficients estimated using the jth variable as the response and the
other p− 1 variables as the predictors can be expressed as (n− 1)(XT

−jX−j)
−1b−j .

The proposed measure sRj can be similarly expressed:

sRj =

p∑
j′=1

r2jj′

=
[
1 +

∑
j′ 6=j

(
1

n− 1
xTj′xj)

2
]

= (1 + bT−jb−j). (6.2)

Both VIFj and sRj are driven by b−j , with the main difference being how bT−jb−j is weighted. Note that as
(XT
−jX−j)

−1 is capable of simultaneously modelling relationship among the other p− 1 variables, VIFj is expected to
be more sensitive than sRj at recognizing multi-collinearity that involves a large number of variables as each element
of bT−jb−j merely describes the strength of a bivariate relationship. From the alternative expression of sRj according to
the definition via the singular values, we obtain

sRj = (n− 1)−2
p∑

i′=1

v2ji′d
4
i′ = d21(n− 1)−2

[
p∑

i′=1

(v2ji′d
2
i′)
d2i′

d21

]
. (6.3)

Though each di′ is weighted towards sRj , the collective behaviour of sRj will be influenced by a large d1 and therefore
captures information in the condition indices { d1

di′
}i′=1,...,p.

An important aspect is the detection of variables involved in multi-collinearity, which often requires a hard detection
threshold. For the individual sRj , suppose the data matrix is column standardized, one possible threshold for sRj could
be due to property 2.2 combined with an approximated distribution for the sample Pearson’s correlation coefficient
given in Stuart et al. [1994]:

r =
t√

n− 2 + t2
,
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where t is a random variable following Student’s t-distribution with degrees of freedom n − 2. This results holds
approximately for large enough n and the pairs of variables are assumed to be uncorrelated. It can be shown that r2
then follows a beta distribution with shape parameters 1/2 and (n− 2)/2, and E(r2) = (n− 1)−1. Thus, a possible
threshold for departure from orthogonal columns using sRj could be p−1

n−1 + 1 by summing up the p − 1 expected
values of squared sample Pearson’s correlation coefficients assuming the true pairwise correlation is zero throughout.

Connection to the effective sample size and effective number of variables

Typically, in a regression, correlated samples do not change mean estimation, but rather influence inference through
increased variance. As a result, the same estimator under correlated samples should have a variance adjusted for the
effective sample size. For correlated variables, an analogous concept is the effective number of variables, which serves
as an upper bound for the effective degrees of freedom of a model (usually defined as the trace of the hat matrix
connecting the response to its fitted values, e.g. H = X(XTX)−1XT , for OLS regression).

Here we focus on the effective number of variables and the effective sample size, without referencing a model fitting
procedure, and show that the proposed measure of multi-collinearity can be used to inform the maximum possible
values for both. As a result of the dual (i.e. column and row) perspectives on a data matrix X , the same technique can be
applied to either X or XT provided that the respective columns or rows are standardized to have mean 0 and variance 1.

Given a row standardized X and n > p, the effective sample size as determined by the left severity measure is at most:
n∑

i=1

1

sLi
≤

n∑
i=1

p∑
i′=1

u2ii′ = p.

Analogously, given a column standardized X and n < p,
∑p

j=1
1

sRj
can be considered the effective number of variables.

Further, it can be shown that
∑p

j=1
1

sRj
is at most n− 1 following property 2.3. To see this, for each j:

1

sRj
≤

n−1∑
i′=1

v2ji′ ,

which suggests that:
p∑

j=1

1

sRj
≤

p∑
j=1

n−1∑
i′=1

v2ji′ = n− 1.

Since 1
sRj

is a constant between 1/p and 1, it can be viewed as the amount of non-redundant information in a variable
prior to model selection. Consider the extreme case when all variables were truly uncorrelated, but under the impact of
spurious correlation in high dimensions, the maximum degrees of freedom becomes min(n, p)− 1 = n− 1, meaning
every variable is equally important prior to model selection. The opposite scenario is when all variables completely
correlate with each other, the maximum degrees of freedom reduce to 1. Though each variable is equally important,
their relative importance would be scaled by 1

p , meaning the model can include any one of the variables.

However, these two concepts are really two sides of the same coin arising from the execution of a row or column
standardization. For convenience, briefly consider a doubly centred (

∑n
i=1 xij =

∑p
j=1 xij = 0) and doubly

standardized (
∑n

i=1 x
2
ij = n− 1 and

∑p
j=1 x

2
ij = p− 1) data matrix X .

Suppose n > p, assume a multivariate normal model for each row of X with independent samples:

xi
iid∼ N (0,Σ), i = 1, 2, . . . , n,

where Σ ∈ Rp×p. With the means removed, it follows that Σ̂ = 1
nX

TX has a scaled Wishart distribution with mean
and variance

E(Σ̂) = Σ and Var(Σ̂) =
1

n
Σ(2),

where Σ
(2)
jk,lh = Σ

(2)
jl Σ

(2)
kh + Σ

(2)
jh Σ

(2)
kl and Σ(2) ∈ Rp2×p2

.

Similarly, suppose n < p, a multivariate normal model can be assumed for each column of X with independent
variables:

xj
iid∼ N (0,Φ), j = 1, 2, . . . , p,
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where Φ ∈ Rn×n. It follows that Φ̂ = 1
pXX

T has a scaled Wishart distribution with mean and variance

E(Φ̂) = Σ and Var(Φ̂) =
1

p
Φ(2),

where Φ
(2)
jk,lh = Φ

(2)
jl Φ

(2)
kh + Φ

(2)
jh Φ

(2)
kl and Φ(2) ∈ Rn2×n2

.

Following Theorem 8.4 of Efron [2012], when rows of X are not independent and n > p, the effective sample size neff
is defined by

neff =
n

1 + (n− 1)
[
n
∑p

i′=1
d4
i′

n(n−1)p2 − 1
n−1

] =
n2p2∑p
i′=1 d

4
i′

=
n2∑n

i=1 sLi
. (6.4)

In comparison, when columns of X are not independent and n < p, the effective number of variables (peff) is defined
by

peff =
p

1 + (p− 1)
[
p
∑n−1

i′=1
d4
i′

n2p(p−1) −
1

p−1

] =
n2p2∑n−1
i′=1 d

4
i′

=
p2∑p

j=1 sRj
. (6.5)

The inequality of arithmetic and geometric means implies

p2∑p
j=1 sRj

≤
p∑

j=1

1

sRj
,

and
n2∑n

i=1 sLi
≤

n∑
i=1

1

sLi
,

which shows that
∑p

j=1
1

sRj
and

∑n
i=1

1
sLi

are indeed the maximum possible values for the effective number of
variables and effective sample size, respectively.

Supplementary Figures

Figure S1: Scatterplots of the first genetic principal components for the combined and each continental populations.
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Figure S2: A summary of multi-collinearity as a function of chromosome size for populations in America.

Figure S3: Patterns of multi-collinearity measured by {sRj}j in America.
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Figure S4: A summary of multi-collinearity as a function of chromosome size for populations in Europe.

Figure S5: Patterns of multi-collinearity measured by {sRj}j in Europe.
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Figure S6: A summary of multi-collinearity as a function of chromosome size for populations in South Asia.

Figure S7: Patterns of multi-collinearity measured by {sRj}j in South Asia.
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Figure S9: Patterns of multi-collinearity measured by {sRj}j in Africa.

Figure S8: A summary of multi-collinearity as a function of chromosome size for populations in Africa.
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Figure S10: A summary of multi-collinearity as a function of chromosome size for populations in East Asia.

Figure S11: Patterns of multi-collinearity measured by {sRj}j in East Asia.
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