Introduction

Copula modelling of serially correlated multivariate data with hidden structures

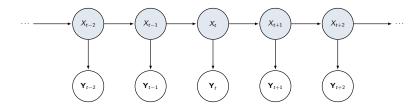
Radu Craiu

Department of Statistical Sciences University of Toronto

Joint with Robert Zimmerman and Vianey Leos-Barajas (Toronto)

Hidden Markov Models: A Primer

▶ A <u>hidden Markov model (HMM)</u> pairs an observed time series $\{\mathbf{Y}_t\}_{t\geq 1}\subseteq \mathbb{R}^d$ with a Markov chain $\{X_t\}_{t\geq 1}$ on some state space \mathcal{X} , such that the distribution of $\mathbf{Y}_s\mid X_s$ is independent of $\mathbf{Y}_t\mid X_t$ for $s\neq t$:



- $ightharpoonup \mathbf{Y}_{t,h}|\{X_t=k\} \sim f_{k,h}(\cdot|\lambda_{k,h}) \ \forall h=1,\ldots,d$
- ▶ $\{X_t\}$ is a Markov process (finite state space \mathcal{X}) with initial probability mass distribution $\{\pi_i\}_{i\in\mathcal{X}}$ and transition probabilities $\{\gamma_{i,i}\}_{i,i\in\mathcal{X}}$

Inferential aims for HMMs

Introduction

00000

- ▶ Typically, the chain $\{X_t\}_{t>1}$ is partially or completely unobserved.
- ► The hidden states can correspond to a precise variable (occupancy data) or might be postulated (psychology, ecology, etc)
- ► Aim 1: Model the data generating mechanism Nasri et al. (2020)
- ightharpoonup Aim 2: Decode (i.e., classify) or predict the X_t 's from the observed data.

Examples

Introduction

00000

- ► A tri-axial accelerometer captures a shark's acceleration with respect to three positional axes depending on the shark's activity (resting, hunting, attacking). For short periods some of the sharks are filmed.
- ► Stock exchanges keep track of real-time prices for hundreds of stocks within an industry, depending on market conditions/states (stagnant, growing, shrinking).
- ▶ In-game team statistics like shots on goal and ball touches in a soccer football match are changing with the "momentum" of the team (defensive, offensive, passive) Ötting et al. (2021)

Introduction

00000

Fusion of Multiple Data Sources

- ▶ In the real-world applications above, various sensors capture multiple streams of data, which are "fused" into a multivariate time series $\{\mathbf{Y}_t\}_{t\geq 1}$
- In such situations, the components of any $\mathbf{Y}_t = (Y_{t,1}, \dots, Y_{t,d})$ cannot be assumed independent (even conditional on X_t)
- ► The corresponding assumption for HMMs that of <u>contemporaneous</u> <u>conditional independence</u> <u>Zucchini et al.</u> (2017) is often violated
- ► Instead, it is common to assume that Y_t follows a multivariate Gaussian distribution, but this places limits on marginals and dependence structures
- ▶ What if the strength of dependence between the components of \mathbf{Y}_t could be informative about the underlying state X_t ?

Introduction

0000

Copula functions are used to model dependence between continuous random variables.

If $Y_1, Y_2, \dots Y_d$ are continuous r.v.'s with distribution functions (df) F_1, \ldots, F_d , there exists an unique copula function $C: [0,1]^d \to [0,1]$ such that

$$H(t_1,...,t_d) = \mathbb{P}(Y_1 \leq t_1,...,Y_d \leq t_d) = C(F_1(t),...,F_d(t_d)).$$

- ightharpoonup The copula bridges the marginal distributions of Y_1, \ldots, Y_d with the joint distribution. It corresponds to a distribution on $[0,1]^d$ with uniform margins.
- ▶ This can be extended to conditional distributions and copulas:

$$\mathbb{P}(Y_1 \leq t_1, \ldots, Y_d \leq t_d | X) = C(F_1(t | X), \ldots, F_d(t_d | X) | X).$$

Copulas Within HMMs

Introduction

▶ Our model consists of an HMM $\{(\mathbf{Y}_t, X_t)\}_{t\geq 1} \subseteq \mathbb{R}^d \times \mathcal{X}$ in which the state-dependent distributions are copulas:

$$\mathbf{Y}_{t} \mid (X_{t} = k) \sim H_{k}(\cdot) = \underbrace{C_{k}\Big(F_{k,1}(\cdot; \lambda_{k,1}), \dots, F_{k,d}(\cdot; \lambda_{k,d}) \mid \theta_{k}\Big)}_{\text{depends on the hidden state value } k}.$$

- $ightharpoonup C_k(\cdot,\ldots,\cdot\mid\theta_k)$ is a d-dimensional parametric copula
- lacksquare $\{X_t\}_{t\geq 1}$ is a Markov process on finite state space $\mathcal{X}=\{1,2,\ldots,K\}$ and K is known
- ▶ In this model, virtually all aspects of the state-dependent distributions are allowed to vary between states

Information in the dependence

For a range of $\theta \in [0, 100)$, we simulated a bivariate time series of length T=100 from the 2-state HMM

$$\mathbf{Y}_t \mid (X_t = k) \sim C_{\mathsf{Frank}} \left(\mathcal{N}(0,1), \mathcal{N}(0,1) \mid (-1)^k \cdot |\theta| \right), \quad k = 1, 2$$

and then separately assessed the accuracy of a standard decoding algorithm, first assuming independent margins and then the true model:

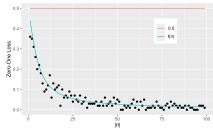


Figure: Zero-one losses for independent margins (red dots) and true model (blue dots)

Stronger Dependence Leads to Better Accuracy

- ▶ In fact, $\ell_{01}(\theta) = \frac{1}{2} \frac{2}{\theta} \log \left(\cosh \frac{\theta}{4} \right) \to 0$ as $\theta \to \infty$
- ► Similar formulas hold for other radially symmetric copulas
- ► Much more generally, we have the following:

Theorem

Introduction

Let $\nu_{t,k} = \mathbb{P}(X_t = k)$. The expected zero-one loss of the classifications made by local decoding is given by

$$\ell_{01}(\boldsymbol{\eta}) = 1 - \frac{1}{T} \sum_{t=1}^T \sum_{k=1}^K \nu_{t,k} \int_{\mathbb{R}^d} \mathbb{1} \left\{ \frac{\nu_{t,k} \cdot h_k(\mathbf{y})}{\max_{j \neq k} \nu_{t,j} \cdot h_j(\mathbf{y})} > 1 \right\} \mathrm{d}\mathcal{H}_k(\mathbf{y}).$$

where $h_k(\mathbf{Y})$ is the joint density of $\mathbf{Y}|X=k$.

 Corollary: as the copula in any particular state approaches either of the Fréchet-Hoeffding bounds, the observations produced by that state will be detected with complete accuracy

Estimation with missing data

Introduction

- ▶ Data consist in observed $\mathbf{Y}_{1:T}$ and missing $X_{1:T}$
- Parameters are $\eta = \{\lambda_{h,k}\}_{\substack{h=1:d\\k=1:K}} \cup \{\theta_k\}_{k=1:K} \cup \{\gamma_{i,j}\}_{\substack{i=1:K\\j=1:K}} \cup \{\pi_j\}_{j=1:K}.$
- ► The complete-data log-likelihood for one trajectory of the copula HMM is given by

$$\ell_{\text{com}}(\boldsymbol{\eta} \mid \mathbf{y}_{1:T}, X_{1:T}) = \pi_{X_1} + \sum_{t=2}^{T} \log \gamma_{X_{t-1}, X_t} + \sum_{h=1}^{d} \log f_{X_t, h}(y_{t,h}; \lambda_{X_t, h}) + \sum_{t=1}^{T} \log c_{X_t} (F_{X_t, 1}(y_{t,1}; \lambda_{X_t, 1}), \dots, F_{X_t, 1}(y_{t,d}; \lambda_{X_t, d}) \mid \theta_{X_t}).$$
(1)

Introduction

Inference for HMMs Via the EM Algorithm

Without copula, the estimation is done via the EM algorithm (aka Baum-Welch)

E-step Compute
$$Q(\eta|\eta^{(s)}) = E[I_{com}(\eta|\mathbf{Y}_{1:T}, X_{1:T})|\eta^{(s)}, \mathbf{Y}_{1:T}]$$

M-step Set
$$\eta^{(s+1)} = \operatorname{arg\,max}_{\eta} Q(\eta | \eta^{(s)})$$

- ▶ The complete-data log-likelihood is written in terms of the state membership indicators $U_{k,t} = \mathbb{1}_{X_{t-1}}$ and $V_{i,k,t} = \mathbb{1}_{X_{t-1}=i,X_{t-1}}$
- ▶ In the **E-Step**, these indicators are estimated by the conditional probabilities $\hat{u}_{k,t} = \mathbb{P}\left(X_t = k \mid \mathbf{Y}_{1:T} = \mathbf{v}_{1:T}\right)$ and $\hat{\mathbf{v}}_{i,k,t} = \mathbb{P}\left(X_{t-1} = i, X_t = k \mid \mathbf{Y}_{1:T} = \mathbf{y}_{1:T}\right)$, which are computed based on current parameter estimates
- ► This only requires evaluating the state-dependent densities at each of the observations y_1, \ldots, y_T (this is "OK")

The M-Step stalls

- ► In the M-Step, the resulting complete-data log-likelihood is maximized with respect to all parameters in the model simultaneously
 - Only for the simplest univariate models do the state-dependent MLEs exist in closed form; otherwise, one must resort to numerical methods (this is hard!)
 - lacktriangle Evaluating a copula density $c_k(\cdot,\ldots,\cdot\mid\theta_k)$ in high dimensions is slow
 - ▶ When the state-dependent distributions in an HMM are copulas, performing the M-Step directly requires the evaluation of

$$\underset{\{\theta_{k}\},\{\lambda_{k,h}\}}{\operatorname{argmax}} \left\{ \sum_{k=1}^{K} \sum_{t=1}^{I} \hat{u}_{k,t} \left[\log c_{k} \left(F_{k,1}(y_{t,1}; \lambda_{k,1}), \dots, F_{k,d}(y_{t,d}; \lambda_{k,d}) \middle| \theta_{k} \right) \right. \right. \\
\left. + \sum_{h=1}^{d} \log f_{k,h}(y_{t,h}; \lambda_{k,h}) \right] \right\}$$

► This is very unstable (and slow)

Divide and conquer

Likelihood-based inference for copulas is easier when the goal is to estimate θ alone in the presence of known margins

Computation

- ▶ Why not perform inference on the marginal distributions first, and then on the copula itself?
- In the context of iid data, this is exactly the inference functions for margins (IFM) approach of Joe and Xu (1996):
 - First estimate each λ_h by its "marginal MLE" $\hat{\lambda}_h$ given $\{Y_{t,h}\}_{t\geq 1}$, for $h \in \{1,\ldots,d\}$
 - ▶ Then estimate θ assuming fixed marginals $F_1(\cdot; \hat{\lambda}_1), \dots, F_d(\cdot; \hat{\lambda}_d)$
- ▶ The IFM estimator is consistent and asymptotically normal.

$EM + IFM \rightarrow EFM$

Introduction

- Replace the M-Step in the EM algorithm with an IFM iteration to create an "EFM algorithm"
- ▶ For $T \in \{100, 1000, 5000\}$ and $d \in \{2, 5, 10\}$, we simulated a d-dimensional time series of length T from the 2-state HMM

$$\mathbf{Y}_t \mid (X_t = 1) \sim \mathcal{C}_{\mathsf{Frank}} \left((\mathcal{N}(\mu_{1,h} = -h, 1))_{h=1}^d \mid \theta_1 = 3 \right)$$

$$\mathbf{Y}_t \mid (X_t = 2) \sim C_{\mathsf{Clayton}} \left((\mathcal{N}(\mu_{2,h} = h, 1))_{h=1}^d \mid \theta_2 = 3 \right)$$

and estimated $\eta = (\mu_{1,1}, \dots, \mu_{2,d}, \theta_1, \theta_2)$ using both approaches

- ▶ Applied to the basic EM algorithm, R's optim with L-BFGS-B (i.e., quasi-Newton with box constraints) typically fails as soon as d > 3
 - ► The procedure is extremely sensitive to initial values and requires $\hat{\boldsymbol{\eta}}^{(0)} pprox \boldsymbol{\eta}$ just to avoid overflow
 - This kind of tuning is very tedious or impossible in high dimensions

Does This Work?

Introduction

- We keep track of the time (in seconds) until the algorithm converges, and the L_2 error of the resulting estimate, $\epsilon = \|\eta \hat{\eta}\|_2$
 - ▶ We used the lbfgsb3c package, which is more stable than optim

		d=2	d=5	d=10
	T = 100	111.9 s, $\epsilon = 0.14$	123.4 s, $\epsilon = 299.98$	111.8 s, $\epsilon > 10^9$
T 5000 3	T = 1000	166.6 s, $\epsilon = 0.63$	169.5 s, $\epsilon > 10^{11}$	418.23 s, $\epsilon = 725.06$
1 = 5000	T = 5000	?	?	?

Table: EM Algorithm

	d=2	d = 5	d = 10
T = 100	5.1 s, $\epsilon = 2.9$	3.0 s, $\epsilon = 0.94$	4.2 s, $\epsilon = 0.58$
T = 1000	34.4 s, $\epsilon = 0.57$	22.9 s, $\epsilon = 0.60$	34.4 s, $\epsilon = 0.80$
T = 5000	172.6 s, $\epsilon = 0.13$	106.2 s, $\epsilon = 0.12$	168.7 s, $\epsilon = 0.19$

Table: EFM Algorithm

References

Numerical stability

Introduction

- ▶ R has no problem with the EFM algorithm
- ▶ The algorithm is considerably less sensitive to starting values than the vanilla EM algorithm, and terminates much faster
- ▶ It is theoretically justified based on adapting theory for ES (Elashoff and Ryan, 2004) and M-estimation for HMMs (Jensen, 2011)

Introduction

- ▶ The ability to detect whether a room is occupied using sensor data (such as temperature and CO_2 levels) can potentially reduce unnecessary energy consumption by automatically controlling HVAC and lighting systems, without the need for motion detectors
- ► Consider three publicly-available labelled datasets presented by Candanedo and Feldheim (2016) which contain multivariate time series of four environmental measurements (light, temperature, humidity, CO_2) and one derived metric (the humidity ratio)
- ▶ Data contain binary indicators for whether the room was occupied or not at the time of measurement

- Several common families of parametric copulas (the Frank, Clayton, Gumbel, Joe, and Gauss families), and for each we carried out a goodness-of-fit test based on the pseudo-observations using the multiplier bootstrap method (Kojadinovic et al., 2011)
- ► The parametric family based on the lowest corresponding Cramér-von Mises test statistic is selected.
- This process yielded a Clayton copula for State 1 and a Frank copula for State 2

State	Frank	Clayton	Gumbel	Joe	Gauss
1	0.356	0.255	0.423	0.770	0.345
2	0.018	0.433	0.423 0.038	0.206	0.045

Table: Cramér-von Mises test statistics based on pseudo-observations computed from unoccupied (Row 1) and occupied (Row 2) subsets.

Introduction

▶ Denote the unoccupied state as '1' and the occupied state as '2'

$$egin{aligned} \mathbf{Y}_t \mid (X_t = 1) &\sim \mathcal{C}_{\mathsf{Clayton}}\left(\mathcal{N}(\mu_{1,1}, \sigma_{1,1}^2), \mathcal{N}(\mu_{1,2}, \sigma_{1,2}^2) \mid heta_1
ight) \ \mathbf{Y}_t \mid (X_t = 2) &\sim \mathcal{C}_{\mathsf{Frank}}\left(\mathcal{N}(\mu_{2,1}, \sigma_{2,1}^2), \mathcal{N}(\mu_{2,2}, \sigma_{2,2}^2) \mid heta_2
ight). \end{aligned}$$

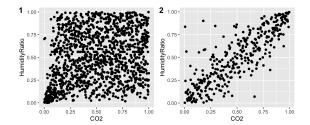


Figure: Pseudo-observations computed from unoccupied (Panel 1) and occupied (Panel 2) subsets.

Copula Model	Train	Test 1	Test 2
Independence	0.895	0.846	0.680
Clayton/Frank	0.899	0.852	0.696

Table: Overall state classification accuracy for the training dataset and the two test datasets using either the independence or Clayton/Frank copula.

Summary

Introduction

- ▶ When using HMMs to model multivariate time series, ignoring the dependence between observed components can lead to...
 - Inaccurate state classifications
 - Failure to understand the true data-generating process
- ► The "copula-within-HMM" model integrates state-dependent copulas in order to capture joint information from the observed data, thereby addressing both problems
- ► The complexity of this model prohibits an application of the standard EM algorithm
- Our IFM-based refinement is faster and much more stable.

20

References

- Candanedo, L. M. and Feldheim, V. (2016). Accurate occupancy detection of an office room from light, temperature, humidity and co2 measurements using statistical learning models. *Energy and Buildings* **112** 28–39.
- ELASHOFF, M. and RYAN, L. (2004). An em algorithm for estimating equations. Journal of Computational and Graphical Statistics 13 48–65.
- JENSEN, J. L. (2011). Asymptotic normality of m-estimators in nonhomogeneous hidden markov models. *Journal of Applied Probability* 48 295–306.
- JOE, H. and Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Tech. Rep. 166, Department of Statistics, University of British Columbia.
- KOJADINOVIC, I., YAN, J. and HOLMES, M. (2011). Fast large-sample goodness-of-fit tests for copulas. Statistica Sinica 841–871.
- NASRI, B. R., REMILLARD, B. N. and THIOUB, M. Y. (2020). Goodness-of-fit for regime-switching copula models with application to option pricing. *Canadian Journal of Statistics* 48 79–96.
- ÖTTING, M., LANGROCK, R. and MARUOTTI, A. (2021). A copula-based multivariate hidden markov model for modelling momentum in football. AStA Advances in Statistical Analysis 1–19.
- ZUCCHINI, W., MacDonald, I. L. and Langrock, R. (2017). Hidden Markov models for time series: an introduction using R. CRC press.

Paper available on my homepage: http://www.utstat.toronto.edu/craiu/