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Markov Chain Monte Carlo

A search for Markov chain Monte Carlo (or MCMC) articles
on Google Scholar yields over 100,000 hits.

A general web search on Google yields 1.7 million hits. Why
so popular?

MCMC algorithms are used to solve problems in many
scientific fields, including physics (where many MCMC
algorithms originated) and chemistry and computer science.

The widespread popularity of MCMC samplers is largely due
to their impact on solving statistical computation problems
related to Bayesian inference.
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Markov Chain Monte Carlo

Given a sample ~x = {x1, . . . , xn} from a parametric sampling
density f (x |θ), where x ∈ X ⊂ Rk and θ ∈ Θ ⊂ Rd AND a
prior density p(θ) we are interested in the posterior density

π(θ|~x) =
p(θ)f (~x |θ)∫

Θ p(θ)f (~x |θ)dθ
(1)

Very often, denominator in (1) cannot be computed exactly so
π cannot be studied.

The Monte Carlo solution is to sample from π.
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Markov Chain Monte Carlo

We construct and run an aperiodic and irreducible Markov
chain with transition T (xold , xnew ) that leaves π invariant∫

S
π(x)T (x , y)dx = π(y).

Unlike traditional Monte Carlo where the samples are
independent, MCMC samplers produce dependent draws.

A number of initial realizations from the chain are discarded
(burn-in) and the remaining are used to estimate expectations
or quantiles of functions of X .
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A good friend: The Metropolis-Hastings algorithm

The Metropolis-Hastings sampler is one of the most used
algorithms in MCMC. It operates as follows:

Given the current state of the MC, x , a ”proposed sample” y
is drawn from a proposal density q(y |x).
The proposal y is accepted with probability

min

{
1,
π(y)q(x |y)

π(x)q(y |x)

}
.

If y is accepted, the next state is y , otherwise it is (still) x .

The random walk Metropolis (RWM) is obtained when
y = x + ε with ε ∼ f , f symmetric, usually N(0,V ).

If q(y |x) = q(y) we get the Independent Metropolis (IM)
sampler.
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Which proposal?

How to find a good proposal distribution? We know that
acceptance rates should be between 20-40%.

Both RWM chains below accept 24% of the proposals.
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Adaptive Metropolis

The optimality results for the variance of a RWM in the case
of Gaussian targets recommends that V ∝ Var(π) and the
acceptance rate is 23.4% (Roberts and Rosenthal, Stat. Sci.,
’01).

Non-Markovian Adaptation (Haario, Saksman and Tamminen
(HST); Bernoulli, 2001). Involves re-using the past
realizations of the Markov chain to modify the proposal
distribution of a (RWM) algorithm.

For instance, choose qt(y |xt) = N(xt ,Σt) where
Σt ∝ SamVar(X̃t) and X̃t = (X1, . . . ,Xt).
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Adaptive MCMC

Adaptive MCMC algorithms tune ”on the go” the parameters
of the proposal distribution (e.g. the variance V for RWM
with Gaussian proposal) based on the available MC draws.

Many MCMC methods perform local adaptation but ”dance”
around the Markovian property and manage to preserve it.
Not AMCMC!

Makes validation of an adaptive scheme more involved, but...

... Frees us to seek other practically useful designs!
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Example 1: Multimodal targets and regional AMCMC

Multimodality is a never-ending source of headaches in
MCMC.

Chains constructed via generic algorithms often have trouble
switching between modal regions.

For multimodal distributions the “optimal” proposal may vary
across regions of the sample space.
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Regional AdaPTation (RAPT)

Consider sampling using RWM from a distribution π with
support in S ⊂ Rd .

Suppose S = S1 ] S2 is such that depending on whether the
current value of the chain is in S1 or in S2 the optimal
variance of the RWM proposal is different.

What type of adaptive algorithms can we design to address
this problem?

Adaptive MCMC must:

EXPLOIT: use efficiently the information about the target it
collects;
EXPLORE: always look for new regions of the sample space
that may not have been found yet.
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RAPT (cont’d)
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RAPT (cont’d)

If we approximate Si then we must allow for some uncertainty
regarding the distribution to be used in each Si by sampling
from a mixture of proposals.

The mixture proportions are allowed to vary between regions
and are adaptively adjusted based on the past realizations.

In addition, the distributions entering the mixture are also
adapted based on past realizations.
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RAPT (cont’d)

In region Sj we sample using the proposal

P̃jt(Xt , ·) =
2∑

i=1

λ
(j)
i Pit(Xt , ·), j = 1, 2.

Each Pit is adapted using samples from Si .
The mixture weights λ

(j)
i (t) are also adapted.
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RAPT (cont’d)

For instance, λ
(j)
i =

n
(j)
i (t)∑K

h=1 n
(j)
h (t)

and

n
(j)
i (t) = #{ accepted moves up to time t from Sj

when the proposal dist’n is Pi .

Will tend to favour proposals with high acceptance rates;
these are usually the ones creating ”small jumps” and thus
not necessarily the best for our purpose.

A better alternative is λ
(j)
i =

d
(j)
i (t)n

(j)
i (t)∑K

h=1 d
(j)
h (t)n

(j)
h (t)

where,

d
(j)
i (t) = average square root jump distance up to time t

from Sj when the proposal dist’n is Pi
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RAPT

In addition to local optimality (within each region) we seek
good global traffic (between regions) so we add a global
component to the proposal distribution:

The proposal distribution for RAPT is

P̃t(Xt , ·) = (1−α)
2∑

j=1

1Sj (Xt)

[
2∑

i=1

λ
(j)
it Pit(Xt , ·)

]
+αQt(Xt , ·).

The parameter α ∈ (0.1, 0.3) is fixed throughout.

Caveat: Regions do not evolve. A bad guess will result in loss
of efficiency.
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RAPTOR - RAPT with Online Recursion

Suppose

q̃η(x) =
K∑

k=1

β(k)N(x ;µ(k),Σ(k)),

where β(k) > 0 for all 1 ≤ k ≤ K and
∑K

k=1 β
(k) = 1, is a

good approximation for the target π.

At each time n during the simulation process one has available
n dependent Monte Carlo samples which are used to fit the
mixture q̃η via an Online EM algorithm (Bai, Craiu and Di
Narzo, JCGS 2011)



Brief Review Example 1: Regional AMCMC Theory made easier Example 2: Regime Change Adaptation

Definition of Regions (K=2)

We define the partition S = ∪2
k=1S(k) so that, on each set

S(k), π is more similar to N(x ;µ(k),Σ(k)) than to any other
mixture component.

Define

S(1)
n = {x : N(x ;µ

(1)
n ,Σ

(1)
n ) > N(x ;µ

(2)
n ,Σ

(2)
n )},

S(2)
n = S\S(1)

n .
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Example: Genetic Instability of Esophageal Cancers

Cancer cells suffer a number of genetic changes during disease
progression, one of which is loss of heterozygosity (LOH).

Chromosome regions with high rates of LOH are hypothesized
to contain genes which regulate cell behaviour and may be of
interest in cancer studies.

We consider 40 measures of frequencies of the event of
interest (LOH) with their associated sample sizes. The model
adopted for those frequencies is a mixture model

Xi ∼ η Binomial(Ni , π1) + (1− η) Beta-Binomial(Ni , π2, γ).
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LOH Analysis
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LOH Analysis - RAPT

S1 S2 S
η 0.897 0.079 0.838
π1 0.229 0.863 0.275
π2 0.714 0.237 0.679
γ 15.661 -14.796 13.435
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Theory for AMCMC

Consider an adaptive MCMC procedure, i.e. a collection of
transition kernels {Tγ}γ∈Γ each of which has π as a stationary
distribution. One can think of γ as being the adaptation
parameter.

At iteration n we use the transition kernel Tγn(Xn, ·) for the
adaptive chain.

Let Dn = supX∈X ||Tγn+1(X , ·)− Tγn(X , ·)||TV
(||µ− ν||TV = supA∈X |µ(A)− ν(A)|).

Let Mε be the ε-convergence time function Mε : X × Γ→ N

Mε(x , γ) = inf{n ≥ 1 : ||Pn
γ (x , ·)− π(·)||TV ≤ ε}
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Two sufficient conditions

Diminishing Adaptation:

lim
n→∞

Dn = 0 in probability.

This is an intuitive condition, relatively easy to verify or
ensure.

Containment Condition:
For any X0 = x0 ∈ X and Γ0 = γ0 ∈ Y, ε > 0 the stochastic
process M(Xn, Γn) is bounded in probability P(x0,γ0).

CC is hard to ensure and prove/disprove.
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An apparently simple question

CC can be avoided if X is compact.

Q1: Can we restrict adaptation on a compact in X so CC is
no longer needed?.

Let X be the sample space endowed with a metric η.

Let T be a fixed transition kernel on X with stationary
distribution π.

The chain’s jumps are bounded by D <∞, i.e.

T (x , {y ∈ X : η(x , y) ≤ D}) = 1, ∀x ∈ X .

Q2: Is it possible to modify the transition kernel inside a
compact K such that the process is no longer bounded in
probability (while maintaining the bounded jump constraint)?
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A counterexample

• X = {( 1
i , j) : i ∈ N∗, j =

0, 1, . . .}

π(
1

i
, j) = 2−i

(
1

i

) (
1− 1

i

)j

• π restricted to each Xi is geo-
metric with mean i
• K = ∪i{( 1

i , 0)} is a bounded
set.
• The larger the column number
i , the higher is the conditional
mean of π on Xi .
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A counterexample

Fixed chain:

Outside K the MC has a ±1 MH kernel reversible w.r.t π.
Inside K the MC is irreducible and reversible with respect to π.

Modified chain:

The modified chain proceeds within K using the rule: if
Xn ∈ K , then Xn+1 = ( 1

n , 1)
Given an arbitrary L > 0 it can be shown that
lim

n→∞
Pr(Xn,2 ≥ L) ≥ 1/2

Details and other examples in Craiu et al. (2015, Ann. Appl.
Prob).
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Adaption made easy easier

The process {Xn} has adaptive transition kernel PΓn ,

Pr(Xn+1 ∈ A |Xn = x , Γn = γ, X0, . . . ,Xn−1, Γ1:(n−1)) = Tγ(x ,A) .

The transition probabilities Tγ(x , dy) have densities that are
continuous wrt to x and y (subsequently further relaxed by
Yang and Rosenthal, 2015).

Tγ (x , {y ∈ X : |y − x | ≤ D}) = 1.

Tγ(x ,A) = T (x ,A) , x ∈ X \ K ,
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Adaption made easy easier

The fixed kernel used outside
K must satisfy:

• ∃ M <
∞ s.t. T (x , dz) ≤
MLeb(dz),
x ∈ KD \ K , z ∈ K2D \ KD .

•T (x , dy) ≥ εLeb(dy)
whenever x , y ∈ J with
|y − x | < δ,
K2D \ KD ⊆ J ⊆ X .

K

K D

K 2D

x z

T(x,dz)<M Leb(dz)

εT(x,dy)> Leb(dy) if |y−x|<δ

These are conditions that are within reach through careful
selection of the fixed kernel T .
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A regime change algorithm (RCA)

Run a fixed sampler during the initialization period.

This sampler may now be ideal but will provide some
information about the target.

Given a compact K perform a regime change to an adaptive
sampler inside K

Example: Gibbs to Independent Metropolis.
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Lupus Data

Table: The number of latent membranous lupus nephritis cases
(numerator), and the total number of cases (denominator).

IgA
∆IgG 0 0.5 1 1.5 2
-3.0 0/ 1 - - - -
-2.5 0/ 3 - - - -
-2.0 0/ 7 - - - 0/ 1
-1.5 0/ 6 0/ 1 - - -
-1.0 0/ 6 0/ 1 0/ 1 - 0/ 1
-0.5 0/ 4 - - 1/ 1 -

0 0/ 3 - 0/ 1 1/ 1 -
0.5 3/ 4 - 1/ 1 1/ 1 1/ 1
1.0 1/ 1 - 1/ 1 1/ 1 4/ 4
1.5 1/ 1 - - 2/ 2 -
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RCA for Probit Regression

For each patient i = 1, . . . , 55, we model

Yi ∼ Bernoulli(Φ(xTi β)),

and p(β) ∝ 1.

The posterior is thus

πPR(~β| ~Y , ~I gA, ~∆IgG ) ∝
55∏
i=1

[
Φ(β0 + ∆IgGiβ1 + IgAiβ2)Yi×

× (1− Φ(β0 + ∆IgGiβ1 + IgAiβ2))(1−Yi )
]
.
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RCA for Probit Regression

State of the art: PX-DA algorithm of Van Dyk and Meng
(JCGS, 2001).

Draw

φ
(t+1)
i ∼

{
N+(xTi β

(t), 1), if Yi = 1

N−(xTi β
(t), 1), if Yi = 0

,

Set φ(t+1) = (φ
(t+1)
1 , . . . , φ

(t+1)
n ).

Let β̃t+1 = (XTX )−1XTφ(t+1) and define

R(t+1) =
∑n

i=1(φ
(t+1)
i − xTi β̃

(t+1))2

Sample Z ∼ N(0, 1), W ∼ χ2
n and set

β(t+1) =
√

W
R(t+1) β̃

(t+1) + Chol[(XTX )−1]Z
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RCA for Probit Regression

Set µn := �X0�+�X1�+...+�Xn−1�
n , and

Σn := Cov(� X0 �,� X1 �, . . . ,� Xn−1 �) + ε Id ,
where Cov is the empirical covariance function and
� r �i= max[−L, min(L, ri )].

K is the ball centred at µM , of radius max
1≤i≤d

(ΣM)
1/2
ii (i.e., the

largest sample standard deviation on the diagonal of ΣM).
And, we let D be any suitably large distance bound (e.g.
D = 20)

Note that the compact K is not “large” but is calibrated so
that the normal approximation is appropriate.
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RCA

If Xn ∈ K c , then Xn+1 ∼ PPX (Xn, ·).

If Xn ∈ K and d(Xn,K
c) > 1, then

Xn+1 ∼ PAD(Xn, ·)

where PAD(Xn, ·) has density

λn+1 Pµn,Σn(Xn, ·) + (1− λn+1)PPX (Xn, ·) ,

λn = min[max(θn, 0.2), 0.8], and θn is the empirical
acceptance rate of the IM proposals.
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RCA

As we approach the boundary of K we need to smoothly
transfer regimes: from IM to RWM.

If Xn ∈ K and d(Xn,K
c) = u with 0 ≤ u ≤ 1, then

Xn+1 ∼ u PAD(Xn, ·) + + (1− u)PPX (Xn, ·) ,

with λn as above.
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RCA for Probit Regression
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Figure: Effective sample sizes are increased 300-400%.
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