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Regional AMCMC

We consider problems in which the random walk Metropolis
(RWM) or the independent Metropolis algorithms (IM) are
used to sample from the target distribution π with support S.

Given the current state of the MC, x , a ”proposed sample” y is
drawn from a proposal distribution P(y |x) that satisfies symmetry,
i.e. P(y |x) = P(x |y).

The proposal y is accepted with probability min{1, π(y)/π(x)}.

If y is accepted, the next state is y , otherwise it is (still) x .

The random walk Metropolis is obtained when y = x + ǫ with
ǫ ∼ f , f symmetric, usually N(0,V ).

If P(y |x) = P(y) then we have the independent Metropolis
sampler (acceptance ratio is modified).
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Adaptive MCMC

Uses an initialization period to gather information about the
target π.

The initial samples are used to produce estimates for the
adaption parameters who are subsequently adapted “on the
fly” until the simulation is stopped (indefinitely).

Adaption strategies are adopted based on

(i) Theoretical results on the optimality of MCMC, e.g. optimal
acceptance rate for MH algorithms.

(ii) Other strategies learned by studying the ”classical” MCMC
algorithms, e.g. annealing, other Metropolis samplers...

(iii) Our ability to prove theoretically that the adaptive chain
samples correctly from π.

It is usually easier to do (iii) if we assume S is compact.
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Multimodal targets and regional AMCMC

Multimodality is a never-ending source of headaches in
MCMC.

“Optimal” proposal may depend on the region of the current
state.
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Regional Adaptation with Dynamic Boundary
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Today: What to do if π is approximated by a mixture of Gaussians.
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Mixture representation of the target

Suppose

q̃η(x) =

K
∑

k=1

β(k)Nd(x ;µ(k),Σ(k)),

where β(k) > 0 for all 1 ≤ k ≤ K and
∑K

k=1 β(k) = 1, is a
good approximation for the target π.

At each time n during the simulation process one has available
n dependent Monte Carlo samples which are used to fit the
mixture q̃η. Can we fit the mixture parameters recursively?

Given the mixture parameters, define a regional RWM
algorithm in which S is partitioned so that when the chain is
in the k-th region we propose from the k-th component of q̃η.
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Online EM Updates

At time n − 1 the current parameter estimates are

ηn−1 = {β
(k)
n−1, µ

(k)
n−1,Σ

(k)
n−1}1≤k≤K and the available samples are

{x0, x1, . . . , xn−1}; when observing xn we update (see Andrieu and
Moulines, Ann. Appl. Probab. 2006)

β
(k)
n =

1

n + 1

∑n
i=0 ν

(k)
i = s

(k)
n−1 + 1

n+1 (ν
(k)
n − s

(k)
n−1),

µ
(k)
n = µ

(k)
n−1 + ρnγ

(k)
n

(

xn − µ
(k)
n−1

)

,

Σ
(k)
n = Σ

(k)
n−1 + ρnγ

(k)
n

(

(1 − γ
(k)
n )(xn − µ

(k)
n−1)(xn − µ

(k)
n−1)

⊤ − Σ
(k)
n−1

)

,

where ν
(k)
m =

β
(k)
m−1Nd (xm;µ

(k)
m−1,Σ

(k)
m−1)

P

k′ β
(k′)
m−1Nd (xm;µ

(k′)
m−1,Σ

(k′)
m−1)

, s
(k)
m = 1

m+1

∑m
i=0 ν

(k)
i ,

γ
(k)
m = ν

(k)
m

(m+1)s
(k)
m

, and ρm = m−1.1 for all 1 ≤ m ≤ n, 1 ≤ k ≤ K .
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Definitions of Regions

We would like to define the partition S = ∪K
k=1S

(k) so that,
on each set S(k), π is more similar to Nd(x ;µ(k),Σ(k)) than
to any other mixture component.

We maximize the sum of differences between Kullback-Leibler
(KL) divergences; when K = 2 we want to maximize

KL(π,Nd (·;µ(2),Σ(2)) | S(1)) − KL(π,Nd (·;µ(1),Σ(1)) | S(1))+

KL(π,Nd (·;µ(1),Σ(1)) | S(2)) − KL(π,Nd (·;µ(2),Σ(2)) | S(2)),

where KL(f , g |A) =
∫

A
log(f (x)/g(x))f (x)dx .

Define

S
(k)
n = {x : arg max

k′

Nd(x ;µ
(k′)
n ,Σ

(k′)
n ) = k}.
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Proposal Distribution

The proposal distribution depends on:
i) The mixture parameters estimated using the online EM,
ii) The regions defined previously.

In addition to local optimality (within each modal region) we
seek good global traffic (between regions) so we add a global
component to the proposal distribution (see also Guan and
Krone, Ann. Appl. Probab, 2007).

Let α = 0.3 and Σ<w>
n be the sample covariance . Put

Σ̃<w>
n = δΣ<w>

n + ǫId , Σ̃
(k)
n = δΣ

(k)
n + ǫId , 1 ≤ k ≤ K .

The RAPTOR proposal is then

Qn(x , dy) = (1 − α)

K
∑

k=1

1
S

(k)
n

(x)Nd(y ; x , sd Σ̃
(k)
n )dy

+αNd(y ; x , sd Σ̃<w>
n )dy ,
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Implementation of RAPTOR

Run in parallel a number (5-10) of RWM algorithms with
fixed kernels started in different regions of the sample space
(if the local modes are known start there) for an initialization
period of M steps.

At step M + 1, compute the mixture parameters using the EM
algorithm as well as the sample mean and covariance matrix
to obtain

Γ0 = {µ
(1)
0 , . . . , µ

(K)
0 , µ<w>

0 , Σ̃
(1)
0 , . . . , Σ̃

(K)
0 , Σ̃<w>

0 }

.

At each step M + n ≥ M + 1 we:
i) Update the mixture parameters Γn

ii) Construct the partition based on Γn and
iii) Sample the proposal YM+n ∼ Qn(XM+n; dy).
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Theoretical Results

Assumptions:
(A1) There is a compact subset S ⊂ R

d such that the target
density π is continuous on S, positive on the interior of S,
and zero outside of S.
(A2) The sequence {ρj : j ≥ 1} is positive and non-increasing.
(A3) For all k = 1, · · · ,K ,

Pr(limi→∞ supl≥i

∑l
j=i ρjγ

(k)
j = 0) = 1.

We work with ρj = j−1.1 so that (A2) and (A3) are satisfied.

Convergence

a) Assuming (A1) and (A2), RAPTOR is ergodic to π.
b) Assuming (A2) and (A3), the adaptive parameter {Γn}n≥0

converges in probability.
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Non-Compactness and Regime-Switching

RAPTOR assumes S is compact. Practically, the impact is
small but the theoretical gap is vexing.

What to do if S is not compact?

We know that a well-tuned IM has better convergence
properties than a RWM. However, it is usually impossible to
produce a well-tuned IM using only few samples. The
AMCMC literature on adapting IM suggests we first sample
using a RWM and then switch to an IM.

Do things have to happen so suddenly?

How to decide when it is time to switch?
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Non-Compactness

Strategy: Adapt only within the compact K ⊂ S. Use the
adapting kernel when the chain is in K and use a fixed kernel
outside K.

If using the Metropolis algorithm the proposals are assumed
to have compact support.

Proof of ergodicity is direct and requires (pretty much) only
diminishing adaptation:

Let Dn = supx∈K ||Tγn+1(x , ·) − Tγn(x , ·)||TV .
Diminishing Adaptation: limn→∞ Dn = 0 in probability.
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Regime-Switching

We propose a more gradual transition between the
“accumulation of data” and the “full adaptation” regimes.
Usually, the former is done with a RWM and the latter with
IM.

Combine with non-compactness idea and use:

A mixture of adapting RWM and IM inside the compact K
A fixed RWM outside K

P̃Γ(x ,A) = 1K(x) [λΓPΓ(x ,A) + (1 − λΓ)QΓ(A)]+1Kc (x)R(x ,A),

PΓ,R are RWM kernels using proposal distributions of
compact support (of diameter ∆)

QΓ is a IM kernel using a proposal with support K.
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Regime-Switching

We want λΓ to approach zero as QΓ gets closer to π on K.

The samples used to adapt Γ should not be also used for
determining the distance between QΓ and π.

Many adaptive strategies that satisfy Diminishing Adaptation
can be used for PΓ and QΓ.
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Regime-Switching

+ ∆K

R(x,dy)

Q(dy)(1−λ)P(x,dy) +λ

K −  ∆

K
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Regime-Switching

Given, y1, . . . , yn samples from π and assuming that
π(x) = f (x)/M

KL(π, qγ) =

∫

log(π(x)/qγ(x))π(x)dx =

= A(π, qγ) + M ≈
1

n

n
∑

i=1

log(f (xi )/qγ(xi )) + M

Assume A is estimated m = 2h times and set

λm = min

{

0.05 +
1

mθ

Â(m
2
) − Â(m)

Â(1) − Â(m)

, 0.95

}

where Â(1), . . . , Â(m) are the order statistics for the sequence
of estimates. We used θ ∈ {1/10, 1/5} in all examples.
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Banana Example

Let π(x) ∝

exp
[

−x2
1/200 − 1

2(x2 + Bx2
1 − 100B)2 −

x2
3
2

]

, B = 0.1.
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Banana Example

IM Proposal
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Banana Example
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Banana Example
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Normal Mixture Example

Let
π(x) = 0.5N(x |µ1,Σ1) + 0.5N(x |µ2,Σ2)

with x ∈ R
3, µ1 = (−4,−4, 0)T , µ2 = (8, 8, 5)T , Σ1 = 2I and

Σ2 = 4I.
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Normal Mixture Example
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Normal Mixture Example
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Normal Mixture Example

Samples 1-->2,000
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RAPTOR: Simulation Setup

Target distribution is

π(x ;m, s) ∝ 1Cd
(x) [0.5Nd (x ;−m × 1, Id) + 0.5Nd (x ;m × 1, s × Id)]

where Cd = [−1010, 1010]d

We consider the scenarios given by the following ten
combinations of parameter values

(d ,m, s) ∈ {(2, 1, 1), (5, 0.5, 1), (2, 1, 4), (5, 0.5, 4), (2, 0, 1),

(5, 0, 1), (2, 0, 4), (5, 0, 4), (2, 2, 1), (5, 1, 1)}.
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RAPTOR: Simulation Results

(m, s) RAPTOR RRWM RAPT

d=2
(1, 1) 21 21 22
(1, 4) 43 39 46
(0, 1) 10 8 11
(0, 4) 25 20 28

d=5
(0.5, 1) 30 22 41
(0.5, 4) 72 62 108
(0, 1) 23 18 29
(0, 4) 51 48 62
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RAPTOR: Genetic Instability of Esophageal Cancers

Cancer cells suffer a number of genetic changes during disease
progression, one of which is loss of heterozygosity (LOH).

Chromosome regions with high rates of LOH are hypothesized
to contain genes which regulate cell behavior and may be of
interest in cancer studies.

We consider 40 measures of frequencies of the event of
interest (LOH) with their associated sample sizes. The model
adopted for those frequencies is a mixture model

Xi ∼ η Binomial(Ni , π1) + (1 − η) Beta-Binomial(Ni , π2, γ).



Regional Adaptive MCMC Multimodal targets and regional AMCMC RAPTOR Non-Compactness and Regime-Switching

RAPTOR: Graphical Results
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