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Regional Adaptive MCMC

Regional AMCMC

@ We consider problems in which the random walk Metropolis
(RWM) or the independent Metropolis algorithms (IM) are
used to sample from the target distribution 7 with support S.

@ Given the current state of the MC, x, a " proposed sample” y is
drawn from a proposal distribution P(y|x) that satisfies symmetry,
i.e. P(y|x) = P(x|y).

o The proposal y is accepted with probability min{1, 7(y)/m(x)}.

o If y is accepted, the next state is y, otherwise it is (still) x.

@ The random walk Metropolis is obtained when y = x + € with
e ~ f, f symmetric, usually N(0, V).

o If P(y|x) = P(y) then we have the independent Metropolis
sampler (acceptance ratio is modified).
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Adaptive MCMC

@ Uses an initialization period to gather information about the
target .

@ The initial samples are used to produce estimates for the
adaption parameters who are subsequently adapted “on the
fly" until the simulation is stopped (indefinitely).

@ Adaption strategies are adopted based on

(i) Theoretical results on the optimality of MCMC, e.g. optimal
acceptance rate for MH algorithms.
(ii) Other strategies learned by studying the " classical” MCMC
algorithms, e.g. annealing, other Metropolis samplers...
(iii) Our ability to prove theoretically that the adaptive chain
samples correctly from 7.

@ It is usually easier to do (iii) if we assume S is compact.



Multimodal targets and regional AMCMC
e0

Multimodal targets and regional AMCMC

@ Multimodality is a never-ending source of headaches in
MCMC.

@ “Optimal” proposal may depend on the region of the current
state.
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Regional Adaptation with Dynamic Boundary

Exact boundary

iApproxwmate boundary

Today: What to do if 7 is approximated by a mixture of Gaussians.
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Mixture representation of the target

@ Suppose

K
= 89Ny (x; n, £,
k=1

where 3(K) > 0 forall 1 < k < K and 38, 8K =1, isa
good approximation for the target 7.

@ At each time n during the simulation process one has available
n dependent Monte Carlo samples which are used to fit the
mixture g,. Can we fit the mixture parameters recursively?

@ Given the mixture parameters, define a regional RWM
algorithm in which S is partitioned so that when the chain is
in the k-th region we propose from the k-th component of §,.
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Online EM Updates

At time n — 1 the current parameter estimates are

N1 = {ﬂn 1M n 1, E,k_)l}lngK and the available samples are
{x0,%1,...,Xxn—1}; when observing x, we update (see Andrieu and
Moulines, Ann. Appl. Probab. 2006)

K 1 n K K k K
r(w):—n+1 izoV,'()_sr(w)1+nJlr1(() s,

i = 0 + ot (Xn - u(nk_)l) ;
£ = 00 4 o (1= )00 = )00 = )T = 200
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where v, S, )1Nd(x e )172(,(/)1), Sm” = m—-l-lZi oYi "
(k) _ _ v 11
Ym’ = —2—5, and pp=m " foralll<m<n, 1< k< K.
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Definitions of Regions

o We would like to define the partition S = UK_,S() so that,
on each set S 7 is more similar to Ny(x; k), £(K)) than
to any other mixture component.

@ We maximize the sum of differences between Kullback-Leibler
(KL) divergences; when K = 2 we want to maximize

KL, Ng(; 1@, @) | SD) = KL(r, Ny D, 50 | SD)+
KL(7T7 Nd('; ,u(l)v Z(l)) | 8(2)) - KL(7T7 Nd('; M(Z)v Z(2)) | 8(2)))

where KL(f,g|A) = [, log(f(x)/g(x))f (x)dx.
@ Define

St — {x: arg max Nd(x;ug,k/),Zf,kl)) = k}.
k/



Proposal Distribution

@ The proposal distribution depends on:
i) The mixture parameters estimated using the online EM,
ii) The regions defined previously.

@ In addition to local optimality (within each modal region) we
seek good global traffic (between regions) so we add a global
component to the proposal distribution (see also Guan and
Krone, Ann. Appl. Probab, 2007).

@ Let « = 0.3 and %~ be the sample covariance . Put
S<w> —sx<w> Loy, 50— 550 ey 1< k<K
@ The RAPTOR proposal is then

Qn(x,dy)=(1—-« Zl ) (X)Ng(y; x st ))dy

+aNd(y;x,sdi§W>)dy,



Implementation of RAPTOR

@ Run in parallel a number (5-10) of RWM algorithms with
fixed kernels started in different regions of the sample space
(if the local modes are known start there) for an initialization
period of M steps.

@ At step M + 1, compute the mixture parameters using the EM

algorithm as well as the sample mean and covariance matrix
to obtain

1 K =(1 =(K) &
roz{ﬂg)vaﬂg ),#§W>,Zg)a--->zg ))z§W>}

@ Ateachstep M+n> M+ 1 we:
i) Update the mixture parameters I,
ii) Construct the partition based on ', and
iii) Sample the proposal Y1 ~ Qn(Xn4n; dy).
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Theoretical Results

@ Assumptions:
(A1) There is a compact subset S C R9 such that the target
density 7 is continuous on &, positive on the interior of S,
and zero outside of S.
(A2) The sequence {p; : j > 1} is positive and non-increasing.

(A3) Forall k=1,--- K,

. k
Pr(llm,-_,oo Sup/Zi Z}:i pJ’)/J( ) = 0) =1.

o We work with p; = j=1 so that (A2) and (A3) are satisfied.

Convergence

a) Assuming (A1) and (A2), RAPTOR is ergodic to 7.
b) Assuming (A2) and (A3), the adaptive parameter {I',},>0
converges in probability.
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Non-Compactness and Regime-Switching

@ RAPTOR assumes S is compact. Practically, the impact is
small but the theoretical gap is vexing.

@ What to do if S is not compact?

@ We know that a well-tuned IM has better convergence
properties than a RWM. However, it is usually impossible to
produce a well-tuned IM using only few samples. The
AMCMC literature on adapting IM suggests we first sample
using a RWM and then switch to an IM.

@ Do things have to happen so suddenly?

@ How to decide when it is time to switch?
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Non-Compactness

@ Strategy: Adapt only within the compact X C S. Use the
adapting kernel when the chain is in U and use a fixed kernel
outside K.

@ If using the Metropolis algorithm the proposals are assumed
to have compact support.

@ Proof of ergodicity is direct and requires (pretty much) only
diminishing adaptation:

Let D, = SUPxek ||T’Yn+1(X7 ) - T’Yn(Xv ')||TV'
Diminishing Adaptation: lim,— ., D, = 0 in probability.
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Regime-Switching

@ We propose a more gradual transition between the
“accumulation of data” and the “full adaptation” regimes.
Usually, the former is done with a RWM and the latter with
IM.

@ Combine with non-compactness idea and use:

@ A mixture of adapting RWM and IM inside the compact I
o A fixed RWM outside IC

Isr(x, A) = 1 (x) [ArPr(x, A) + (1 — Ar) Qr(A)]+1k<(x)R(x, A),

@ Pr, R are RWM kernels using proposal distributions of
compact support (of diameter A)

@ Qr is a IM kernel using a proposal with support K.
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Regime-Switching

@ We want Ar to approach zero as Qr gets closer to 7 on K.

@ The samples used to adapt I should not be also used for
determining the distance between Qr and .

@ Many adaptive strategies that satisfy Diminishing Adaptation
can be used for Pr and Qr.
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Regime-Switching
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Regime-Switching

o Given, y1,...,y, samples from 7 and assuming that

7(x) = F(x)/M
Ki(r.,) = [ log(n(x)/a, ()r(x)ox =

= Alm,q,)+M= %Z log(f(xi)/ 4 (xi)) + M

@ Assume A is estimated m = 2h times and set

where /2\(1), . ,/A4(m) are the order statistics for the sequence
of estimates. We used 6 € {1/10,1/5} in all examples.
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Banana Example

o Let m(x)
2
exp [—xl /200 — 3(x2 + Bxi — 100B)? — X3] B =0.1.

Cheinof ntrest Auiarychan

Auxiliary chain 2 Auxiliary chain 3
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Banana Example

IM Proposal Target

¥ :
sl 7 3 sl &

-20 -10 o 10 20 -20 -10 o 10 20

IM proposal (left) and Target (right) 2-dim projections.
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Banana Example

0 50 100 150 200

Time.

Evolution of the lambda coefficient as simulation proceeds.
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Banana Example

Burn-in Samples Burn-in Samples
39 39
I
x1 x2
All Samples All Samples
s 7 s 7
<< < e
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X1 x2
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Normal Mixture Example

o Let
m(x) = 0.5N(x|p1, X1) + 0.5N(x|p2, X2)
with x € R3, ju; = (—4,-4,0)7, o = (8,8,5)7, X1 = 2I and
Y, =4l
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Normal Mixture Example

0 100 200 300 400 500

Time

Evolution of the lambda coefficient as simulation proceeds.



Normal Mixture Example
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ACF plots for burn-in samples (top) and all samples (bottom).




Trace plots

Samples 1-->2,000

Normal Mixture Example

Samples 15,001->17,000
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Samples 100,001-->102,000
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Time
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Time

obtained at different stages in the simulation.
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RAPTOR: Simulation Setup

@ Target distribution is
m(x;m,s) o 1c,(x) [0.5Ng(x; —m x 1,14) + 0.5Ny(x; m x 1,5 x lg)

where C4 = [-10%0,100)9
@ We consider the scenarios given by the following ten
combinations of parameter values

(d,m,s) € {(2,1,1),(5,0.5,1),(2,1,4),(5,0.5,4),(2,0,1),
(5,0,1),(2,0,4),(5,0,4),(2,2,1),(5,1,1)}.
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RAPTOR: Simulation Results

(m, s) RAPTOR RRWM RAPT
d=2

(1,1) 21 21 22
(1,4) 43 39 46
(0,1) 10 8 11
(0,4) 25 20 28
d=5

(0.5,1) 30 22 41
(0.5,4) 72 62 108
(0,1) 23 18 29
(0,4) 51 48 62
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RAPTOR: Genetic Instability of Esophageal Cancers

@ Cancer cells suffer a number of genetic changes during disease
progression, one of which is loss of heterozygosity (LOH).

@ Chromosome regions with high rates of LOH are hypothesized
to contain genes which regulate cell behavior and may be of
interest in cancer studies.

@ We consider 40 measures of frequencies of the event of
interest (LOH) with their associated sample sizes. The model
adopted for those frequencies is a mixture model

Xi ~ n Binomial(N;, 71) + (1 — 1) Beta-Binomial(N;, 72, 7).
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RAPTOR: Graphical Results
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