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Y. :
» Statistics — Computation?

» Monte Carlo as statistical model: A theory of statistical
integration for Monte Carlo models ('03, Kong et al) &
subsequent papers by Zhigiang Tan

» Data Augmentaion - Hidden structures / statistical insight:
Ancillarity—Sufficiency Interweaving Strategy (ASIS) for
Boosting MCMC Efficiency (Meng & Yu, '11)

» "Rao-Blackwellization” for MCMC (Robert and Roberts, '21)



..O :
Statistics — Computation

» Antithetic variates < Design of experiments.
» (Randomized) Quasi-Monte Carlo < Stratified sampling

» Control variates < Estimation



Double Happiness: Coupled MCMC
and Control Variates

joint with Xiao-Li Meng



Unbiased MCMC - Pierre Jacob et al. '20

» Assume interest in approximating | = E[h(X)] using
=4 QQ;,B h(Xt), where {X;}+>0 are MCMC samples from
some posterior 7 item | vulnerable to potential biases due to:

» |nsufficient burn-in B
» Chain Initialization

» These biases can accumulate when one is approximating the
expectation [ repeatedly.

» For instance, with parallel computations
I'= E[E[h(X) 4]

where the inner expectation is the estimate obtained from the
Jth parallel process generated using random deviates ¢/}, and
the outer mean averages over all processes.



A Coupling-based Solution

» Consider two chains X = {X;,t > 0} and Y = {Ys, t > 0}
» They have the same initial distribution and transition kernel

» With probability one there exists a finite stopping time 7 such
that X; = Ys_1 forall t > 7.



A Coupling-based Solution

> H(X,Y) = h(X) + Sk [h(XG) — h(Y;-1)] has (under
mild conditions) the same mean as

I = h(Xk)+ i [A(Xj) — h(Yj-1)]

j=k+1
= h(X)+ Y [h(X)) = h(X;-1)]
j=k+1

which is an unbiased estimator for E[h(X)] for any kK >0
(see Glynn and Rhee, 2014; Glynn, 2016; Jacob et al, 2020;
Biswas et al, 2019)



A Coupling-based Solution

» Generalize to a general “lag” L, i.e. find 7 such that
Xe=Yi_ forall t > 1

J .
> Hk L(X Y) — h(Xk) + Z L [ (Xk+jL) — h(yk+(jfl)L)} is
unbiased for /, where Ji | = max {07 [LLL—k] }

» For our purpose it is useful to express Hy ; in the equivalent
form

Jei—1

Hil(X,Y) = b(Xipia ) + Y [B(Xuit) = h(Yie)] -
j=0



1°t Happiness: Control Variates for Variance Reduction

> Let Ak,j = h(Xk+jL) — h(Yk+jL) and note that E[Ak’J] =0 for
all k,j > 0.

» Then C, = ijl njQk j is a control variate for Hy (X, Y),
where 77 = {n;,j > 1} is independent of {X, Y}, and
>_j—1 Eqlnjl < oo,

» Replace Hy ((X,)) with

H@(x, Y) = Hin(X,Y) =Y 0.
j>1



A Remarkable Result

» From J
E[A(Xe) — h(X)] = E {5754 [A(Xii0) — h(Vier1y0)] |
= dyv(me, ) < ElJk 1]
» Instead of trying to minimize the variance of H,EﬁL)(X, Y) we
optimize 17 so that the resulting TV inequality is tighter!



2" Happiness: A Refined Bound

» We show:

dryv(mim) < 0583 Ellgcy,y—nl+ ) Eloy— 1<y, 1)l
j>1 j>1

+ 0.5 Pr(Jk,L > 0)
= ZE[I{J.SJM} — ;| + 0.5Pr(JxL > 0),
j>1
where Jﬁk7L = J,r — & and & ~ Bernoulli(0.5)

» Recall: for any given random variable V,
miny v E|V — U| = E|V — my|, where my is a median of V.



2" Happiness: A Refined Bound

> Let iy, , be the smallest integer median of Jir and let
nj = lj<m,,y, for any j.

» In order for 77 to be independent from X, we will use R
pairs of coupled chains, independently run in parallel

» For each process use the estimate of m, , obtained from the
“other” R — 1 processes.



2" Happiness: A Refined Bound

» \We can show that this choice of 7 yields the bound
Bk = E‘kal_ — ka‘L| + Pr(Jk7L > 0) — Sk,L

where Sy | = max{Pr(Jx > my, ),Pr(JxL <my )} <05
and my, , is the smallest integer median of Ji ;.

> Always BkJ_ < E[JkJ_] Vk, L
» Whenever, my, , =0, Bk = ElJk.1]-

» Note that By ; depends on the coupling time mean, its
variance and the symmetry of its distribution.



Approximate Bayesian Computation
with Friendly Neighbours

joint with Evgeny Levi



MCMC at the crossroads

» Large data and intractable likelihoods have brought Bayesian
computation at a crossroads.

» Consider observed data yo € ), likelihood function L(8]yo)
(or sampling distribution f(y|@)), prior p(8) with 8 € R¥.

» An MH proposal & ~ g(£]60) is accepted with probability

i {1, Zele0))
"m(0lyo)q(€10) J

» Note that 7(8|yo) o p(@)L(O|yo) needs to be computed at
each iteration. (hence L(f]yop) must also be computable)



Double Jeopardy: Intractable Likelihoods & Big Data

» Groundwater studies (Cui et al. 2018)
"A critical issue that limits the application of Bayesian
inference is the difficulty to define an explicit likelihood
function for complex and non-linear groundwater models”

» Hurrican surge (Plumlee et al., 2021)

“Storm surge is simulated by solving a set of partial dif-
ferential equations known as the shallow water equations
to yield water elevation and velocity in space and time
[..]. A mesh of nodes, which are points in geographic
space, is constructed to capture the shape of the seafloor
and overland topography. The partial differential equa-
tions are then solved on the mesh and integrated forward
in time over several days for a single storm simulation.”



Intractable Likelihood

» The likelihood L(f]y) is not computable but one can sample
from f(y|0) for all §'s

» Approximate Bayesian Computation (ABC - Marin et al.,
Comp & Stat. 2012)

» Bayesian Synthetic Likelihood (BSL - Price et al, JCGS 2018)
methods can be used.

» Indirect inference (Smith Jr, 1993; Gourieroux et al. 1993;
Gallant and McCulloch, 2009)



Bayesian Synthetic Likelihood (BSL)

Complex model: f(y|@) with intractable

>
» Simpler model: g(S(y)|@) approximates f(S(y)|0)
» g is Gaussian with parameters ¢(0) = (ug, X9)

>

The Synthetic Likelihood SL(0|sp) = N (so; g, Xo), where
so = S(yo)-

» 119, Yy are estimated from m statistics
(s1:=5(y1),--.,5m := S(¥m)) where y; ~ f(y|0) .

» The BSL posterior is m(0|sg) o< p(0)SL(0|s0)



Bayesian Synthetic Likelihood (BSL)

» Generate y; ~ f(y|f) and set s; = S(y;), i=1,---

» Estimate fig and ig
» The synthetic likelihood is
SL(Bls0) = N(S(yo); f1a, o),
where sp = S(yo)

» A MH sampler requires SL(0|sp)/SL(6:|s0)

,m



BSL with precomputed proposals

» Precompute the proposals for the chain (parallelizable task)

» For 1 < h<H let &, ~ p(&) and m pseudo-data
wgl),...,wg m) 1d ¢ f(wlép);

> Set 5,(,/() = S(w (J)) 1<j<m, and
Z={Emsn=1[s",...,s{): 1< h< HY

» Use Z for running MCMC-BSL.

» The number m of pseudo-data sets generated for each £ is
small so we do not have SL({|sp).



BSL with precomputed proposals

» When proposal is 6*.

2 — S W(07) 5 S s
Zﬁ:l Wh(e*) 7
H R NPT SRR C)
_ 21 [Wh(07) 4 Zj:l(sh — fig=)(s,” — fig~) ]
>y Wa(67)

(j)]

A

5o

> Wh(67) =1 or Wy(0") =1—|[&n — 07||/[|€* — 67| and
£ = maxgez [|€ — 0*], i.e. is the point in Z that is furthest

away from 6%,



ABC with precomputed proposals

» The target of ABC-MCMC is
me(0]s0) o< p(0)Pr(d(S(y), s0) < €[0)
» At each step one needs to estimate Pr(d(S(y), so) < €|6).

» An unbiased estimator requires generating pseudo-data for
each proposal 6*

» Details in Levi & C (2022).



TV bound: Geometric case
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Control Variates: German Credit Data

» Bayesian logistic regression model for the German Credit data.

» Data consist of n = 1000 binary responses and d = 49
covariates.

> 3~ N(0,10l4), Pr(Y; = 1|x;) = [1 + exp(—x;" 8)] *
» The relative reduction in variance (RRV) computed as

RRV= Yalmcev(F) \ here f is the posterior mean of the
varuyc(p)

regression coefficients, 3 € R*® and Varyc, Varpmccy denote
the estimated Monte Carlo variances of § obtained without
and, respectively, with control variates.



Control Variates: German Credit Data

coefigers Coeffcients

‘‘‘‘‘‘‘‘‘‘‘

Figure: German Credit Data. Relative (RRV) reduction in variance for
the 49 regression coefficients. Top panels: the lag is L = 5. Bottom
panels: the lag is L = 20. Left panels: RRV is obtained using k = 5.
Right panels: RRV is obtained from the average estimators with kK =5
and r = 30.



Conclusions

» Computation 2 Statistics.

. . Q .
» |s it time for more Statistics — Computation?

All papers available at:
http://www.utstat.toronto.edu/craiu/

We're HIRING: Assistant Prof. in Computational Statistics at U of
Toronto! Deadline: Middle of November



Numerical Experiments: Ricker's Model

» A particular instance of hidden Markov model:

x_a9=1; z S N(0,exp(62)?); i={-48,--,n},
x; = exp(exp(601))xi—1 exp(—xj—1 + z;); i={-48,---,n},
y; = Pois(exp(03)x;); i={-48,---,n},

where Pois()\) is Poisson distribution

» Only y = (y1, - ,yn) sequence is observed, because the first
50 values are ignored.



Numerical Experiments: Ricker's Model

Define summary statistics S(y) as the 14-dimensional vector whose
components are:
(C1) #{i:y; =0},
(C2) Average of y, ¥,
(C3:C7) Sample auto-correlations at lags 1 through 5,
(C8:C11) Coefficients Bo, 1, B2, f3 of cubic regression
(i — Yie1) = Bo + Bryi + Poy? + Bay} +€i, i =2,...,n,
C12-C14) Coefficients So, 1, 52 of quadratic regression
y3 = Bo+ By + Boy28 + e i=2,...,n.



Numerical Experiments: Ricker's Model - ABC/RWM

Figure: Ricker's model: ABC-RW Sampler. Each row corresponds to
parameters 61 (top row), 6, (middle row) and 65 (bottom row) and
shows in order from left to right: Trace-plot, Histogram and
Auto-correlation function. Red lines represent true parameter values.
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Numerical Experiments: Ricker's Model - BSL

Figure: Ricker's model: ABSL-U Sampler.
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Numerical Experiments: Ricker's Model - ABC

Figure: Ricker's model: AABC-U Sampler.
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Numerical Experiments:

Ricker's Model - ABC

Diff with exact Diff with true parameter Efficiency
Sampler DIM DIC TV Bias? V/'VAR v'MSE ESS ESS/CPU
SMC 0.152 0.0177 0.378 0.086 0.201 0.219 472 0.521
ABC-RW 0.135 0.0201 0.389 0.059 0.180 0.189 87 0.199
ABC-IS 0.139 0.0215 0.485 0.063 0.195 0.205 47 0.099
AABC-U 0.147 0.0279 0.402 0.076 0.190 0.204 3563 4.390
AABC-L 0.141 0.0258 0.392 0.070 0.189 0.201 4206 5.193
BSL-RW 0.129 0.0080 0.382 0.038 0.206 0.209 131 0.030
BSL-IS 0.122 0.0082 0.455 0.022 0.197 0.198 33 0.007
ABSL-U 0.103 0.0054 0.377 0.023 0.170 0.171 284 0.180
ABSL-L 0.106 0.0051 0.382 0.012 0.173 0.173 207 0.135
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