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Computation
♡→ Statistics

▶ Bayesian computation has, to a large extent, freed the
statistical modeller.

▶ Statistics
♡−→ Computation?

▶ Monte Carlo as statistical model: A theory of statistical
integration for Monte Carlo models (’03, Kong et al) &
subsequent papers by Zhiqiang Tan

▶ Data Augmentaion - Hidden structures / statistical insight:
Ancillarity–Sufficiency Interweaving Strategy (ASIS) for
Boosting MCMC Efficiency (Meng & Yu, ’11)

▶ ”Rao-Blackwellization” for MCMC (Robert and Roberts, ’21)
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Statistics
♡→ Computation

▶ Antithetic variates ← Design of experiments.

▶ (Randomized) Quasi-Monte Carlo ← Stratified sampling

▶ Control variates ← Estimation



Double Happiness: Coupled MCMC
and Control Variates

joint with Xiao-Li Meng



Unbiased MCMC - Pierre Jacob et al. ’20

▶ Assume interest in approximating I = Eπ[h(X )] using

Î = 1
M

∑M+B
t=B h(Xt), where {Xt}t≥0 are MCMC samples from

some posterior π item Î vulnerable to potential biases due to:
▶ Insufficient burn-in B
▶ Chain Initialization

▶ These biases can accumulate when one is approximating the
expectation I repeatedly.

▶ For instance, with parallel computations

Î = E[Eπ[h(X )|Uj ]]

where the inner expectation is the estimate obtained from the
jth parallel process generated using random deviates Uj , and
the outer mean averages over all processes.



A Coupling-based Solution

▶ Consider two chains X = {Xt , t ≥ 0} and Y = {Yt , t ≥ 0}

▶ They have the same initial distribution and transition kernel

▶ With probability one there exists a finite stopping time τ such
that Xt = Yt−1 for all t ≥ τ .



A Coupling-based Solution

▶ Hk(X ,Y) = h(Xk) +
∑τ−1

j=k+1[h(Xj)− h(Yj−1)] has (under
mild conditions) the same mean as

I = h(Xk) +
∞∑

j=k+1

[h(Xj)− h(Yj−1)]

= h(Xk) +
∞∑

j=k+1

[h(Xj)− h(Xj−1)]

which is an unbiased estimator for Eπ[h(X )] for any k ≥ 0
(see Glynn and Rhee, 2014; Glynn, 2016; Jacob et al, 2020;
Biswas et al, 2019)



A Coupling-based Solution

▶ Generalize to a general “lag” L, i.e. find τ such that
Xt = Yt−L for all t ≥ τ

▶ Hk,L(X ,Y ) = h(Xk) +
∑Jk,L

j=1

[
h(Xk+jL)− h(Yk+(j−1)L)

]
is

unbiased for I , where Jk,L = max
{
0, ⌈ τL−L−k

L ⌉
}
.

▶ For our purpose it is useful to express Hk,L in the equivalent
form

Hk,L(X ,Y ) = h(Xk+LJk,L) +

Jk,L−1∑
j=0

[h(Xk+jL)− h(Yk+jL)] .



1st Happiness: Control Variates for Variance Reduction

▶ Let ∆k,j = h(Xk+jL)− h(Yk+jL) and note that E [∆k,j ] = 0 for
all k, j ≥ 0.

▶ Then Cη =
∑

j≥1 ηj∆k,j is a control variate for Hk,L(X ,Y ),
where η⃗ ≡ {ηj , j ≥ 1} is independent of {X ,Y}, and∑

j=1 Eη⃗|ηj | <∞,

▶ Replace Hk,L(X ,Y) with

H
(η⃗)
k,L(X ,Y ) = Hk,L(X ,Y )−

∑
j≥1

ηj∆k,j .



A Remarkable Result

▶ From
E [h(Xπ)− h(Xk)] = E

{∑Jk,L
j=1

[
h(Xk+jL)− h(Yk+(j−1)L)

]}
⇒ dTV(πk , π) ≤ E[Jk,L]

▶ Instead of trying to minimize the variance of H
(η⃗)
k,L(X ,Y ) we

optimize η⃗ so that the resulting TV inequality is tighter!



2nd Happiness: A Refined Bound

▶ We show:

dTV(πk , π) ≤ 0.5

∑
j≥1

E|1{j≤Jk,L} − ηj |+
∑
j≥1

E|ηj − 1{j≤Jk,L−1}|


+ 0.5Pr(Jk,L > 0)

=
∑
j≥1

E|1{j≤J̃k,L} − ηj |+ 0.5Pr(Jk,L > 0),

where J̃k,L = Jk,L − ξ and ξ ∼ Bernoulli(0.5)

▶ Recall: for any given random variable V ,
minU⊥V E |V −U| = E |V −mV |, where mV is a median of V .



2nd Happiness: A Refined Bound

▶ Let m̃Jk,L be the smallest integer median of J̃k,L and let
ηj = 1{j<m̃k,L}, for any j .

▶ In order for η⃗ to be independent from X ,Y we will use R
pairs of coupled chains, independently run in parallel

▶ For each process use the estimate of m̃Jk,L obtained from the
“other” R − 1 processes.



2nd Happiness: A Refined Bound

▶ We can show that this choice of η⃗ yields the bound

Bk,L = E|Jk,L −mJk,L |+ Pr(Jk,L > 0)− Sk,L

where Sk,L = max{Pr(Jk,L > mJk,L),Pr(Jk,L < mJk,L)} ≤ 0.5
and mJk,L is the smallest integer median of Jk,L.

▶ Always Bk,L ≤ E [Jk,L] ∀k, L

▶ Whenever, mJk,L = 0, Bk,L = E [Jk,L].

▶ Note that Bk,L depends on the coupling time mean, its
variance and the symmetry of its distribution.



Approximate Bayesian Computation
with Friendly Neighbours

joint with Evgeny Levi



MCMC at the crossroads

▶ Large data and intractable likelihoods have brought Bayesian
computation at a crossroads.

▶ Consider observed data y0 ∈ Y, likelihood function L(θ|y0)
(or sampling distribution f (y|θ)), prior p(θ) with θ ∈ Rd .

▶ An MH proposal ξ ∼ q(ξ|θ) is accepted with probability

min

{
1,

π(ξ|y0)q(θ|ξ)
π(θ|y0)q(ξ|θ)

}
.

▶ Note that π(θ|y0) ∝ p(θ)L(θ|y0) needs to be computed at
each iteration. (hence L(θ|y0) must also be computable)



Double Jeopardy: Intractable Likelihoods & Big Data

▶ Groundwater studies (Cui et al. 2018)
“A critical issue that limits the application of Bayesian
inference is the difficulty to define an explicit likelihood
function for complex and non-linear groundwater models”

▶ Hurrican surge (Plumlee et al., 2021)
“Storm surge is simulated by solving a set of partial dif-
ferential equations known as the shallow water equations
to yield water elevation and velocity in space and time
[...]. A mesh of nodes, which are points in geographic
space, is constructed to capture the shape of the seafloor
and overland topography. The partial differential equa-
tions are then solved on the mesh and integrated forward
in time over several days for a single storm simulation.”



Intractable Likelihood

▶ The likelihood L(θ|y) is not computable but one can sample
from f (y|θ) for all θ’s

▶ Approximate Bayesian Computation (ABC - Marin et al.,
Comp & Stat. 2012)

▶ Bayesian Synthetic Likelihood (BSL - Price et al, JCGS 2018)
methods can be used.

▶ Indirect inference (Smith Jr, 1993; Gourieroux et al. 1993;
Gallant and McCulloch, 2009)



Bayesian Synthetic Likelihood (BSL)

▶ Complex model: f (y|θ) with intractable f

▶ Simpler model: g(S(y)|θ) approximates f (S(y)|θ)
▶ g is Gaussian with parameters ϕ(θ) = (µθ,Σθ)

▶ The Synthetic Likelihood SL(θ|s0) = N (s0;µθ,Σθ), where
s0 = S(y0).

▶ µθ,Σθ are estimated from m statistics
(s1 := S(y1), . . . , sm := S(ym)) where yj ∼ f (y|θ) .

▶ The BSL posterior is π(θ|s0) ∝ p(θ)SL(θ|s0)



Bayesian Synthetic Likelihood (BSL)

▶ Generate yi ∼ f (y|θ) and set si = S(yi ), i = 1, · · · ,m

▶ Estimate µ̂θ and Σ̂θ

▶ The synthetic likelihood is

SL(θ|s0) = N (S(y0); µ̂θ, Σ̂θ), (1)

where s0 = S(y0)

▶ A MH sampler requires SL(θ|s0)/SL(θt |s0)



BSL with precomputed proposals

▶ Precompute the proposals for the chain (parallelizable task)

▶ For 1 ≤ h ≤ H let ξh ∼ p(ξ) and m pseudo-data

w
(1)
h , . . . ,w

(m)
h

iid∼ f (w|ξh);

▶ Set s
(k)
h = S(w

(j)
h ), 1 ≤ j ≤ m, and

Z = {(ξh, sh = [s
(1)
h , . . . , s

(m)
h ]) : 1 ≤ h ≤ H}

▶ Use Z for running MCMC-BSL.

▶ The number m of pseudo-data sets generated for each ξ is
small so we do not have SL(ξ|s0).



BSL with precomputed proposals

▶ When proposal is θ∗.

µ̂θ∗ =

∑H
h=1[Wh(θ

∗) 1
m

∑m
j=1 s

(j)
h ]∑H

h=1Wh(θ∗)
,

Σ̂θ∗ =

∑H
h=1[Wh(θ

∗) 1
m

∑m
j=1(s

(j)
h − µ̂θ∗)(s

(j)
h − µ̂θ∗)T ]∑H

h=1Wh(θ∗)
.

(2)

▶ Wh(θ
∗) = 1 or Wh(θ

∗) = 1− ∥ξh − θ∗∥/∥ξ∗ − θ∗∥ and
ξ∗ = maxξ∈Z ∥ξ − θ∗∥, i.e. is the point in Z that is furthest
away from θ∗.



ABC with precomputed proposals

▶ The target of ABC-MCMC is

πϵ(θ|s0) ∝ p(θ)Pr(d(S(y), s0) ≤ ϵ|θ)

▶ At each step one needs to estimate Pr(d(S(y), s0) ≤ ϵ|θ).

▶ An unbiased estimator requires generating pseudo-data for
each proposal θ∗

▶ Details in Levi & C (2022).



TV bound: Geometric case
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Figure: Comparison of bound (??) provided by [?] (dashed black line)
and the new bound given in (??) (solid red line ). Note that for small
values of p both bounds are vacuous.



Control Variates: German Credit Data

▶ Bayesian logistic regression model for the German Credit data.

▶ Data consist of n = 1000 binary responses and d = 49
covariates.

▶ β ∼ N(0, 10Id), Pr(Yi = 1|xi ) = [1 + exp(−xTi β)]−1

▶ The relative reduction in variance (RRV) computed as

RRV= varMCCV (β̂)

varMC (β̂)
where β̂ is the posterior mean of the

regression coefficients, β ∈ R49 and VarMC , VarMCCV denote
the estimated Monte Carlo variances of β̂ obtained without
and, respectively, with control variates.



Control Variates: German Credit Data
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Figure: German Credit Data. Relative (RRV) reduction in variance for
the 49 regression coefficients. Top panels: the lag is L = 5. Bottom
panels: the lag is L = 20. Left panels: RRV is obtained using k = 5.
Right panels: RRV is obtained from the average estimators with k = 5
and r = 30.



Conclusions

▶ Computation
♡→ Statistics.

▶ Is it time for more Statistics
♡→ Computation?

All papers available at:
http://www.utstat.toronto.edu/craiu/

We’re HIRING: Assistant Prof. in Computational Statistics at U of
Toronto! Deadline: Middle of November



Numerical Experiments: Ricker’s Model

▶ A particular instance of hidden Markov model:

x−49 = 1; zi
iid∼ N (0, exp(θ2)

2); i = {−48, · · · , n},
xi = exp(exp(θ1))xi−1 exp(−xi−1 + zi ); i = {−48, · · · , n},
yi = Pois(exp(θ3)xi ); i = {−48, · · · , n},

where Pois(λ) is Poisson distribution

▶ Only y = (y1, · · · , yn) sequence is observed, because the first
50 values are ignored.



Numerical Experiments: Ricker’s Model

Define summary statistics S(y) as the 14-dimensional vector whose
components are:

(C1) #{i : yi = 0},
(C2) Average of y, ȳ ,

(C3:C7) Sample auto-correlations at lags 1 through 5,

(C8:C11) Coefficients β0, β1, β2, β3 of cubic regression
(yi − yi−1) = β0 + β1yi + β2y

2
i + β3y

3
i + ϵi , i = 2, . . . , n,

(C12-C14) Coefficients β0, β1, β2 of quadratic regression
y0.3i = β0 + β1y

0.3
i−1 + β2y

0.6
i−1 + ϵi , i = 2, . . . , n.



Numerical Experiments: Ricker’s Model - ABC/RWM

Figure: Ricker’s model: ABC-RW Sampler. Each row corresponds to
parameters θ1 (top row), θ2 (middle row) and θ3 (bottom row) and
shows in order from left to right: Trace-plot, Histogram and
Auto-correlation function. Red lines represent true parameter values.
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Numerical Experiments: Ricker’s Model - BSL

Figure: Ricker’s model: ABSL-U Sampler.
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Numerical Experiments: Ricker’s Model - ABC

Figure: Ricker’s model: AABC-U Sampler.
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Numerical Experiments: Ricker’s Model - ABC

Diff with exact Diff with true parameter Efficiency

Sampler DIM DIC TV
√
Bias2

√
VAR

√
MSE ESS ESS/CPU

SMC 0.152 0.0177 0.378 0.086 0.201 0.219 472 0.521
ABC-RW 0.135 0.0201 0.389 0.059 0.180 0.189 87 0.199
ABC-IS 0.139 0.0215 0.485 0.063 0.195 0.205 47 0.099
AABC-U 0.147 0.0279 0.402 0.076 0.190 0.204 3563 4.390
AABC-L 0.141 0.0258 0.392 0.070 0.189 0.201 4206 5.193
BSL-RW 0.129 0.0080 0.382 0.038 0.206 0.209 131 0.030
BSL-IS 0.122 0.0082 0.455 0.022 0.197 0.198 33 0.007
ABSL-U 0.103 0.0054 0.377 0.023 0.170 0.171 284 0.180
ABSL-L 0.106 0.0051 0.382 0.012 0.173 0.173 207 0.135
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