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Local Search and Optimization Algorithms (LSOA)

@ Search locally a region of the state space to sample from.
@ Adapt locally to improve the efficiency of the algorithm.

@ Local Search and Optimization Algorithms (LSOA):
Multiple-Try Metropolis (Liu , Liang and Wong, JASA 2000),
Hit-and-Run (Chen and Schmeiser, JCGS 1993),

Adaptive Direction Sampling (Gilks, Roberts and George, Stat.
1994),

Delayed rejection (Green and Mira, Biomka, 2001),

Directional Metropolis (Eidsvik and Tjelmeland , Statist. &
Comput. 2006).

Idea: Produce a more structured search using stratified sampling.
Today’s Topic: Discussion of RQMC implemented within LSOA. J

Radu Craiu (fisher.utstat.toronto.edu/craiul) RQMC for MCMC 3rd WMCM - May, 2007



Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal distribution such that
T(X]y) >0 < T(y|x) > 0and A(x,y) is a symmetric function.
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Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal distribution such that
T(X]y) >0 < T(y|x) > 0and A(x,y) is a symmetric function.

(i) Draw K independent trial proposals y, . ..,yk from T (:|x;). Sample
one with p; o< W(y;|xt) = 7(yi)T (Xe|yi )A(Xt, Yi)- J
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Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal distribution such that
T(X]y) >0 < T(y|x) > 0and A(x,y) is a symmetric function.

(i) Draw K independent trial proposals y, . ..,yk from T (:|x;). Sample
one with p; o< W(y;|xt) = 7(yi)T (Xe|yi )A(Xt, Yi)- }

(i) Generate X, ..., x; _; ~ T(-]y) and put x; = Xt. )

Radu Craiu (fisher.utstat.toronto.edu/craiul) RQMC for MCMC 3rd WMCM - May, 2007 427



Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal distribution such that
T(X]y) >0 < T(y|x) > 0and A(x,y) is a symmetric function.

(i) Draw K independent trial proposals y, . ..,yk from T (:|x;). Sample
one with p; oc W(yi[xt) = m(yi) T (Xt |yi)A(Xt, Yi)-

J

(i) Generate X, ..., x; _; ~ T(-]y) and put x; = Xt.

(iif) Accept y with probability min {1, M}

:<:1 w(x*ly)
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Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal distribution such that
T(X]y) >0 < T(y|x) > 0and A(x,y) is a symmetric function.

(i) Draw K independent trial proposals y, . ..,yk from T (:|x;). Sample
one with p; oc W(y;i|xt) = 7(Yi)T (Xe|Yi)A(Xt, Yi)-

J

(i) Generate X, ..., x; _; ~ T(-]y) and put x; = Xt.

(iif) Accept y with probability min {1, M}

:<:1 w(x*ly)

@ Do we better explore the sample space with K proposals ?
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Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal distribution such that
T(X]y) >0 < T(y|x) > 0and A(x,y) is a symmetric function.

(i) Draw K independent trial proposals y, . ..,yk from T (:|x;). Sample
one with p; oc W(y;i|xt) = 7(Yi)T (Xe|Yi)A(Xt, Yi)-

J

(i) Generate X, ..., x; _; ~ T(-]y) and put x; = Xt.

(iif) Accept y with probability min {1, M}

:<:1 w(x*ly)

@ Do we better explore the sample space with K proposals ?

@ As long as we take advantage of the flexibility provided by the
MTM.
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Multi-distributed MTM (MD-MTM)

@ The proposals do not have to be identically distributed:
yj ~ Tj(:[x) for1 <j <Kk.
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Multi-distributed MTM (MD-MTM)

@ The proposals do not have to be identically distributed:
yj ~ Tj(:[x) for1 <j <Kk.

Ify =yj, is selected than put x;° = x; and sample X" ~ Ti(-ly)- J

@ May accomodate different sampling regimes.
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Multi-distributed MTM (MD-MTM)

@ The proposals do not have to be identically distributed:
yj ~ Tj(:[x) for1 <j <Kk.

Ify =yj, is selected than put x;° = x; and sample X" ~ Ti(-ly)- J

@ May accomodate different sampling regimes.

7(x) = 0.3N((—20,-20)",%1)+0.4N((0,0)", ¥2)+0.3N((20,20)", X3),

where ¥; = diag(0.5,0.5), X, = diag(2,2) and X3 = diag(0.4,0.4).

@ Use MD-MTM for a random walk Metropolis with Gaussian
proposal and variances o € {5,50,100, 150, 200}.

@ Compare with MTM for a random walk Metropolis constructed with
only one of the ¢’s.
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Multiple-Correlated-Try Metropolis (MCTM)

@ The proposals do not have to be independent.
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Multiple-Correlated-Try Metropolis (MCTM)

@ The proposals do not have to be independent.

Suppose we sample K trial proposals y, ..., Yyk from 'f(yl, co YK X))
where

/ F (Y- yi )y = TOl), V1< i < K.
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Multiple-Correlated-Try Metropolis (MCTM)

@ The proposals do not have to be independent.

Suppose we sample K trial proposals y, ..., Yyk from 'f(yl, co YK X))
where

/f(yl, vk Ix)dy = T (%), V1<i<K.

@ The algorithm proceeds as in the independent case with one
exception.
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Multiple-Correlated-Try Metropolis (MCTM)

@ The proposals do not have to be independent.

Suppose we sample K trial proposals y, ..., Yyk from 'f(yl, co YK X))
where

/f(yl, vk Ix)dy = T (%), V1<i<K.

@ The algorithm proceeds as in the independent case with one
exception.

Draw (x;,...,X¢_,) variates from the conditional transition kernel

T (X1, .-, Xk—1|Y, Xk = %) and let X7 = x;.
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Multiple-Correlated-Try Metropolis (MCTM)

@ The proposals do not have to be independent.

Suppose we sample K trial proposals y, ..., Yyk from 'f(yl, co YK X))
where

/f(yl, vk Ix)dy = T (%), V1<i<K.

@ The algorithm proceeds as in the independent case with one
exception.

Draw (x;,...,X¢_,) variates from the conditional transition kernel

T (X1, .-, Xk—1|Y, Xk = %) and let X7 = x;.

@ We have freedom in choosing T as long as we can perform the
conditional sampling step.
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Antithetic or Stratified Sampling?

® Y;=(Yj1,...,Yjg) ERIfor1 <j <K.
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Antithetic or Stratified Sampling?

® Y;=(Yj1,...,Yjg) ERIfor1 <j <K.

Say K =2, Var(Y) = £ =diag(o?,...,03), Cov(Y1n, Y2n) = 0 pn.
Then

d d
e [1¥s - YalF] =& 3 Y| =32 )

h=1
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Antithetic or Stratified Sampling?

® Y;=(Yj1,...,Yjg) ERIfor1 <j <K.

Say K =2, Var(Y) = £ =diag(o?,...,03), Cov(Y1n, Y2n) = 0 pn.
Then

d d
E{HYl_YZHZ}:E[Z(Ylh_YZh ] > on(1 = pn)-

h=1 h=1

@ One possible choice is p, = —1/(K — 1) (covariance matrix needs
to be positive definite!).
@ The optimal choice of p, dependson o, 1 < h <d.
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Antithetic or Stratified Sampling?

® Y;=(Yj1,...,Yjg) ERIfor1 <j <K.

Say K =2, Var(Y) = £ =diag(o?,...,03), Cov(Y1n, Y2n) = 0 pn.
Then

d d
E{HYl_YZHZ}:E[Z(Ylh_YZh ] > on(1 = pn)-

h=1 h=1

@ One possible choice is p, = —1/(K — 1) (covariance matrix needs
to be positive definite!).

@ The optimal choice of p, dependson o, 1 < h <d.

@ Conditional sampling needed for MCTM is straightforward in the
case of Gaussian proposals.
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Antithetic or Stratified Sampling?

® Y;=(Yj1,...,Yjg) ERIfor1 <j <K.

Say K =2, Var(Y) = £ =diag(o?,...,03), Cov(Y1n, Y2n) = 0 pn.
Then

d d
E{HYl_YZHZ}:E[Z(Ylh_YZh ] > on(1 = pn)-

h=1 h=1

@ One possible choice is p, = —1/(K — 1) (covariance matrix needs
to be positive definite!).

@ The optimal choice of p, dependson o, 1 < h <d.

@ Conditional sampling needed for MCTM is straightforward in the
case of Gaussian proposals.

@ If Y} = ¢(Xt, Uj) with ¢ increasing in U; then we need to use U’s
which are negatively associated (NA - Craiu and Meng, AnnStat.
2005).
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Quasi-Monte Carlo (QMC)

@ QMC is a de-randomized MC; the samples are constructed
deterministically.

@ QMC: highly uniform and stratified sampling in the unit hypercube.
@ Interest: high-uniformity, a.k.a. low discrepancy.
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Quasi-Monte Carlo (QMC)

@ QMC is a de-randomized MC; the samples are constructed
deterministically.

@ QMC: highly uniform and stratified sampling in the unit hypercube.
@ Interest: high-uniformity, a.k.a. low discrepancy.

Forv € (0,1)4,B(v) ={u € (0,1)¢:0<u <v;, 1<j<d}. )
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Quasi-Monte Carlo (QMC)

@ QMC is a de-randomized MC; the samples are constructed
deterministically.

@ QMC: highly uniform and stratified sampling in the unit hypercube.
@ Interest: high-uniformity, a.k.a. low discrepancy.

Forv € (0,1)4,B(v) ={u € (0,1)¢:0<u <v;, 1<j<d}. )

For a point set S, define a(Sp,Vv) = card{S, N B(v)}. ]
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Quasi-Monte Carlo (QMC)

@ QMC is a de-randomized MC; the samples are constructed
deterministically.

@ QMC: highly uniform and stratified sampling in the unit hypercube.
@ Interest: high-uniformity, a.k.a. low discrepancy.

Forv € (0,1)4,B(v) ={u € (0,1)¢:0<u <v;, 1<j<d}. )

For a point set S, define a(Sp,Vv) = card{S, N B(v)}. ]

Star-discrepancy

Di(Sn) = SUp |vi...Vg — a(Sn,v)/n].
ve(0,1)d
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Randomized QMC (RQMC)

@ Efficiency can be connected to discrepancy.
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Randomized QMC (RQMC)

@ Efficiency can be connected to discrepancy.

Koksma-Hlawka Theorem

- % > f(u)| < DRV (H).

UESy

@ Both V (f) and D* are difficult to compute in general.
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Randomized QMC (RQMC)

@ Efficiency can be connected to discrepancy.

Koksma-Hlawka Theorem

- % > f(u)| < DRV (H).

UESy

@ Both V (f) and D* are difficult to compute in general.

@ Randomized versions of QMC (RQMC) algorithms are used to
establish error estimates via Monte Carlo simulation. (Art Owen,
Stanford; Christiane Lemieux, Waterloo; Pierre LEcuyer,
Montréal).

@ Randomization is performed so that it preserves the
low-discrepancy of the set point.

@ Makes QMC set points suitable for MC as marginals are uniform.

@ RQMC and MCMC (Owen and Tribble, PNAS '05; Lemieux and
Sidorsky, Math. & Comp. Model., 2006).
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Latin Hypercube Sampling (LHS)

@ Simultaneous stratification of the univariate marginals if
U ~ Uniform(0, 1)d.
@ Construction: Forl <i<K,1<j<d:

Radu Craiu (fisher.utstat.toronto.edu/craiul) RQMC for MCMC 3rd WMCM - May, 2007 11/27



Latin Hypercube Sampling (LHS)

@ Simultaneous stratification of the univariate marginals if
U ~ Uniform(0, 1)d.

@ Construction: Forl <i<K,1<j<d:
i) Vijj ~ Uniform(0, 1) are i.i.d
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Latin Hypercube Sampling (LHS)

@ Simultaneous stratification of the univariate marginals if
U ~ Uniform(0, 1)d.
@ Construction: Forl <i<K,1<j<d:
i) Vijj ~ Uniform(0, 1) are i.i.d
i) {5, 1<j<d}areindependent permutations of {0,...,K —1}
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Latin Hypercube Sampling (LHS)

@ Simultaneous stratification of the univariate marginals if
U ~ Uniform(0, 1)d.
@ Construction: Forl <i<K,1<j<d:
i) Vijj ~ Uniform(0, 1) are i.i.d
i) {5, 1<j<d}areindependent permutations of {0,...,K —1}

7i(i — 1) + Vi

Radu Craiu (fisher.utstat.toronto.edu/craiul) RQMC for MCMC 3rd WMCM - May, 2007 11/27



Latin Hypercube Sampling (LHS)

@ Simultaneous stratification of the univariate marginals if
U ~ Uniform(0, 1)d.
@ Construction: Forl <i<K,1<j<d:
i) Vijj ~ Uniform(0, 1) are i.i.d
i) {5, 1<j<d}areindependent permutations of {0,...,K —1}

7i(i — 1) + Vi

@ U0) js the ith row of the matrix U.
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Latin Hypercube Sampling (LHS)

@ Simultaneous stratification of the univariate marginals if
U ~ Uniform(0, 1)d.
@ Construction: Forl <i<K,1<j<d:
i) Vijj ~ Uniform(0, 1) are i.i.d
i) {5, 1<j<d}areindependent permutations of {0,...,K —1}

7i(i — 1) + Vi

@ U is the ith row of the matrix U.

@ Given U = (Uj1,...,Ujg) € (0,1)¢, 1 <i <K we can use:
a) For1 <j <d fixed: {Uyj,...,U;j)} as a set of NA
Uniform(0, 1) r.v.'s.

b) (UM, ....,UuK)) as a stratified sample of (0,1)¢.
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LHS in MTM
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LHS in MTM

@ Vi~ U(0,1), Uy =54 v, = F 1Y), 0<i <K -1 (no
permutation is needed!).
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LHS in MTM

@ Vi~ U(0,1), Uy =54 v, = F 1Y), 0<i <K -1 (no
permutation is needed!).
@ If Y =Y, is selected:
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LHS in MTM

@ Vi~ U(0,1), Uy =54 v, = F 1Y), 0<i <K -1 (no
permutation is needed!).
@ If Y =Y, is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
(;2, '0“) then we want to sample X3, ..., x; using all the K — 1

uniforms which ARE NOT IN (jg, o),
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LHS in MTM

@ Vi~ U(0,1), Uy =54 v, = F 1Y), 0<i <K -1 (no
permutation is needed!).
@ If Y =Y, is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
(;2, '0“) then we want to sample X3, ..., x; using all the K — 1

uniforms which ARE NOT IN (jg, o),

i) Put jo = [KFy(Xt)] (where [-] is integer part) and construct a
random permutation 7 such that 7(jo) =
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LHS in MTM

@ Vi~ U(0,1), Uy =54 v, = F 1Y), 0<i <K -1 (no
permutation is needed!).
@ If Y =Y, is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
(lo, o1y then we want to sample x5, . .., x;” using all the K — 1
uniforms which ARE NOT IN (jg, o),

i) Put jo = [KFy(Xt)] (where [-] is integer part) and construct a
random permutation 7 such that 7(jo) =

ii) Put X = X;, and for i # jo Uy = Z0 and x = Fyt(Uy), with
W; ~ Uniform(0, 1) independent from the V's.
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LHS in MTM

@ Vi~ U(0,1), Uy =54 v, = F 1Y), 0<i <K -1 (no
permutation is needed!).
@ If Y =Y, is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
(;2, '0“) then we want to sample X3, ..., x; using all the K — 1

uniforms which ARE NOT IN (jg, o),

i) Put jo = [KFy(Xt)] (where [-] is integer part) and construct a
random permutation 7 such that 7(jo) =

ii) Put X = X;, and for i # jo Uy = Z0 and x = Fyt(Uy), with
W; ~ Uniform(0, 1) independent from the V's.

@ One can get away without permuting at all!!
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Korobov Rules

@ K points in [0,1]¢ are generated using a generator
ae{l,...,K—-1}.
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Korobov Rules

@ K points in [0,1]¢ are generated using a generator
ae{l,...,K—-1}.

Sk = {+(1,a,a®> modK,...,a%"* mod K) mod 1} 0<i<K-1' J
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Korobov Rules

@ K points in [0,1]¢ are generated using a generator
ae{l,...,K—-1}.

Sk = {+(1,a,a®> modK,...,a%"* mod K) mod 1} 0<i<K-1' J

@ Bad choices: a and K are not relatively prime ora = 1.

@ The point set is fully projection regular, i.e. any lower-dimensional
projection contains K distinct points.
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Korobov Rules

@ K points in [0,1]¢ are generated using a generator
ae{l,...,K—-1}.

Sk = {+(1,a,a®> modK,...,a%"* mod K) mod 1} 0<i<K-1' J

@ Bad choices: a and K are not relatively prime ora = 1.

@ The point set is fully projection regular, i.e. any lower-dimensional
projection contains K distinct points.

To randomize add a vector U ~ Uniform(0,1)? mod 1 i.e.

SR =Sk +Ux mod 1.
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Example: Korobov rule and Gaussian sampling
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Going beyond uniformity
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Going beyond uniformity

@ Sometimes we want to "favor"” regions in the hypercube but
uniformity is lost once we transform the QMC point set.
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Going beyond uniformity

@ Sometimes we want to "favor"” regions in the hypercube but
uniformity is lost once we transform the QMC point set.

@ g:[0,1] — [0,1] is a hijection and U = g(U) = (g(U1),...,g(Uq)).
@Y ~T(|X) e Y =¢(X,U)soif Y =(X,0) thenY ~ T(-|X).
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Going beyond uniformity

@ Sometimes we want to "favor"” regions in the hypercube but
uniformity is lost once we transform the QMC point set.

@ g:[0,1] — [0,1] is a hijection and U = g(U) = (g(U1),...,g(Uq)).
@Y ~T(|X) e Y =¢(X,U)soif Y =(X,0) thenY ~ T(-|X).

IFAX,Y) =T(Y|X)/T(Y|X)is symmetric, i.e. AX,Y) = A(Y, X),
then MCTM can be implemented. without computing T.
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Going beyond uniformity

@ Sometimes we want to "favor"” regions in the hypercube but
uniformity is lost once we transform the QMC point set.

@ g:[0,1] — [0,1] is a hijection and U = g(U) = (g(U1),...,g(Uq)).
@Y ~T(|X) e Y =¢(X,U)soif Y =(X,0) thenY ~ T(-|X).

IFAX,Y) =T(Y|X)/T(Y|X)is symmetric, i.e. AX,Y) = A(Y, X),
then MCTM can be implemented. without computing T.

@ Example: _
g(u) = sin[r(u —20.5)] + 1.

i) g is bijective.
ig(x)=x, vx € {0,1/2,1},g(u)+g(1 —u) =1, Vu € (0,1).
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Example

Randomized Korobov

Transformed Korobov
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Gaussian Proposals

Suppose T (y|x) is a multivariate Gaussian with no correlation.

Tk =]]——=—
Then
- —( %;)? /207
T(ylx) =
j= 1 \/ \/ (VJ XJ) 1— ¢(VJ Xl)i|
d 1
Ay ¥) =11 = A(X,Y).

jzlw\/[1—¢(x%jyj)] (1)
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Bimodal density

Use MCTM combined with random-ray Monte Carlo to sample from
(Gelman and Meng, Am. Stat. '91)

(X1, X2) o< exp{—(9xZxZ + xZ + xZ — 8x1 — 8x2)/2}
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Efficiency Comparison

@ At each iteration a random direction v is generated;

@ Along direction v we sample proposals y4, ..., Yk around the
current state x; using y; = X + r; with rj ~ Uniform(—o, o).

. MSE fi
Table: Values of the MSE reduction factor R = Wa”' )

Eind

o\k 3 4 5 6

0.35 053 0.64 0.81
0.31 0.42 0.58 0.76
0.29 0.40 0.49 0.62

g b~ W=
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Lupus Data

@ Lupus Data (van Dyk and Meng, JCGS 2001): 55 patients, 2
covariates; logistic model.
@ The posterior density is proportional to

2 o—0.5p/100* 35 exp(XiT 3) yi 1 1-y;
7T(6|X;y) X H 100\/% = |:1 + exp(XiTﬁ)} |:1 + eXp(XiTﬁ)] .

j=0

@ Sample using MCTM with antithetically coupled proposals or
stratified proposals via a randomized Korobov set shifted using
the transformation g.
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Efficiency comparison for Lupus Data

Table: Values of R for 3; and p2s = 144,25, in the logit example.

Antithetic QMC

2 3 4 2 3 4
0.92/0.92 0.90/0.86 0.99/0.95 - - -
0.94/0.87 0.88/0.88 0.91/0.89 - - -
0.98/0.96 0.81/0.81 0.89/0.86 - - -
0.91/0.86 0.86/0.78 0.95/0.92 - - -
0.81/0.70 0.75/0.69 0.83/0.80 | 0.69/0.72 0.61/0.60 0.59/0.56
0.87/0.81 0.97/0.94 0.91/0.88 | 0.81/0.81 0.82/0.84 0.76/0.75

N ~
mCDOﬁU‘I-bOJ/
Q

Table: Computation Times k = 8

Sample Size | MTM | MCTM (A) | MCTM (S)
10° 34 36 32
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Multi-Annealed Metropolis (MAM)

@ Inspired by Neal’s (Stat. & Comp., 1996) tempered transition
method.

@ Uses a series of distributions {mt }cf1-7, 1,,...7,,}> CONstructed
between the distribution of interest, =, and 71, .

@ Relies on a "path"” that crosses all the intermediate distributions.
@ If1=Ty < Ty <Ty=T and Qq, is a proposal distribution for
T, X /T

@ Suppose that Qr,(X]Y) = Qr,(Y |X) (e.g., random walk
Metropolis).
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MAM - The algorithm

Given the chain is in state X:
i) Sample X1 ~ Q1(+[X), X2 ~ Q2(-|X1), Y2 ~ Q2(-|X2), Y1 ~ Q1(-[Y2).
ii) Accept Y4 with probability min {1, mo(Ya) | ma(Xa)m(Yo) }

mo(X)  mi(X1)m2(Y2)
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MAM(4)

10
I

T=(2,8,10,15,20, 30)
sigma=(2,3,4,5,8,15)
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Multiple-try extension of the MAM
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Multiple-try extension of the MAM

MTM can be implemented by generating multiple paths and
compensate using the same number of reverse paths. We have
freedom in choosing the "weight of a path”.
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Multiple-try extension of the MAM

MTM can be implemented by generating multiple paths and
compensate using the same number of reverse paths. We have
freedom in choosing the "weight of a path”.

Pros : increases the acceptance rate >10 fold, does not require
running the parallel chains all the time;
Cons: Requires symmetric proposals.
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Negative Association for Multiple-Try MAM

@ Suppose that X; ~ Qi(:[Xi_1) < Xi = ¢i(Xi_1, U;) with
U; ~ Uniform|O, 1]d and v is monotone in each component of U;.
° Yl = ¢1(¢2(¢2(¢1(X7 Ul)a U2)7 V2)7 Vl) and
Y],_ = ¢1(¢2(¢2(¢1(X7 Ui)v Ué)? Vé)v V],_)
@ The paths do not need to be generated independently.
o If (U;,U/) and (Vi,V/) are negatively associated then
Corr(Y1,Y;) < 0 so the average distance between the paths is
larger than under independence.
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