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Local Search and Optimization Algorithms (LSOA)

Search locally a region of the state space to sample from.

Adapt locally to improve the efficiency of the algorithm.

Local Search and Optimization Algorithms (LSOA):
Multiple-Try Metropolis (Liu , Liang and Wong, JASA 2000),
Hit-and-Run (Chen and Schmeiser, JCGS 1993),
Adaptive Direction Sampling (Gilks, Roberts and George, Stat.
1994),
Delayed rejection (Green and Mira, Biomka, 2001),
Directional Metropolis (Eidsvik and Tjelmeland , Statist. &
Comput. 2006).

Idea: Produce a more structured search using stratified sampling.
Today’s Topic: Discussion of RQMC implemented within LSOA.

Radu Craiu (fisher.utstat.toronto.edu/craiu/) RQMC for MCMC 3rd WMCM - May, 2007 3 / 27



Original MTM (Liu, Liang and Wong, JASA 2000)

Suppose T is a proposal distribution such that
T (x |y) > 0 ⇔ T (y |x) > 0 and λ(x , y) is a symmetric function.
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Original MTM (Liu, Liang and Wong, JASA 2000)

Suppose T is a proposal distribution such that
T (x |y) > 0 ⇔ T (y |x) > 0 and λ(x , y) is a symmetric function.

(i) Draw K independent trial proposals y1, . . . , yK from T (·|xt). Sample
one with pi ∝ w(yi |xt) = π(yi)T (xt |yi )λ(xt , yi ).
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T (x |y) > 0 ⇔ T (y |x) > 0 and λ(x , y) is a symmetric function.

(i) Draw K independent trial proposals y1, . . . , yK from T (·|xt). Sample
one with pi ∝ w(yi |xt) = π(yi)T (xt |yi )λ(xt , yi ).

(ii) Generate x∗
1 , . . . , x

∗
k−1 ∼ T (·|y) and put x∗

k = xt .
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Original MTM (Liu, Liang and Wong, JASA 2000)

Suppose T is a proposal distribution such that
T (x |y) > 0 ⇔ T (y |x) > 0 and λ(x , y) is a symmetric function.

(i) Draw K independent trial proposals y1, . . . , yK from T (·|xt). Sample
one with pi ∝ w(yi |xt) = π(yi)T (xt |yi )λ(xt , yi ).

(ii) Generate x∗
1 , . . . , x

∗
k−1 ∼ T (·|y) and put x∗

k = xt .

(iii) Accept y with probability min
{

1,
PK

i=1 w(yi |xt)
PK

i=1 w(x∗i |y)

}

.
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}

.

Do we better explore the sample space with K proposals ?
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Original MTM (Liu, Liang and Wong, JASA 2000)

Suppose T is a proposal distribution such that
T (x |y) > 0 ⇔ T (y |x) > 0 and λ(x , y) is a symmetric function.

(i) Draw K independent trial proposals y1, . . . , yK from T (·|xt). Sample
one with pi ∝ w(yi |xt) = π(yi)T (xt |yi )λ(xt , yi ).

(ii) Generate x∗
1 , . . . , x

∗
k−1 ∼ T (·|y) and put x∗

k = xt .

(iii) Accept y with probability min
{

1,
PK

i=1 w(yi |xt)
PK

i=1 w(x∗i |y)

}

.

Do we better explore the sample space with K proposals ?

As long as we take advantage of the flexibility provided by the
MTM.
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Multi-distributed MTM (MD-MTM)

The proposals do not have to be identically distributed:
yj ∼ Tj(·|x) for 1 ≤ j ≤ k .
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Multi-distributed MTM (MD-MTM)

The proposals do not have to be identically distributed:
yj ∼ Tj(·|x) for 1 ≤ j ≤ k .

If y = yj0 is selected than put x∗
j0

= xt and sample x∗
j ∼ Tj(·|y).

May accomodate different sampling regimes.
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Multi-distributed MTM (MD-MTM)

The proposals do not have to be identically distributed:
yj ∼ Tj(·|x) for 1 ≤ j ≤ k .

If y = yj0 is selected than put x∗
j0

= xt and sample x∗
j ∼ Tj(·|y).

May accomodate different sampling regimes.

π(x) = 0.3N((−20,−20)T ,Σ1)+0.4N((0,0)T ,Σ2)+0.3N((20,20)T ,Σ3),

where Σ1 = diag(0.5,0.5), Σ2 = diag(2,2) and Σ3 = diag(0.4,0.4).

Use MD-MTM for a random walk Metropolis with Gaussian
proposal and variances σ ∈ {5,50,100,150,200}.
Compare with MTM for a random walk Metropolis constructed with
only one of the σ’s.
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MD− MTM
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Multiple-Correlated-Try Metropolis (MCTM)

The proposals do not have to be independent.
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Multiple-Correlated-Try Metropolis (MCTM)

The proposals do not have to be independent.

MCTM(I)

Suppose we sample K trial proposals y1, . . . , yK from T̃ (y1, . . . , yK |xt)
where

∫

T̃ (y1, . . . , yK |xt)dy[−i ] = T (yi |xt), ∀1 ≤ i ≤ K .
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where

∫

T̃ (y1, . . . , yK |xt)dy[−i ] = T (yi |xt), ∀1 ≤ i ≤ K .

The algorithm proceeds as in the independent case with one
exception.
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Multiple-Correlated-Try Metropolis (MCTM)

The proposals do not have to be independent.

MCTM(I)

Suppose we sample K trial proposals y1, . . . , yK from T̃ (y1, . . . , yK |xt)
where

∫

T̃ (y1, . . . , yK |xt)dy[−i ] = T (yi |xt), ∀1 ≤ i ≤ K .

The algorithm proceeds as in the independent case with one
exception.

MCTM (II)

Draw (x∗
1 , . . . , x

∗
K−1) variates from the conditional transition kernel

T̃ (x1, . . . , xK−1|y , xK = xt) and let x∗
K = xt .
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Multiple-Correlated-Try Metropolis (MCTM)

The proposals do not have to be independent.

MCTM(I)

Suppose we sample K trial proposals y1, . . . , yK from T̃ (y1, . . . , yK |xt)
where

∫

T̃ (y1, . . . , yK |xt)dy[−i ] = T (yi |xt), ∀1 ≤ i ≤ K .

The algorithm proceeds as in the independent case with one
exception.

MCTM (II)

Draw (x∗
1 , . . . , x

∗
K−1) variates from the conditional transition kernel

T̃ (x1, . . . , xK−1|y , xK = xt) and let x∗
K = xt .

We have freedom in choosing T̃ as long as we can perform the
conditional sampling step.
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Antithetic or Stratified Sampling?

Yj = (Yj1, . . . ,Yjd ) ∈ Rd for 1 ≤ j ≤ K .
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Antithetic or Stratified Sampling?

Yj = (Yj1, . . . ,Yjd ) ∈ Rd for 1 ≤ j ≤ K .

Say K = 2, Var(Y ) = Σ = diag(σ2
1, . . . , σ

2
d ), Cov(Y1h,Y2h) = σ2

hρh.
Then

E
[

||Y1 − Y2||2
]

= E

[

d
∑

h=1

(Y1h − Y2h)
2

]

=

d
∑

h=1

σ2
h(1 − ρh).
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hρh.
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]

= E

[

d
∑

h=1

(Y1h − Y2h)
2

]

=

d
∑

h=1

σ2
h(1 − ρh).

One possible choice is ρh = −1/(K − 1) (covariance matrix needs
to be positive definite!).
The optimal choice of ρh depends on σh, 1 ≤ h ≤ d .
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to be positive definite!).
The optimal choice of ρh depends on σh, 1 ≤ h ≤ d .
Conditional sampling needed for MCTM is straightforward in the
case of Gaussian proposals.
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Antithetic or Stratified Sampling?

Yj = (Yj1, . . . ,Yjd ) ∈ Rd for 1 ≤ j ≤ K .

Say K = 2, Var(Y ) = Σ = diag(σ2
1, . . . , σ
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d ), Cov(Y1h,Y2h) = σ2

hρh.
Then

E
[

||Y1 − Y2||2
]

= E

[

d
∑

h=1

(Y1h − Y2h)
2

]

=

d
∑

h=1

σ2
h(1 − ρh).

One possible choice is ρh = −1/(K − 1) (covariance matrix needs
to be positive definite!).
The optimal choice of ρh depends on σh, 1 ≤ h ≤ d .
Conditional sampling needed for MCTM is straightforward in the
case of Gaussian proposals.
If Yj = ψ(Xt ,Uj) with ψ increasing in Uj then we need to use U ’s
which are negatively associated (NA - Craiu and Meng, AnnStat.
2005).
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Quasi-Monte Carlo (QMC)

QMC is a de-randomized MC; the samples are constructed
deterministically.

QMC: highly uniform and stratified sampling in the unit hypercube.

Interest: high-uniformity, a.k.a. low discrepancy.
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QMC is a de-randomized MC; the samples are constructed
deterministically.

QMC: highly uniform and stratified sampling in the unit hypercube.

Interest: high-uniformity, a.k.a. low discrepancy.

For v ∈ (0,1)d , B(v) = {u ∈ (0,1)d : 0 < uj ≤ vj , 1 ≤ j ≤ d}.
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deterministically.

QMC: highly uniform and stratified sampling in the unit hypercube.

Interest: high-uniformity, a.k.a. low discrepancy.

For v ∈ (0,1)d , B(v) = {u ∈ (0,1)d : 0 < uj ≤ vj , 1 ≤ j ≤ d}.

For a point set Sn define α(Sn, v) = card{Sn ∩ B(v)}.
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Quasi-Monte Carlo (QMC)

QMC is a de-randomized MC; the samples are constructed
deterministically.

QMC: highly uniform and stratified sampling in the unit hypercube.

Interest: high-uniformity, a.k.a. low discrepancy.

For v ∈ (0,1)d , B(v) = {u ∈ (0,1)d : 0 < uj ≤ vj , 1 ≤ j ≤ d}.

For a point set Sn define α(Sn, v) = card{Sn ∩ B(v)}.

Star-discrepancy

D∗
n(Sn) = sup

v∈(0,1)d
|v1 . . . vd − α(Sn, v)/n|.
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Randomized QMC (RQMC)

Efficiency can be connected to discrepancy.
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Randomized QMC (RQMC)

Efficiency can be connected to discrepancy.

Koksma-Hlawka Theorem
∣

∣

∣

∣

∣

∣

µ− 1
n

∑

u∈Sn

f (u)

∣

∣

∣

∣

∣

∣

≤ D∗
nV (f ).

Both V (f ) and D∗ are difficult to compute in general.
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u∈Sn

f (u)

∣
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≤ D∗
nV (f ).

Both V (f ) and D∗ are difficult to compute in general.
Randomized versions of QMC (RQMC) algorithms are used to
establish error estimates via Monte Carlo simulation. (Art Owen,
Stanford; Christiane Lemieux, Waterloo; Pierre L’Ecuyer,
Montréal).
Randomization is performed so that it preserves the
low-discrepancy of the set point.
Makes QMC set points suitable for MC as marginals are uniform.
RQMC and MCMC (Owen and Tribble, PNAS ’05; Lemieux and
Sidorsky, Math. & Comp. Model., 2006).
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Latin Hypercube Sampling (LHS)

Simultaneous stratification of the univariate marginals if
U ∼ Uniform(0,1)d .

Construction: For 1 ≤ i ≤ K , 1 ≤ j ≤ d :
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Latin Hypercube Sampling (LHS)

Simultaneous stratification of the univariate marginals if
U ∼ Uniform(0,1)d .

Construction: For 1 ≤ i ≤ K , 1 ≤ j ≤ d :
i) Vij ∼ Uniform(0,1) are i.i.d
ii) {τj , 1 ≤ j ≤ d} are independent permutations of {0, . . . ,K −1}
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Latin Hypercube Sampling (LHS)

Simultaneous stratification of the univariate marginals if
U ∼ Uniform(0,1)d .

Construction: For 1 ≤ i ≤ K , 1 ≤ j ≤ d :
i) Vij ∼ Uniform(0,1) are i.i.d
ii) {τj , 1 ≤ j ≤ d} are independent permutations of {0, . . . ,K −1}

Uij =
τj(i − 1) + Vij

K
.
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Latin Hypercube Sampling (LHS)

Simultaneous stratification of the univariate marginals if
U ∼ Uniform(0,1)d .

Construction: For 1 ≤ i ≤ K , 1 ≤ j ≤ d :
i) Vij ∼ Uniform(0,1) are i.i.d
ii) {τj , 1 ≤ j ≤ d} are independent permutations of {0, . . . ,K −1}

Uij =
τj(i − 1) + Vij

K
.

U(i) is the i th row of the matrix U.
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Latin Hypercube Sampling (LHS)

Simultaneous stratification of the univariate marginals if
U ∼ Uniform(0,1)d .

Construction: For 1 ≤ i ≤ K , 1 ≤ j ≤ d :
i) Vij ∼ Uniform(0,1) are i.i.d
ii) {τj , 1 ≤ j ≤ d} are independent permutations of {0, . . . ,K −1}

Uij =
τj(i − 1) + Vij

K
.

U(i) is the i th row of the matrix U.

Given U(i) = (Ui1, . . . ,Uid ) ∈ (0,1)d , 1 ≤ i ≤ K we can use:
a) For 1 ≤ j ≤ d fixed: {U1j , . . . ,U(Kj)} as a set of NA
Uniform(0,1) r.v.’s.
b) (U(1), ....,U(K )) as a stratified sample of (0,1)d .
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LHS and Gaussian sampling: K = 64, d = 2
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LHS in MTM
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LHS in MTM

Vi ∼ U(0,1), Ui = i+Vi
K , Yi = F−1

Xt
(Ui), 0 ≤ i ≤ K − 1 (no

permutation is needed!).
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K , Yi = F−1

Xt
(Ui), 0 ≤ i ≤ K − 1 (no

permutation is needed!).

If Y = Yi0 is selected:

Radu Craiu (fisher.utstat.toronto.edu/craiu/) RQMC for MCMC 3rd WMCM - May, 2007 13 / 27



LHS in MTM

Vi ∼ U(0,1), Ui = i+Vi
K , Yi = F−1

Xt
(Ui), 0 ≤ i ≤ K − 1 (no

permutation is needed!).

If Y = Yi0 is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
( i0

K ,
i0+1

K ), then we want to sample x∗
2 , . . . , x

∗
k using all the K − 1

uniforms which ARE NOT IN ( i0
K ,

i0+1
K ).
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LHS in MTM

Vi ∼ U(0,1), Ui = i+Vi
K , Yi = F−1

Xt
(Ui), 0 ≤ i ≤ K − 1 (no

permutation is needed!).

If Y = Yi0 is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
( i0

K ,
i0+1

K ), then we want to sample x∗
2 , . . . , x

∗
k using all the K − 1

uniforms which ARE NOT IN ( i0
K ,

i0+1
K ).

i) Put j0 = [KFy(Xt)] (where [·] is integer part) and construct a
random permutation τ such that τ(j0) = i0 .
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LHS in MTM

Vi ∼ U(0,1), Ui = i+Vi
K , Yi = F−1

Xt
(Ui), 0 ≤ i ≤ K − 1 (no

permutation is needed!).

If Y = Yi0 is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
( i0

K ,
i0+1

K ), then we want to sample x∗
2 , . . . , x

∗
k using all the K − 1

uniforms which ARE NOT IN ( i0
K ,

i0+1
K ).

i) Put j0 = [KFy(Xt)] (where [·] is integer part) and construct a
random permutation τ such that τ(j0) = i0 .
ii) Put x∗

j0
= Xt , and for i 6= j0 U∗

i = τ(i)+Wi
K and x∗

i = F−1
y (U∗

i ), with
Wi ∼ Uniform(0,1) independent from the V ’s.
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LHS in MTM

Vi ∼ U(0,1), Ui = i+Vi
K , Yi = F−1

Xt
(Ui), 0 ≤ i ≤ K − 1 (no

permutation is needed!).

If Y = Yi0 is selected:

Intuitively, if Y has been generated using a uniform from the interval ,
( i0

K ,
i0+1

K ), then we want to sample x∗
2 , . . . , x

∗
k using all the K − 1

uniforms which ARE NOT IN ( i0
K ,

i0+1
K ).

i) Put j0 = [KFy(Xt)] (where [·] is integer part) and construct a
random permutation τ such that τ(j0) = i0 .
ii) Put x∗

j0
= Xt , and for i 6= j0 U∗

i = τ(i)+Wi
K and x∗

i = F−1
y (U∗

i ), with
Wi ∼ Uniform(0,1) independent from the V ’s.

One can get away without permuting at all!!
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Korobov Rules

K points in [0,1]d are generated using a generator
a ∈ {1, . . . ,K − 1}.
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Korobov Rules

K points in [0,1]d are generated using a generator
a ∈ {1, . . . ,K − 1}.

SK =
{ i

K (1,a,a2 mod K , . . . ,ad−1 mod K ) mod 1
}

0≤i≤K−1.
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Korobov Rules

K points in [0,1]d are generated using a generator
a ∈ {1, . . . ,K − 1}.

SK =
{ i

K (1,a,a2 mod K , . . . ,ad−1 mod K ) mod 1
}

0≤i≤K−1.

Bad choices: a and K are not relatively prime or a = 1.

The point set is fully projection regular, i.e. any lower-dimensional
projection contains K distinct points.
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Korobov Rules

K points in [0,1]d are generated using a generator
a ∈ {1, . . . ,K − 1}.

SK =
{ i

K (1,a,a2 mod K , . . . ,ad−1 mod K ) mod 1
}

0≤i≤K−1.

Bad choices: a and K are not relatively prime or a = 1.

The point set is fully projection regular, i.e. any lower-dimensional
projection contains K distinct points.

To randomize add a vector UK ∼ Uniform(0,1)d mod 1 i.e.

SR
K = SK + UK mod 1.
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Example: Korobov rule and Gaussian sampling

Independent

x

y

N=128, a=47

−4 −2 0 2 4

−
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−
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Randomized Korobov

x

y

−4 −2 0 2 4

−
4

−
2

0
2

4
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Going beyond uniformity
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Going beyond uniformity

Sometimes we want to "favor" regions in the hypercube but
uniformity is lost once we transform the QMC point set.
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Going beyond uniformity

Sometimes we want to "favor" regions in the hypercube but
uniformity is lost once we transform the QMC point set.

g : [0,1] → [0,1] is a bijection and Ũ = g(U) = (g(U1), . . . ,g(Ud)).

Y ∼ T (·|X ) ⇔ Y = ψ(X ,U) so if Y = ψ(X , Ũ) then Y ∼ T̃ (·|X ).
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Going beyond uniformity

Sometimes we want to "favor" regions in the hypercube but
uniformity is lost once we transform the QMC point set.

g : [0,1] → [0,1] is a bijection and Ũ = g(U) = (g(U1), . . . ,g(Ud)).

Y ∼ T (·|X ) ⇔ Y = ψ(X ,U) so if Y = ψ(X , Ũ) then Y ∼ T̃ (·|X ).

If λ(X ,Y ) = T (Y |X )/T̃ (Y |X ) is symmetric, i.e. λ(X ,Y ) = λ(Y ,X ),
then MCTM can be implemented. without computing T̃ .
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Going beyond uniformity

Sometimes we want to "favor" regions in the hypercube but
uniformity is lost once we transform the QMC point set.

g : [0,1] → [0,1] is a bijection and Ũ = g(U) = (g(U1), . . . ,g(Ud)).

Y ∼ T (·|X ) ⇔ Y = ψ(X ,U) so if Y = ψ(X , Ũ) then Y ∼ T̃ (·|X ).

If λ(X ,Y ) = T (Y |X )/T̃ (Y |X ) is symmetric, i.e. λ(X ,Y ) = λ(Y ,X ),
then MCTM can be implemented. without computing T̃ .

Example :

g(u) =
sin[π(u − 0.5)] + 1

2
.

i) g is bijective.
ii) g(x) = x , ∀x ∈ {0,1/2,1}, g(u) + g(1 − u) = 1, ∀u ∈ (0,1).
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Example

Randomized Korobov
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y
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Transformed Korobov
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Gaussian Proposals

Suppose T (y |x) is a multivariate Gaussian with no correlation.

T (y |x) =

d
∏

j=1

e−(yj−xj )
2/2σ2

j

√

2πσ2
j

Then

T̃ (y |x) =
d

∏

j=1

e−(yj−xj)
2/2σ2

j

√

2πσ2
j

1

π

√

Φ(
yj−xj

σj
)
[

1 − Φ(
yj−xj

σj
)
]

.

λ(y , x) =
d

∏

j=1

1

π

√

[

1 − Φ(
xj−yj

σj
)
]

Φ(
xj−yj

σj
)

= λ(x , y).
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Bimodal density

Use MCTM combined with random-ray Monte Carlo to sample from
(Gelman and Meng, Am. Stat. ’91)

π(x1, x2) ∝ exp{−(9x2
1 x2

2 + x2
1 + x2

2 − 8x1 − 8x2)/2}
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Efficiency Comparison

At each iteration a random direction v is generated;

Along direction v we sample proposals y1, . . . , yk around the
current state xt using yi = xt + ri with ri ∼ Uniform(−σ, σ).

Table: Values of the MSE reduction factor R =
MSEanti
MSEind

.

σ\k 3 4 5 6
3 0.35 0.53 0.64 0.81
4 0.31 0.42 0.58 0.76
5 0.29 0.40 0.49 0.62
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Lupus Data

Lupus Data (van Dyk and Meng, JCGS 2001): 55 patients, 2
covariates; logistic model.
The posterior density is proportional to

π(β|x , y) ∝
2

∏

j=0

e−0.5βj /1002

100
√

2π

55
∏

i=1

[

exp(XT
i β)

1 + exp(XT
i β)

]yi [ 1
1 + exp(XT

i β)

]1−yi

.

Sample using MCTM with antithetically coupled proposals or
stratified proposals via a randomized Korobov set shifted using
the transformation g.

Radu Craiu (fisher.utstat.toronto.edu/craiu/) RQMC for MCMC 3rd WMCM - May, 2007 21 / 27



Efficiency comparison for Lupus Data

Table: Values of R for β1 and p25 = 1{β1>25} in the logit example.

Antithetic QMC
k\σ 2 3 4 2 3 4

3 0.92/0.92 0.90/0.86 0.99/0.95 - - -
4 0.94/0.87 0.88/0.88 0.91/0.89 - - -
5 0.98/0.96 0.81/0.81 0.89/0.86 - - -
6 0.91/0.86 0.86/0.78 0.95/0.92 - - -
8 0.81/0.70 0.75/0.69 0.83/0.80 0.69/0.72 0.61/0.60 0.59/0.56
16 0.87/0.81 0.97/0.94 0.91/0.88 0.81/0.81 0.82/0.84 0.76/0.75

Table: Computation Times k = 8

Sample Size MTM MCTM (A) MCTM (S)
105 34 36 32
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Multi-Annealed Metropolis (MAM)

Inspired by Neal’s (Stat. & Comp., 1996) tempered transition
method.

Uses a series of distributions {πt}t∈{1=T0,T1,...,TM}, constructed
between the distribution of interest, π, and πTM

.

Relies on a "path" that crosses all the intermediate distributions.

If 1 = T0 < T1 < T2 = T and QTi
is a proposal distribution for

πTi
∝ π1/Ti .

Suppose that QTi
(X |Y ) = QTi

(Y |X ) (e.g., random walk
Metropolis).

Radu Craiu (fisher.utstat.toronto.edu/craiu/) RQMC for MCMC 3rd WMCM - May, 2007 23 / 27



MAM - The algorithm

Π

Π

0

1

X t

Π
2

X 1

X 2

Y
2

Y
1

Given the chain is in state X :
i) Sample X1 ∼ Q1(·|X ), X2 ∼ Q2(·|X1), Y2 ∼ Q2(·|X2), Y1 ∼ Q1(·|Y2).

ii) Accept Y1 with probability min
{

1, π0(Y1)
π0(X) · π2(X1)π1(Y2)

π1(X1)π2(Y2)

}

.
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Example

MAM(4)

−20 −10 0 10 20

−
2

0
−

1
0

0
1

0
2

0

T=(2,8,10,15,20, 30)
sigma=(2,3,4,5,8,15)
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Multiple-try extension of the MAM
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Multiple-try extension of the MAM
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Π
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MTM can be implemented by generating multiple paths and
compensate using the same number of reverse paths. We have
freedom in choosing the "weight of a path".
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Multiple-try extension of the MAM
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2

MTM can be implemented by generating multiple paths and
compensate using the same number of reverse paths. We have
freedom in choosing the "weight of a path".

MAM
Pros : increases the acceptance rate >10 fold, does not require
running the parallel chains all the time;
Cons: Requires symmetric proposals.
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Negative Association for Multiple-Try MAM

Suppose that Xi ∼ Qi(·|Xi−1) ⇔ Xi = ψi(Xi−1,Ui) with
Ui ∼ Uniform[0,1]d and ψi is monotone in each component of Ui .

Y1 = ψ1(ψ2(ψ2(ψ1(X ,U1),U2),V2),V1) and
Y ′

1 = ψ1(ψ2(ψ2(ψ1(X ,U ′
1),U

′
2),V

′
2),V

′
1).

The paths do not need to be generated independently.

If (Ui ,U ′
i ) and (Vi ,V ′

i ) are negatively associated then
Corr(Y1,Y ′

1) < 0 so the average distance between the paths is
larger than under independence.
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