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Diagnostic Tests and ROC

Consider a test designed to differentiate between two classes:
diseased and non-diseased.

Compared to the truth, a.k.a. ”the golden rule”, one is
interested in determining how well the test is performing.

Given a certain criterion, one can use it to compare different
tests and choose the most effective way of separating the two
classes.

All the information available should be used in assessing the
test accuracy.
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ROC

Suppose that the test result is r.v. T and depending on
whether T < c or T ≥ c the test result is considered
negative, respectively positive.

Sensitivity is the true positive rate.

Specificity is the true negative rate.

ROC is the plot of Sensitivity against 1-Specificity.

Different ROC’s/tests can be compared using a global
univariate summary such as the area under the curve (AUC).

Bamber (1975) has shown that AUC can be interpreted as the
probability that a randomly chosen diseased subject will have
a marker (test) value, Y , greater than the value X of a
randomly chosen nondiseased subject.
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ROC - cont’d
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Separating Populations

More generally, Wolfe and Hogg (1971) have proposed using
the P(Y > X ) as a measure of the difference between two
populations and have argued that this is often more
meaningful than looking at mean differences.
Hauck, Hyslop and Anderson (2000) propose the use of
P(Y > X ) in assessing treatment effects for clinical trials.

Arises in reliability (Reiser and Guttman, ’86).
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ROC - cont’d

Enormous amount of literature dedicated to
constructing/comparing ROC’s and estimating AUC’s under a
wide variety of scenarios (Pepe, 2003).

For this talk of interest is the extra information available for
each unit/individual tested.

For instance, there may be covariate measurements made for
each unit tested.

How to incorporate this information in our assessment?
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ROC & Covariates

AI Model the relationship between the ROC/AUC and the
covariates directly.

Loses the connection with the threshold value
Does not allow prediction of the sensitivity and specificity at a
given threshold value conditional on the covariate.
It does not model covariate effects on the individual marker
values.

AII Model the covariate effects on the test values and obtain
dependence of AUC on covariates via this. (Faraggi, ’03).



Review Covariate Adjustment Example Asymptotic Theory and Simulations

A General Regression Model

The test response variable for nondiseased individuals is X
and for diseased individuals is Y .

X |Z = f (Z ) +
√

v1(Z ) ǫ1, (1)

Y |Z = g(Z ) +
√

v2(Z ) ǫ2, (2)

The standardized errors ǫ1 and ǫ2 are independent of each
other with zero mean and unit variance, and the variance
functions 0 < v1(z) < ∞ and 0 < v2(z) < ∞ for all z ∈ ℜ.

We get a different ROC/AUC for each value of Z!
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A Simple Illustration
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Normal Noise Assumption

Errors ǫ1 and ǫ2 are normally distributed.

AN(z) = P(Y > X |Z = z) = Φ

{
g(z) − f (z)√
v1(z) + v2(z)

}

,

qN(z) = Φ

{
g(z) − c√

v2(z)

}

, 1−pN(z) = 1−Φ

{
c − f (z)√

v1(z)

}

,

for a given threshold c .

qN(z) = Φ

[
g(z) − f (z) +

√
v1(z)Φ−1{1 − pN(z)}√
v2(z)

]

,

The unknown functions f , g , v1, v2, are estimated using
nonparametric smoothing.
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General Noise Assumption

Motivated by the Mann-Whitney statistic:

Mm,n =
1

mn

m∑

i=1

n∑

j=1

1[0,∞)(yj − xi)

where 1[0,∞)(x) = 1 if x ≥ 0 and 1[0,∞)(x) = 0 otherwise.

The data for nondiseased and diseased samples is denoted
{(zi ,x , xi ) : i = 1, . . . ,m} and {(zj ,y , yj) : j = 1, . . . , n}
Z values may differ between diseased and non-diseased.

We want A(z) = P(Y > X |Z = z) for any z in the range of
observed values.
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General Noise Assumption - cont’d

We could use the data corresponding to z-values in the
neighborhood of z .

AL(z) =
∑

zi,x∈N(z)

∑

zj,y∈N(z)

1[0,∞)(yj − xi)∑m
i=1 1N(z)(zi ,x)

∑n
j=1 1N(z)(zj ,y)

We could also use a fully-nonparametric estimator

ÂFNP =

∑n
j=1

∑m
i=1 1[0,∞)(yj − xi )Kh1

(Zj − z)Kh2
(Zi − z)

∑n
j=1

∑m
i=1 Kh1

(Zj − z)Kh2
(Zi − z)

.

Such local estimators are less efficient and do not take
advantage of the model.

Instead, we propose an estimator that uses the entire data
available as well as the models specified.
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General Noise Assumption - cont’d

If we had all the standardized residuals

ǫi ,x =
xi − f (zi ,x)√

v1(zi ,x)
, ǫj ,y =

yj − g(zj ,y)√
v2(zj ,y )

,

and if we knew f , g , v1, v2 then we could construct working
samples {xi ,z , . . . , xm,z} and {y1,z , . . . , yn,z} for Z = z , as if
they were all observed at Z = z ,

xi ,z = f (z) +
√

v1(z)ǫi ,x , yj ,z = g(z) +
√

v2(z)ǫj ,y .

The Covariate-Adjusted Mann-Whitney Estimator (CAMWE)
for A(z),

AM(z) =
1

mn

m∑

i=1

n∑

i=1

1[0,∞)(yj ,z − xi ,z).
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General Noise Assumption - cont’d

The standardized residuals can be estimated using estimates
for f , g , v1 and v2.

After obtaining nonparametric estimates of the unknown
functions f , g , v1 and v2, we do not have to choose other
tuning parameters for each covariate value Z = z .

We can calculate the sensitivity and specificity from the
working samples for Z = z ,

qM(z) =
1

n

n∑

j=1

1[0,∞)(yj ,z ≥ c), pM(z) =
1

m

n∑

i=1

1[0,∞)(xi ,z ≤ c),

for a given threshold c .

The ROC curves for Z = z can be obtained by plotting qM(z)
versus 1 − pM(z) for all possible values of c .



Review Covariate Adjustment Example Asymptotic Theory and Simulations

Nonparametric Smoothing Procedures

Local polynomial regression for estimating f , g , v1 and v2

(Fan and Gijbels, ’96).

The variance functions v1(z) and v2(z) for heteroscedastic
errors are estimated by fitting local polynomial regression to
the squared residuals, vi ,x and vj ,y , i = 1, . . . ,m, j = 1, . . . , n,

vi ,x = {xi − f̂ (zi ,x)}2, vj ,y = {yj − ĝ(zj ,y )}2,

All bandwidths are selected using the standard procedure of
leave-one-out cross validation.
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Local Polynomial Regression - short description

Consider the nondiseased sample (zi ,x , xi ), i = 1, . . . ,m,
which is assumed to consist of i.i.d. realizations from a
random vector (Z ,X ).

The local polynomial regression estimator of f (z) is obtained
by minimizing

m∑

i=1

{xi −
p∑

k=0

βk(zi ,x − z)k}2Kh1
(zi ,x − z),

where h1 is a bandwidth controlling the amount of smoothing,
and Kh1

(·) = K (·/h1)/h1.
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Local Polynomial Regression - short description
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Local Polynomial Regression - short description

In matrix notation let Zx be the design matrix

Zx =




1 (z1,x − z) · · · (z1,x − z)p

...
...

...
1 (zm,x − z) · · · (zm,x − z)p



 ,

Wx ,h1
= diag{Kh1

(zi ,x − z) : i = 1, . . . ,m} and
x = (x1, . . . , xm)T .

The local polynomial estimator is given by

f̂ (z) = e
T
1 (ZT

x Wx ,h1
Zx)

−1ZxWx ,h1
x.

Similarly,

ĝ(z) = e
T
1 (ZT

y Wy ,h2
Zy)

−1ZyWy ,h2
y.
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Local Polynomial Regression - short description

The nonparametric estimators v̂1(z) and v̂2(z) are obtained by
fitting local polynomial regression to the squared residuals,
i.e., the variance observations, vi ,x and vj ,y ,
i = 1, . . . ,m, j = 1, . . . , n, defined by

vi ,x = {xi − f̂ (zi ,x)}2, vj ,y = {yj − ĝ(zj ,y )}2.

Let b1 be the bandwidth for v̂1(z). Let
vx = (v1,x , . . . , vm,x)

T . Then

v̂1(z) = e
T
1 (ZT

x Wx ,b1
Zx)

−1ZxWx ,b1
vx

where Wx ,b1
= diag{Kb1

(zi ,x − z) : i = 1, . . . ,m}.
Similar calculations can be done for v̂2.



Review Covariate Adjustment Example Asymptotic Theory and Simulations

Bootstrap-based Confidence Bands

Sample with replacement from the estimated standardized
residuals {ǫ̂i ,x : i = 1, . . . ,m} and {ǫ̂j ,y : j = 1, . . . , n} to form

bootstrap sets {ǫ̂(b)
i ,x ; i = 1, . . . ,m} and {ǫ̂(b)

j ,y : j = 1, . . . , n}.
Using the estimated mean and variance functions from the
observed data, construct the bootstrapped working samples at
covariate value Z = z ,

x̂
(b)
i ,z = f̂ (z)+ǫ̂

(b)
i ,x

√
v̂1(z), ŷ

(b)
j ,y = ĝ(z)+ǫ̂

(b)
j ,y

√
v̂2(z), i = 1, . . . m,

Estimate A(b)(z) using

Â
(b)
M

(z) =
1

mn

m∑

i=1

n∑

j=1

1[0,∞)(ŷ
(b)
j ,y − x̂

(b)
i ,x ).

Then the set {Â(b)
M (z) : b = 1, . . . ,B} is used to obtain

confidence limits for Â(z).
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Simulations

For non-diseased individuals:

Xi = α0 + α1Zi + α2 sin(Zi ) + ǫi

where the Student(3) deviate ǫ has conditional variance
rescaled by xi0 + ξ1Φ(δ0 + δ1Zi).

For diseased individuals we consider the model

Yi = β0 + β1Zi + β2 sin(Zi) + β3

√
Zi − 1 + ηi ,

with η Student(3) with conditional variance
var(ηi |Zi ) = var(ǫi |Zi) + γ.
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Simulations-cont’d
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Simulations-cont’d
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Simulations-cont’d

Confidence Bands for errors distributed: normal (L), t3 (C) and
lognormal (R)
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Example: White Onions Data
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Figure: Spanish Onion Data with response on: the orginal scale (left) the
logarithmic scale (right).
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Example

Figure: Comparison of estimated dependency between AUC and density
obtained using the nonparametric approach with and without normal
noise with the parametric estimation of the same dependency assuming a
normal linear regression model.
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Example

Figure: Response is on the logarithmic scale.
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Asymptotic Results - Normal Error

Convergence in the Normal Error Case

If n/m → ∞,

√
mh1(ÂN(z) − AN(z)) → N(B1(z),V1(z)).

If n/m → 0,

√
nh2(ÂN(z) − AN(z)) → N(B2(z),V2(z)).

If n/m → c ∈ (0,∞),

√
mh1(ÂN(z) − AN(z)) → N(B3(z),V3(z)).

Under stronger assumptions the convergence of ÂN(z) − AN(z) to
0 holds almost surely.
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Asymptotic Results - General Error

Step I - Convergence of the hypothetical estimator

Take

AM(z) =
1

mn

m∑

i=1

n∑

i=1

1[0,∞)(yj ,z − xi ,z)

where

xi ,z = f (z) +
√

v1(z)ǫi ,x , yj ,z = g(z) +
√

v2(z)ǫj ,y .

Then if n/m → λ for some 0 < λ < ∞, ξ(z) > 0

√
m + n{AM(z) − A(z)} D−→ N(0, ξ(z))

where λ∗ = 1/(1 + λ).
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Asymptotic Results - General Error

Step II - L2 Consistency

For a given z
E [{ÂM(z) − AM(z)}2] −→ 0.

Step I + Step II

E [{ÂM(z) − A(z)}2] −→ 0.



Review Covariate Adjustment Example Asymptotic Theory and Simulations

References

Bamber, D. C. (1975) , “The area above the ordinal dominance
graph and the area below the receiver operating characteristic
graph,” J. Math. Physiol., 12, 387–415.

Fan, J. and Gijbels, I. (1996), Local Polynomial Modelling and Its
Applications, London: Chapman & Hall.

Faraggi, D. (2003), “Adjusting receiver operating curves and related
indices for covariates,” The Statistician, 52, 179–192.

Hauck, W., Hyslop, T., and Anderson, S. (2000), “Generalized
treatment effects for clinical trials,” Statist. Medicine, 19, 887–899.

Pepe, M. S. (2003) , The Statistical Evaluation of Medical Tests for
Classification and Prediction Oxford Statistical Sciences Series.

Reiser, B. and Guttman, I. (1986), “Stastistical-Inference for
Pr(Y-less-than-X) - The normal case,” Technometrics, 28, 253–257.

Wolfe, D., and Hogg, R. (1971), “Constructing Statistics and
reporting data,” Amer. Statistician, 25, 27–30.


	Review
	ROC as a Diagnostic Measure

	Covariate Adjustment
	Normal Noise Assumption
	General Noise Assumption
	Nonparametric Smoothing
	Local Polynomial Regression
	Bootstrap-based Confidence Bands
	Simulations

	Example
	White Onion Data

	Asymptotic Theory and Simulations
	Asymptotic Results - Normal Error
	Asymptotic Results - General Error


