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Motivation for LISA

I Due to MCMC developments, for 30+ years Bayesian
statisticians were computationally liberated when thinking
about a statistical model.

I Large data and/or intractable likelihoods have brought
Bayesian computation at a crossroads.

I The Metropolis-Hastings sampler is one of the most used
algorithms in MCMC. It operates as follows:

I Given the current state of the chain θ, draw ξ ∼ q(ξ|θ).

I Accept ξ with probability min
{

1, π(ξ|y)q(θ|ξ)
π(θ|y)q(ξ|θ)

}
.

I If ξ is accepted, the next state is ξ, otherwise it is (still) θ.

I Require calculation of the likelihood at each iteration which is
expensive when data is massive.



Introduction LISA Numerical Experiments

Motivation for LISA

I Possible remedies: divide and conquer, sequential processing,
pseudomarginal, precomputing, etc

I D &C: Divide data into batches, y(1) ∪ . . . y(K), distribute the
sampling from the K sub-posteriors

πj(θ) ∝ [Lk(θ|y(j))]a[pj(θ)]b

among K processing units

I Depending on a, b values, design recombination strategies for
the πj -samples to recover the characteristics of the full
posterior distribution.

I Aim: minimize the loss of information compared to full
posterior analysis.
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Example: Consensus Monte Carlo (Scott et al., 2016)

I Consider the full posterior π(θ|y) ∝ p(θ)f (y|θ) where
f (y|θ) =

∏N
i=1 f (yi |θ)

I The batch-specific posterior is defined as

πh,CMC ∝ [p(θ)]
1
K f (y(h)|θ)

I MCMC samples are obtained independently from each πh and
combined using a weighted average since

π(θ|y) ∝
K∏

h=1

πh,CMC (θ|y(h)).

I Theory works if the posteriors are Gaussian.

I Motivation: CMC does not perform well for the Bayesian
Additive Regression Trees (BART) model.
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LISA: Initial targets

I Improve the use of BART for big data.

I Bring the batch-specific likelihood ”closer” to the whole-data
likelihood.

I Define πh,LISA ∝ p(θ)[f (y(h)|θ)]K .

I Intrinsic BF (Berger& Perrichi, JASA ’96), Data cloning (Lele
& al., JASA ’10), Bayesian robustness (Holmes & Walker,
Bmka, ’17), etc.
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LISA: Anchoring Intuitions

I θ̂
(j)
n,L and θ̂

(j)
n,C denote the j-th sub-posterior modes in LISA

and CMC

I Î
(j)
n,L and Î

(j)
n,C denote the negative second derivative for the j-th

log sub-posterior for LISA and CMC

A1: There exist θL,θC such that if we define ε
(j)
n,L = |θ̂(j)

n,L − θL|
and ε

(j)
n,C = |θ̂(j)

n,C − θC |, then max
1≤j≤K

ε
(j)
n,L → 0 and

max
1≤j≤K

ε
(j)
n,C → 0 w.p. 1 as n→∞.

A2: |Î (i)
n,L − Î

(j)
n,L| −→ 0 and |Î (i)

n,C − Î
(j)
n,C | → 0 w.p. 1 ∀ i 6= j as

n→∞.

A3: πFull , πh,LISA, and πh,CMC are unimodal distributions that
have continuous derivatives of order 2.
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LISA: Anchoring Intuitions

I Assume:
I A1 through A3 hold

I Î
1/2
N (θFull − θ̂N)

D−→ N(0, I ) as N →∞ (K is fixed), where

θFull ∼ πFull(θ| ~YN) then

I Then if K is fixed and N →∞

Î
1/2
N (θj ,L − θ̂N)

D−→ N(0, I )

Î
1/2
N (θj ,C − θ̂N)

D−→ N(0,KI ), ∀ j ∈ {1, . . . ,K}.

I Asymptotics suggest that draws from each batch can be used
without weighting
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LISA: Bernoulli Example

I Consider yN = {y1, ..., yN} to be N i.i.d. Bernoulli (θ)random
variables

I Prior p(θ) = Beta(α, β) for parameter θ

I Set S =
∑N

i=1 yi and Sj = # of 1’s in j-th batch. Then:

FULL πFull(θ|yN) is Beta(S + α,N − S + β)

CMC: πj,CMC (θ|y(j)) is Beta
(
Sj + α−1

K + 1, NK − Sj + β−1
K + 1

)
LISA: πj,LISA(θ|y(j)) is Beta(SjK + α, (n − Sj)K + β)

I If Sj = S/K and n = N/K then πj ,LISA(θ|y(j)) = πFull(θ|yN)

I No weighting needed!
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BART - Chipman et al. (AOAS, 2010)

I Flexible Bayesian approach for nonparametric regression

I Regression setting Y = f (X ) + ε where predictor f (X ) is the
sum of (many) regression tree models

f (X ) = g1(X ,T1,M1) + . . .+ gm(X ,Tm,Mm),

with ε ∼ N(0, σ2).

I Focus is on prediction.
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BART - One tree

I A tree T with b terminal nodes has parameters
M = (µ1, . . . , µb).

I The splitting rules → partition of the covariate space

I BART fits an intercept for data in each marginal node
resulting in a piecewise constant approximation of f .
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MCMC & BART

The priors are:

I p(σ) = Inv-Gamma(ν2 ,
νλ
2 ),

I p(µj |µµ, σµ) = N(µµ, σµ)
I p(Tj), is characterised by three aspects:

I The probability that a node at depth d = 0, 1, ... is
non-terminal.

I The distribution of the splitting variable at each interior node.
I The distribution of the splitting rule in each interior node.
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The BART Posterior

π(θ) = π(θ|Y ,X ) ∝
{

(σ2)
− n

2 e−
1

2σ2

∑n
i=1 (yi−

∑m
j=1 g(xi ;Mj ,Tj ))2

}
︸ ︷︷ ︸

Likelihood

×

{
(σ2)

− ν
2
−1

e−
νλ
2σ2︸ ︷︷ ︸

Prior of σ2

[ m∏
j=1

σ
−bj
µ (2π)−

bj
2 e
− 1

2σ2
µ

∑bj
k=1 (µkj−µµ)2

p(Tj)
]}

︸ ︷︷ ︸
Prior

.

(1)
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MCMC & BART

I The MCMC sampler has the following steps

Step S Sample σ given (T1,M1), . . . , (Tm,Mm) using
σ2 | (T1,M1), ..., (Tm,Mm),Y ,X ∝ Inv-Gamma(ρ, γ) where

ρ = ν+n
2 and γ = 1

2 [
∑n

i=1 (yi −
∑m

j=1 g(xi ;Mj ,Tj))
2

+ λν ].

Step R For 1 ≤ j ≤ m sample (Tj ,Mj) given T−j ,M−j ,X , y, σ.
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Step R

I Sample Tj |Rj , σ , where Rj = y −
∑

k 6=j g(x ;Mk ,Tk) use
Metropolis-Hastings to GROW, PRUNE and CHANGE

I Assume we propose T∗, then the acceptance ratio will be:

r =
P(T∗ → T )

P(T → T∗)︸ ︷︷ ︸
transition ratio

× P(R | T∗, σ2)

P(R | T , σ2)︸ ︷︷ ︸
likelihood ratio

× P(T∗)

P(T )︸ ︷︷ ︸
tree structure ratio

I Sample Mj |Tj ,Rj , σ using

µij | Tj ,Rj , σ ∼ N

(
σ2

σ2
µ
µµ + ni R̄j(i)

σ2

σ2
µ

+ ni
, σ2

σ2

σ2
µ

+ ni

)
where R̄j(i)

denotes the average residual (computed without tree j) at
terminal node i with total number of observations ni .
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LISA & BART

I f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 with
N = 20, 000, K = 30, σ = 3.

I Compare LISA & Single Machine:

I Trees tend to be larger → Fewer data in each terminal node
I σ is severely underestimated
I Lower acceptance rates for tree moves.

Method Tree Nodes Avg σ̂2 95% CI for σ2

LISA (unif wgh) 55 0.001 [0.0009 , 0.0011]
SingleMachine 7 9.04 [8.85 , 9.21]
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Intermezzo: LISA & Normal Regression Example

I Consider Y = Xβ + ε, β ∈ Rp, X ∈ RN×p and Y , ε ∈ RN

with ε ∼ N(0, σ2IN).

I Consider Jeffrey’s prior p(β, σ2) ∝ 1/σ2
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Intermezzo: LISA & Normal Regression Example

FULL

σ
2 ∼ Inv-Gamma

(
N − p

2
,
s2(N − p)

2

)

β|σ2 ∼ N
(
β̂, σ

2(XTX )−1)
with β̂ = (XTX )−1XTY and

s2 =
(Y−X β̂)T (Y−X β̂)

N−p
.

E [βFull |Y , X ] = (XTX )−1XTY and

Var(βFull |Y , X ) = (XTX )−1 (N−p)/2
(N−p)/2−1

s2 =

(XTX )−1s2 + O(N−1).

LISA

σ
2 ∼ Inv-Gamma

(
N − p

2
,
Ks2

j (n − p)

2

)

β|σ2 ∼ N

(
β̂j ,

σ2

K
(X (j) TX (j))−1

)
,

E [β|Y (j), X (j)] = β̂j and

Var(β|Y (j), X (j)) = (X (j) TX (j))−1
s2
j (n−p)/2

(N−p)/2−1
=

(X (j) TX (j))−1
s2
j (n−p)

(N−p)
+ O(N−1).
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LISA: Normal Regression Example

I In order to combine the sub-posterior samples we propose
using the weighted average

βLISA = (
K∑
j=1

Wj)
−1

K∑
j=1

Wjβj ,

where βj ∼ πj(β|Y (j),X (j)) and Wj = X (j) TX (j)

σ2

Then E [βLISA|Y ,X ] = β̂ = (XTX )−1XTY , and

Var(βLISA|Y ,X ) = (XTX )−1 n − p

N − p

 K∑
j=1

s2
j (X (j) TX (j))

 (XTX )−1

≈ (XTX )−1 n − p

N − p
s2

I Modification needed!
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LISA: Normal Regression Example

LISA

σ
2 ∼ Inv-Gamma

(
N − p

2
,
Ks2

j (n − p)

2

)

β|σ2 ∼ N

(
β̂j ,

σ2

K
(X (j) TX (j))−1

)
wj ∝ 1

Mod LISA

σ
2 ∼ Inv-Gamma

(
N − p

2
,
Ks2

j (n − p)

2

)
σ̃ =

√
Kσ

β|σ̃2 ∼ N

(
β̂j ,

σ̃2

K
(X (j) TX (j))−1

)

wj ∝ (X (j) TX (j))[s2
j ]−1 = V̂ar(β̂j )

−1
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Modified LISA & BART

I Introduce an intermediate step between Step S and Step R
in the MCMC algorithm for LISA.

I Adjust the σ draws, i.e. set σ̃j =
√
Kσj

I Samples from batch j have weights ∝ σ̂−2
j
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Modified LISA & BART

Table: Comparing Train & Test RMSE, tree sizes, and average post
burn-in σ̂2 with 95% CI in each method for K = 30 to SingleMachine
BART.

Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 2.73 2.94 602 1.91 [1.45 , 2.88]
LISA 1.18 1.19 55 0.001 [0.0009 , 0.0011]

modLISA 0.57 0.59 7 7.97 [7.87 , 8.08]
SingleMachine 0.55 0.56 7 9.04 [8.85 , 9.21]
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Modified LISA & BART

Average acceptance rates of tree proposal moves.

Method GROW PRUNE CHANGE

CMC 21% 0.03% 34%
LISA 1.8% 0.5% 1.6%

modLISA 20% 26% 19%
SingleMachine 9% 10% 6%
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Modified LISA & BART

Empirical CDF for f̂ (x)
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Left: Test f (x∗) = 14.4; Right: Training f (x) = 19.8



Introduction LISA Numerical Experiments

Modified LISA & BART

Method Avg Time per iteration (Secs) Speed-up

CMC 11.99 31%
LISA 5.04 71%

modLISA 1.81 90%
SingleMachine 17.28 —–

Running times for CMC, LISA, modLISA and SingleMachine when
K = 30.
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Interval Coverage

I Consider two types of intervals:
I Let Ĵyi is the 1− α Prediction Interval (PI) for yi
I Coverage for Ĵyi is given by the average over train/test data

#{ỹj ∈ Ĵyi : ỹj
iid∼ N(f (xi ), σ

2), 1 ≤ j ≤ 1000}
1000

.

I Credible Interval (CI) Coverage

#{f (xi ) ∈ Îf (xi ) : 1 ≤ i ≤ N}
N

where Îf (xi ) is the CI for f (xi ).

I Both are considered for Test and Train Data.
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Interval Coverage

Predictive Int Credible Int
Method Train Test Train Test

CMC 45.71 % 47.83 % 81.95 % 99.99 %
LISA 1.54 % 1.54 % 100 % 100 %

modLISA 92.93 % 92.91 % 60.88 % 58.45 %
SingleMachine 94.67 % 94.65 % 71.58 % 71.54 %

I PI’s are influenced by σ̂2 and V̂ar(f̂ (x)).

I CI’s are influenced by V̂ar(f̂ (x)).
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Alternative Model

f (x) = 1[0,0.2)(x1)+2·1[0.2,0.4)(x1)+3·1[0.4,0.6)(x1)+4·1[0.6,0.8)(x1)+5·1[0.8,1)(x1)

Method Test RMSE Test Credible

CMC 1.35 100 %
LISA (unif wgh) 0.94 100 %

modLISA (wgh avg) 0.24 90.16 %
SingleMachine 0.15 98.76 %
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Housing Data

I Data consist of variables related to people and housing units.

I Predict a person’s total income based on variables such as
sex, age, education (at least a BA degree), class of worker,
living state, and citizenship status

I N = 437, 297, K = 100, Monte Carlo sample size is
M = 1500, time > 1 day for Single Machine.

Method TestRMSE Avg σ̂2 Tree Nodes Speed-up

modLISA (wgh avg) 0.71 0.488 7 90%
SingleMachine 0.70 0.485 23 –
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Conclusions

I ModLISA combined with better mixing chains for BART
(Pratola, BA 2016) exhibits similar gains.

I Despite attractive asymptotic properties, fine-tuning of
LISA-like samplers is still needed.

I Theoretical validation may rely on approximate & noisy
MCMC and perturbation errors (e.g., Mithrophanov 2005,
Pillai and Smith 2015, Johndrow et al. 2017, Negrea and
Rosenthal 2017).

I Important questions about batch-sample design → Extension
to non-iid case is an important future direction.

I Promising alternatives include the use of core-sets or
non-reversible Markov chains.
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