Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Approximate MCMC for Approximate Bayesian Methods

Radu Craiu

Department of Statistical Sciences University of Toronto

Joint with Evgeny Levi (Toronto)

Ca'Foscari University February, 2020

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Outline

Introduction & Motivation Introduction

Motivation

Approximate Bayesian Computation (ABC)

Vanilla version ABC-MCMC Recycler ABC-MCMC Bayesian Synthetic Likelihood (BSL)

Theory

Vanishing TV distance Vanishing MSE

Numerical Experiments

Ricker's Model Stochastic Volatility

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

A Bayesian's Best Friend: MCMC

- Due to MCMC developments, for 30+ years Bayesian statisticians were *computationally liberated* when thinking about a statistical model.
- Large data and/or intractable likelihoods have brought Bayesian computation at a crossroads.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

A Bayesian's Best Friend: MCMC

- Consider observed data y₀ ∈ 𝒱 and likelihood function L(θ|y) (or sampling distribution f(y|θ)) where θ ∈ R^d.
- For a prior $p(\theta)$ the posterior is $\pi(\theta|\mathbf{y}_0) \propto f(\mathbf{y}_0|\theta)p(\theta)$.
- The Metropolis-Hastings sampler is one of the most used algorithms in MCMC. It operates as follows:
 - Given the current state of the chain θ , draw $\xi \sim q(\xi|\theta)$.
 - Accept ξ with probability min $\left\{1, \frac{\pi(\xi|\mathbf{y}_0)q(\theta|\xi)}{\pi(\theta|\mathbf{y}_0)q(\xi|\theta)}\right\}$.
 - If ξ is accepted, the next state is ξ , otherwise it is (still) θ .
- Note that π(θ|y₀) ∝ p(θ)L(θ|y₀) needs to be computed at each iteration. (hence L(θ|y₀) must also be computable)

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Massive data set

- $L(\theta|\mathcal{D})$ is computable, but data is massive.
- Possible remedies: divide and conquer, sequential processing, pseudomarginal, precomputing, etc
- ► D &C: Divide data into batches, y⁽¹⁾ ∪ ... y^(K), distribute the sampling from the K sub-posteriors

$$\pi_j(heta) \propto [L_k(heta|\mathbf{y}^{(j)})]^a [p_j(heta)]^b$$

among K processing units

- Depending on a, b values, design recombination strategies for the π_j-samples to recover the characteristics of the full posterior distribution.
- Entezari et al (2018) applied D&C to BART.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Motivation for ABC

When the likelihood L(θ|y) is not computable but one can sample from p(y|θ) for all θ's....

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Motivation for ABC

- When the likelihood L(θ|y) is not computable but one can sample from p(y|θ) for all θ's....
- Approximate Bayesian Computation (ABC Marin et al., Comp & Stat. 2012) or Bayesian Synthetic Likelihood (BSL -Price et al, JCGS 2018) methods can be used.

Approximate Bayesian Computation (ABC) •••••••••• Theory 0000 Numerical Experiments

A remarkable algorithm- ABC

► ABC:

- Sample $\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$ and $\mathbf{y} \sim p(\mathbf{y}|\boldsymbol{\theta})$;
- Compute distance:

$$\delta(\mathbf{y}) := \|\mathbf{S}(\mathbf{y}), \mathbf{S}(\mathbf{y}_0)\| = \sqrt{[\mathbf{S}(\mathbf{y}) - \mathbf{S}(\mathbf{y}_0)]^T A [\mathbf{S}(\mathbf{y}) - \mathbf{S}(\mathbf{y}_0)]}$$

• If
$$\delta(\mathbf{y}) < \epsilon$$
 retain $(\boldsymbol{\theta}, \mathbf{y})$ as a draw from

$$\pi_\epsilon(oldsymbol{ heta}, \mathbf{y} | \mathbf{y}_0) \propto p(oldsymbol{ heta}) f(\mathbf{y} | oldsymbol{ heta}) \mathbf{1}_{\{\delta(\mathbf{y}) < \epsilon\}}$$

• The marginal target (in θ) is

$$\pi_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}_{0}) = \int_{\mathcal{Y}} \pi_{\epsilon}(\boldsymbol{\theta}, \mathbf{y}|\mathbf{y}_{0}) d\mathbf{y} \propto$$

$$\propto p(\boldsymbol{\theta}) \underbrace{\int_{\mathcal{Y}} f(\mathbf{y}|\boldsymbol{\theta}) \mathbf{1}_{\{\delta(\mathbf{y}) \leq \epsilon\}} d\mathbf{y}}_{\text{approximate likelihood}} = p(\boldsymbol{\theta}) \Pr(\delta(\mathbf{y}) \leq \epsilon | \boldsymbol{\theta}, \mathbf{y}_{0})$$

Vanilla ABC

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

- Sampling candidate θ's from the prior is inefficient, especially if the prior is in conflict with the data (Evans and Moshonov, 2006).
- ► Marjoram et al (2003) propose an ABC-MCMC in which candidate moves are generated using a proposal q(θ|θ_t) and they are accepted or rejected based on a MH-type rule.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Marjoram's ABC-MCMC

- Consider the joint target distribution in $(\boldsymbol{\theta}, \mathbf{y})$: $\pi_{\epsilon}(\boldsymbol{\theta}, \mathbf{y} | \mathbf{y}_0)$.
- A proposal (θ, y) ~ q(θ|θ_t) × f(y|θ) is accepted using the Metropolis-Hastings acceptance ratio

$$\begin{aligned} \alpha &= \min\left\{1, \frac{\pi_{\epsilon}(\theta, \mathbf{y}|\mathbf{y}_{0}) \times q(\theta_{t}|\theta)f(\mathbf{y}_{t}|\theta_{t})}{\pi_{\epsilon}(\theta_{t}, \mathbf{y}_{t}|\mathbf{y}_{0}) \times q(\theta|\theta_{t})f(\mathbf{y}|\theta)}\right\} \mathbf{1}_{\{\delta(\mathbf{y}) \leq \epsilon\}} \\ &= \min\left\{1, \frac{p(\theta)q(\theta_{t}|\theta)}{p(\theta_{t})q(\theta|\theta_{t})}\right\} \mathbf{1}_{\{\delta(\mathbf{y}) \leq \epsilon\}} \end{aligned}$$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Zooming in on the target

- We consider building a chain with target $\pi_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}_0)$.
- Set $h(\theta) = \Pr(\delta(\mathbf{y}) < \epsilon | \theta, \mathbf{y}_0)$ and proposal $\tilde{\theta} \sim q(\theta | \theta_t)$
- A Metropolis-Hastings sampler requires

 $\frac{p(\tilde{\theta})h(\tilde{\theta})q(\theta_t|\tilde{\theta})}{p(\theta_t)h(\theta_t)q(\tilde{\theta}|\theta_t)}$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

A marginal yet important target

Lee et al (2012) propose to use $\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_J \sim f(\mathbf{y}|\tilde{\theta})$ to estimate

$$\widehat{h}(\widetilde{ heta}) = J^{-1} \sum_{j=1}^J \mathbf{1}_{\{\delta(\widetilde{ extbf{y}}_j) < \epsilon\}}$$

- ▶ Wilkinson (2013) generalizes to smoothing kernels
- Bornn et al (2014) make the case of using J = 1.
- Idea in this talk: Recycle past proposals to estimate $h(\tilde{\theta})$.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

History repeating itself

- At time *n* the proposal is $(\zeta_{n+1}, \mathbf{w}_{n+1}) \sim q(\zeta | \theta^{(n)}) f(\mathbf{w} | \zeta)$
- At iteration N, all the proposals ζ_n, the accepted and rejected ones, along with corresponding distances δ_n = δ(w_n) are available for 0 ≤ n ≤ N − 1.
- This is the history, denoted Z_{N-1} , of the chain.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

A selective memory helps

Given a new proposal ζ* ~ q(|θ^(t)), we generate w* ~ f(·|ζ*) and compute δ* = δ(S(w*)). Set ζ_N = ζ*, w_N = w*, Z_N = Z_{N-1} ∪ {(ζ_N, δ_N)} and estimate h(ζ*) using

$$\hat{h}(\zeta^*) = \frac{\sum_{n=1}^{N} W_{Nn}(\zeta^*) \mathbf{1}_{\delta_n < \epsilon}}{\sum_{n=1}^{N} W_{Nn}(\zeta^*)},$$
(1)

where $W_{Nn}(\zeta^*) = W(||\zeta_n - \zeta^*||)$ are weights and $W : \mathbf{R} \to [0, \infty)$ is a decreasing function.

• An alternative to (1) is to use a subset of size K of Z_N

Good news

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

- If $\delta^* > \epsilon \Rightarrow$ rejection for ABC-MCMC
- But if $\exists \zeta^*$ with a corresponding $\delta < \epsilon$ then $h(\zeta^*) \neq 0$

Compare

$$ilde{h}(\zeta^*) = rac{1}{\mathcal{K}} \sum_{j=1}^{\mathcal{K}} \mathbf{1}_{\{ ilde{\delta}_j < \epsilon\}} \hspace{2mm} \Rightarrow \hspace{2mm} \mathsf{unbiased}$$

$$\hat{h}(\zeta^*) = \frac{\sum_{n=1}^{N} W_{Nn}(\zeta^*) \mathbf{1}_{\{\tilde{\delta}_n < \epsilon\}}}{\sum_{n=1}^{N} W_{Nn}(\zeta^*)} \Rightarrow \text{ consistent}$$

- ► When *K* is small reduce variability.
- ▶ When *K* is large reduce costs.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Complications

- ► If the past samples are used to modify the kernel ⇒ Adaptive MCMC
- In order to avoid AMCMC conditions for validity, we separate the samples used as proposals from those used to estimate h
- At each time t:
 - Generate two independent samples

$$\{(\zeta_{t+1}, \mathsf{w}_{t+1}), (\tilde{\zeta}_{t+1}, \tilde{\mathsf{w}}_{t+1})\} \stackrel{\mathsf{iid}}{\sim} q(\zeta|\theta^{(t)})f(\mathsf{w}|\zeta)$$

- Set $\mathcal{Z}_{N+1} = \mathcal{Z}_N \cup \{(\tilde{\zeta}_{N+1}, \tilde{\delta}_{N+1})\}$
- We use the Independent Metropolis sampler, i.e. q(ζ|θ^(t)) = q(ζ) so that the chain's trajectory is independent of Z

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Friendly neighbors

- The k-Nearest-Neighbor (kNN) regression approach has a property of uniform consistency
- Set K = √N and relabel history so that (ζ̃₁, δ̃₁) and (ζ̃_N, δ̃_N) corresponds to the smallest and largest among all distances { ||ζ̃_j − ζ^{*}|| : 1 ≤ j ≤ N}
- Weights are defined as:
 - $W_n = 0$ for n > K
 - (U) The uniform kNN with $W_{Nn}(\zeta^*) = 1$ for all $n \leq K$;
 - (L) The *linear* kNN with
 - $W_{Nn}(\zeta^*) = W(\|\tilde{\zeta}_n \zeta^*\|) = 1 \|\tilde{\zeta}_n \zeta^*\| / \|\tilde{\zeta}_K \zeta^*\| \text{ for } n \le K \text{ so that the weight decreases from 1 to 0 as } n \text{ increases from 1 to } K.$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Indirect inference - A David and Goliath story

- Indirect inference (Gallant and McCulloch, 2009)
- Complex model: $f(\mathbf{y}|\boldsymbol{\theta})$ with intractable f
- Simpler model g(y|φ(θ)) approximates well f(y|θ), with dim(φ) > dim(θ), g is tractable and φ : Θ → Φ is unknown
- ▶ We can estimate $\hat{\phi}(\theta)$ by sampling $\theta \sim p(\theta)$, $\mathbf{y}_j \sim f(\mathbf{y}|\theta), \ 1 \leq j \leq K$ and estimate ϕ from $\mathbf{y}_1, \ldots, \mathbf{y}_K$ using g - repeat
- Posterior $\pi_f(\theta|\mathbf{y}_0) \propto p(\theta) f(\mathbf{y}_0|\theta)$ is then approximated by

 $\pi_g(oldsymbol{ heta}|\mathbf{y}_0) \propto p(oldsymbol{ heta})g(\mathbf{y}_0|\hat{\phi}(oldsymbol{ heta}))$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Bayesian Synthetic Likelihood (BSL)

- Alternative approach to bypass the intractability of the sampling distribution proposed by Wood (*Nature*, 2010).
- ► The simpler model (g): the conditional distribution for a user-defined statistic S(y) given θ is Gaussian with parameters φ(θ) = (μ_θ, Σ_θ)
- The Synthetic Likelihood (SL) procedure assigns to each θ the likelihood SL(θ) = N(s₀; μ_θ, Σ_θ).
- The BSL posterior is $\pi(\theta|s_0) \propto p(\theta)\mathcal{N}(s_0; \mu_{\theta}, \Sigma_{\theta})$.
- Acceptance ratios for a MH sampler are estimated from m statistics (s₁, · · · , s_m) sampled from their conditional distribution given θ.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Bayesian Synthetic Likelihood (BSL)

- Generate $\mathbf{y}_i \sim f(\mathbf{y}|\theta)$ and set $s_i = S(\mathbf{y}_i), i = 1, \cdots, m$
- Estimate

$$\begin{aligned} \hat{\mu}_{\theta} &= \frac{\sum_{i=1}^{m} s_i}{m}, \\ \hat{\Sigma}_{\theta} &= \frac{\sum_{i=1}^{m} (s_i - \hat{\mu}_{\theta}) (s_i - \hat{\mu}_{\theta})^T}{m - 1}, \end{aligned}$$

The synthetic likelihood is

$$SL(\theta|\mathbf{y}_0) = \mathcal{N}(S(\mathbf{y}_0); \hat{\mu}_{\theta}, \hat{\Sigma}_{\theta}).$$
(2)

Acceptance probability requires repeated estimation of (2)

$$\min\left\{1, \frac{p(\theta)S(\theta|\mathbf{y}_0)q(\theta_t)}{p(\theta_t)S(\theta_t|\mathbf{y}_0)q(\theta)}\right\}$$

Approximate Bayesian Computation (ABC)

Theory ●000 Numerical Experiments

A bit of theory

- (B1) Θ is a compact set.
- **(B2)** $q(\theta) > 0$ is a continuous density (proposal).
- **(B3)** $p(\theta) > 0$ is a continuous density (prior).
- **(B4)** $h(\theta)$ continuous function of θ .
- (B5) In kNN estimation assume that $K(N) = \sqrt{N}$ with uniform or linear weights.

Approximate Bayesian Computation (ABC)

Theory 0●00 Numerical Experiments

Some comfort

- Let P(·,·) denote the transition kernel of our AABC sampler, if h(θ) were computable exactly.
- The invariant distribution of $P(\cdot, \cdot)$ is denoted μ
- The approximate kernel at time t is denoted \hat{P}_t
- The distribution of θ_t is denoted $\mu_t := \nu \hat{P}_1 \dots \hat{P}_t$

Some comfort

Approximate Bayesian Computation (ABC)

Theory 00●0 Numerical Experiments

Vanishing TV Theorem

Suppose that (A1)- (A3) are satisfied . Let π denote the invariant measure of P and ν be any probability measure on (Θ, \mathcal{F}_0) , then

$$\left\|\mu - \frac{\sum_{t=0}^{M-1} \nu \hat{P}_1 \cdots \hat{P}_t}{M}\right\|_{TV} \leq O(M^{-1}) + O(M^{-1}\epsilon) + O(\epsilon),$$

More Comfort

Approximate Bayesian Computation (ABC)

Theory ○○○● Numerical Experiments

Vanishing MSE Theorem

Let π denote the invariant measure of *P*, $f(\theta)$ be a bounded function and $\theta^{(0)} \sim \nu$, where ν is a probability distribution. Then

$$E\left[\left(\mu f - \frac{1}{M}\sum_{t=0}^{M-1} f(\theta^{(t)})\right)^2\right] \le |f|^2 [O(M^{-1}) + O(\epsilon^2) + O(M^{-1}\epsilon)]$$

where $\mu f = E_{\mu}f$.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: General Setup

Efficiency measures

Diff in mean (DIM) = $Mean_{r,s}(|Mean_t(\theta_{rs}^{(t)}) - Mean_t(\tilde{\theta}_{rs}^{(t)})|),$ Diff in covariance (DIC) = $Mean_{r,s}(|Cov_t(\theta_{rs}^{(t)}) - Cov_t(\tilde{\theta}_{rs}^{(t)})|),$ Total Variation (TV) = $Mean_{r,s}\left(0.5\int |D_{rs}(x) - \tilde{D}_{rs}(x)|dx\right),$ Bias² = $Mean_s\left(\left(Mean_{tr}(\theta_{rs}^{(t)}) - \theta_s^{true}\right)^2\right),$ VAR = $Mean_s(Var_r(Mean_t(\theta_{rs}^{(t)}))),$ MSE = Bias² + VAR.

where r is the replicate and s is the parameter component.

We account for CPU time using

$$ESS = Mean_{rs}((M - B) / ACT_{rs}),$$

$$ESS/CPU = Mean_{rs}((M - B) / ACT_{rs} / CPU_{r}),$$
(3)

where M - B is the number of chain iterations.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model

• A particular instance of hidden Markov model:

$$\begin{aligned} x_{-49} &= 1; \quad z_i \stackrel{iid}{\sim} \mathcal{N}(0, \exp(\theta_2)^2); \quad i = \{-48, \cdots, n\}, \\ x_i &= \exp(\exp(\theta_1))x_{i-1}\exp(-x_{i-1} + z_i); \quad i = \{-48, \cdots, n\}, \\ y_i &= Pois(\exp(\theta_3)x_i); \quad i = \{-48, \cdots, n\}, \end{aligned}$$

where $Pois(\lambda)$ is Poisson distribution

► Only y = (y₁, · · · , y_n) sequence is observed, because the first 50 values are ignored.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model

Define summary statistics $S(\mathbf{y})$ as the 14-dimensional vector whose components are:

(C1)
$$\#\{i: y_i = 0\},\$$

(C2) Average of \mathbf{y} , \bar{y} ,

(C3:C7) Sample auto-correlations at lags 1 through 5,

(C8:C11) Coefficients $\beta_0, \beta_1, \beta_2, \beta_3$ of cubic regression $(y_i - y_{i-1}) = \beta_0 + \beta_1 y_i + \beta_2 y_i^2 + \beta_3 y_i^3 + \epsilon_i, i = 2, ..., n,$ (C12-C14) Coefficients $\beta_0, \beta_1, \beta_2$ of quadratic regression

 $y_i^{0.3} = \beta_0 + \beta_1 y_{i-1}^{0.3} + \beta_2 y_{i-1}^{0.6} + \epsilon_i, \ i = 2, \dots, n.$

Approximate Bayesian Computation (ABC)

Theory

Numerical Experiments

Numerical Experiments: Ricker's Model - ABC/RWM

Figure: Ricker's model: ABC-RW Sampler. Each row corresponds to parameters θ_1 (top row), θ_2 (middle row) and θ_3 (bottom row) and shows in order from left to right: Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter values.

Approximate Bayesian Computation (ABC)

Theory

Numerical Experiments

Numerical Experiments: Ricker's Model - BSL

Figure: Ricker's model: ABSL-U Sampler.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model - ABC

Figure: Ricker's model: AABC-U Sampler.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model - ABC

	Diff with exact			Diff with true parameter			Efficiency	
Sampler	DIM	DIC	ΤV	$\sqrt{\text{Bias}^2}$	\sqrt{VAR}	\sqrt{MSE}	ESS	ESS/CPU
SMC	0.152	0.0177	0.378	0.086	0.201	0.219	472	0.521
ABC-RW	0.135	0.0201	0.389	0.059	0.180	0.189	87	0.199
ABC-IS	0.139	0.0215	0.485	0.063	0.195	0.205	47	0.099
AABC-U	0.147	0.0279	0.402	0.076	0.190	0.204	3563	4.390
AABC-L	0.141	0.0258	0.392	0.070	0.189	0.201	4206	5.193
BSL-RW	0.129	0.0080	0.382	0.038	0.206	0.209	131	0.030
BSL-IS	0.122	0.0082	0.455	0.022	0.197	0.198	33	0.007
ABSL-U	0.103	0.0054	0.377	0.023	0.170	0.171	284	0.180
ABSL-L	0.106	0.0051	0.382	0.012	0.173	0.173	207	0.135

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility

Stochastic volatility model with stable errors:

$$\begin{aligned} x_1 &\sim \mathcal{N}(0, 1/(1-\theta_1^2)); \quad v_i \stackrel{iid}{\sim} \mathcal{N}(0, 1); \quad w_i \stackrel{iid}{\sim} Stab(\theta_4, -1); \quad i = \{1, \cdots \\ x_i &= \theta_1 x_{i-1} + v_i; \quad i = \{2, \cdots, n\}, \\ y_i &= \sqrt{\exp(\theta_2 + \exp(\theta_3) x_i)} w_i; \quad i = \{1, \cdots, n\}. \end{aligned}$$

Here $St(\alpha, \beta)$ is a stable distribution with parameters $\theta_4 \in [0, 2]$ and skew parameter.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility

For summary statistics we use a 7-dimensional vector whose components are:

- (C1) $\#\{i: y_i^2 > \text{quantile}(\mathbf{y}_0^2, 0.99)\},\$
- (C2) Average of y^2 ,
- (C3) Standard deviation of y^2 ,

(C4) Sum of the first 5 auto-correlations of y^2 ,

- (C5) Sum of the first 5 auto-correlations of $\{\mathbf{1}_{\{y_i^2 < \text{quantile}(\mathbf{y}^2, 0.1)\}}\}_{i=1}^n$,
- (C6) Sum of the first 5 auto-correlations of $\{\mathbf{1}_{\{y_i^2 < \text{quantile}(\mathbf{y}^2, 0.5)\}}\}_{i=1}^n$,
- (C7) Sum of the first 5 auto-correlations of $\{\mathbf{1}_{\{y_i^2 < \text{quantile}(\mathbf{y}^2, 0.9)\}}\}_{i=1}^n$.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility cont..

Figure: First row compares SMC, ABC-RW and AABC-U samplers. Second row compares SMC, BSL-IS and ABSL-U. From left to right: θ_1 , θ_2 , θ_3 and θ_4 .

 $\mathsf{ESS}/\mathsf{CPU}$ shows 400-800% improvements over competitive algorithms (SMC, ABC-RWM)

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility cont..

	Diff with SMC			Diff with true parameter			Efficiency	
Sampler	DIM	DIC	ΤV	$\sqrt{\text{Bias}^2}$	\sqrt{VAR}	\sqrt{MSE}	ESS	ESS/CPU
SMC	0.000	0.0000	0.000	0.221	0.201	0.299	468	0.267
ABC-RW	0.078	0.0126	0.205	0.248	0.198	0.317	24	0.069
ABC-IS	0.082	0.0151	0.306	0.232	0.221	0.320	26	0.071
AABC-U	0.069	0.0124	0.170	0.250	0.183	0.310	1303	1.617
AABC-L	0.069	0.0132	0.161	0.246	0.181	0.305	1256	1.546
BSL-RW	0.044	0.0116	0.122	0.225	0.181	0.289	123	0.037
BSL-IS	0.045	0.0103	0.125	0.226	0.177	0.287	285	0.084
ABSL-U	0.063	0.0133	0.228	0.225	0.181	0.289	832	0.735
ABSL-L	0.061	0.0140	0.230	0.236	0.183	0.299	757	0.671

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Conclusions

- ► ABC and BSL are useful when the likelihood is not tractable.
- The computational burden can prohibit the full reach for these approximate methods.
- Currently exploring links between ABC and divide-and-conquer MCMC for large data.

All papers available at:

http://www.utstat.toronto.edu/craiu/Papers/index.html