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In commonly used functional regression models, the regression of a scalar or functional response on the functional predictor is assumed to
be linear. This means that the response is a linear function of the functional principal component scores of the predictor process. We relax
the linearity assumption and propose to replace it by an additive structure, leading to a more widely applicable and much more flexible
framework for functional regression models. The proposed functional additive regression models are suitable for both scalar and functional
responses. The regularization needed for effective estimation of the regression parameter function is implemented through a projection
on the eigenbasis of the covariance operator of the functional components in the model. The use of functional principal components in
an additive rather than linear way leads to substantial broadening of the scope of functional regression models and emerges as a natural
approach, because the uncorrelatedness of the functional principal components is shown to lead to a straightforward implementation of
the functional additive model, based solely on a sequence of one-dimensional smoothing steps and without the need for backfitting. This
facilitates the theoretical analysis, and we establish the asymptotic consistency of the estimates of the components of the functional additive
model. We illustrate the empirical performance of the proposed modeling framework and estimation methods through simulation studies
and in applications to gene expression time course data.

KEY WORDS: Additive model; Asymptotics; Functional data analysis; Functional regression; Linear model; Principal components;
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1. INTRODUCTION

A characteristic feature of functional regression models is
that either the predictor or the response or both are functions,
with the functional components typically assumed to be real-
izations of a stochastic process. The functional linear model is
the commonly adopted functional regression model. It has been
introduced in its most general form, where both predictor and
response are functions, by Ramsay and Dalzell (1991). The case
of a functional predictor and scalar response has been the focus
of most research to date on the functional linear model, as well
as somewhat artificial situations in which the functional data
are assumed to be observed without noise and on a very dense
and regular grid. For this case, Cardot, Ferraty, Mas, and Sarda
(2003) provided consistency results and introduced a testing
procedure. Theory for the case of fixed design and functional re-
sponse was developed by Cuevas, Febrero, and Fraiman (2002).
Ramsay and Silverman (2005) have summarized some of these
developments.

Several extensions of the basic linear functional regression
models have been proposed, often motivated by established
analogous extensions of the classical multivariate regression
models toward more general regression models. These in-
clude generalized functional linear models (James 2002; Es-
cabias, Aguilera, and Valderrama 2004; Cardot and Sarda 2005;
Müller and Stadtmüller 2005); modifications of functional re-
gression for longitudinal, (i.e., sparse), irregular, and noisy
data (Yao, Müller, and Wang 2005b); varying-coefficient func-
tional models (Malfait and Ramsay 2003; Fan and Zhang 2000;
Fan, Yao, and Cai 2003); wavelet-based functional models
(Morris, Vannucci, Brown, and Carroll 2003); and multiple-
index models (James and Silverman 2005). Recent asymptotic
studies of estimation in functional linear regression models with
scalar response and fully observed predictor trajectories include
those of Cai and Hall (2006) and Hall and Horowitz (2007).
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It is well known that estimation of the regression parame-
ter function is an inverse problem and thus requires regulariza-
tion. Two main approaches for implementing the regularization
step have emerged. The first approach is projection onto a fi-
nite number of elements of a functional basis, which can be
either fixed in advance (e.g., the wavelet or Fourier basis) or
may be chosen data-adaptively (e.g., the eigenbasis of the auto-
covariance operator of the predictor processes X). When the
eigenbasis is used, conveying the advantage of the most par-
simonious representation, this approach is based on an initial
functional principal component (FPC) analysis (see, e.g., Rice
and Silverman 1991). No matter which basis is chosen, effective
regularization is then obtained by suitably truncating the num-
ber of included basis functions. The second approach to reg-
ularization is based on penalized likelihood or penalized least
squares. It has been implemented through, for example, splines
or ridge regression (Hall and Horowitz 2007). In this article
we adopt the first approach and express functional regression
models in terms of the FPCs of the predictor and, if applica-
ble, of the response processes as well. Because the stochastic
parts of square-integrable stochastic processes always can be
equivalently represented by the countable sequences of their
FPC scores and eigenfunctions, all functional regression mod-
els have such a representation, irrespective of their structure. In
the previously studied functional linear regression models, re-
gression of the scalar or functional response on the functional
predictors is a linear function of the predictor FPC scores, and
estimation, inference, asymptotics, and extensions of these ba-
sic functional linear models are studied within this linear frame-
work.

In this article we present an analysis of an alternative addi-
tive functional regression model. Additive models are attractive
because they provide effective dimension and great flexibility
in modeling (Hastie and Tibshirani 1990). Although extensions
of linear models to single- and multiple-index models are in
place for functional regression, extension to additive models
has proven elusive, due to a major challenge: A direct exten-
sion, analogous to multivariate data analysis, faces the diffi-
culty that the equivalent to individual predictors in vector re-
gression is the continuum of function values over the entire time
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domain. Therefore, the predictor set is not countable, and an
additive model in these predictors would require uncountably
many additive components. We overcome this difficulty by tak-
ing as predictors the countable set of FPC scores, which can be
truncated at an increasing sequence of finitely many predictors
while representing the entire predictor function adequately.

For the case of a scalar response, the combination of FPC
scores with an additive model, emphasizing applied modeling
with readily available software tools, has been demonstrated in
concurrent work with applied emphasis (Foutz and Jank 2008;
Liu and Müller 2008; Sood, James and Tellis 2008). As we
show, a key to both analysis and implementation of this combi-
nation is the uncorrelatedness of the functional predictor scores.
The usual implementation of additive models, which must take
into account dependencies among predictors, requires backfit-
ting or similarly complex schemes. Because the functional pre-
dictor scores are uncorrelated, the additive fitting step can be
greatly simplified and requires no more than one-dimensional
smoothing steps, separately applied to each predictor score.
This has important consequences: very fast and simple imple-
mentation and simplification, making it possible to study as-
ymptotic properties of the resulting model, especially in the
Gaussian case. The combination of FPC score predictors and
additive models thus emerges as a particularly natural and flex-
ible data-adaptive nonparametric framework for functional re-
gression models. We refer to this approach as the functional
additive model (FAM).

The article is organized as follows. Section 2 contains back-
ground from functional linear regression. The proposed FAMs
are introduced in Section 3, and issues of fitting these models
are the theme of Section 4. Asymptotic consistency properties
are presented in Section 5, whereas Section 6 is devoted to a re-
port on simulation results. An application to regression for gene
expression time courses in the Drosophila life cycle is described
in Section 7, and concluding remarks are given in Section 8.
Details and assumptions are given in a separate Appendix, and
auxiliary results and proofs are available in a Supplement.

2. FUNCTIONAL LINEAR MODELS AND
EIGENREPRESENTATIONS

We consider regression models in which the predictor is
a smooth, square-integrable random function X(·) defined
on a domain S and the response is either a scalar or a
random function Y(·) on domain T , with mean functions
EX(s) = μX(s) and EY(t) = μY (t) and covariance func-
tions cov(X(s1),X(s2)) = GX(s1, s2) and cov(Y (t1), Y (t2)) =
GY (t1, t2), s, s1, s2 ∈ S , t, t1, t2 ∈ T . We denote centered pre-
dictor processes by Xc(s) = X(s) − μX(s). The established
linear functional regression models with scalar and functional
responses are (Ramsay and Silverman 2005)

E(Y |X) = μY +
∫

S
β(s)Xc(s) ds (1)

and

E{Y(t)|X} = μY (t) +
∫

S
β(s, t)Xc(s) ds, (2)

where the regression parameter functions β are assumed to be
smooth and square-integrable. When estimating these func-
tions and identifying the functional linear model, basis rep-
resentation, such as the eigendecomposition of the functional

components in models (1) and (2), is a convenient way to
implement the necessary regularization (Yao et al. 2005b).
Taking advantage of the equivalence between process and
countable sequence of FPC scores, we represent predictor and
response processes X and Y in terms of these scores. An
implementation of these representations is available through
the PACE package, which is available under “programs” at
http://www.stat.ucdavis.edu/~mueller/.

In our sampling model, we assume, as done by Yao et al.
(2003), that the functional trajectories are not completely ob-
served but rather are measured on a grid and measurements
are contaminated with measurement error. This is a more re-
alistic scenario than the common assumption in functional data
analysis that entire trajectories are observed. For our theoreti-
cal analysis, we assume that the grid of measurements is dense.
Empirically, as evidenced by simulations and in applications,
the proposed methods also work well for the case of sparse
and irregularly observed longitudinal data. Denote by Uij (resp.
Vil) the noisy observations made of the random trajectories Xi

(resp. Yi ) at times sij (resp. til), where (Xi, Yi), i = 1, . . . , n,
corresponds to an iid sample of processes (X,Y ). (The scalar
response case is always included in these considerations.) The
available observations are contaminated with measurement er-
rors εij (resp. εil), 1 ≤ j ≤ ni , 1 ≤ l ≤ mi , 1 ≤ i ≤ n, where ni

and mi are the numbers of observations from Xi and Yi . The
errors are assumed to be iid, with means 0, Eεij = 0, and con-
stant variance E(ε2

ij ) = σ 2
X [resp. Eεil = 0, E(ε2

il) = σ 2
Y ] and

independent of the FPC scores ξik = ∫
(Xi(s)−μX(s))φk(s) ds

[resp. ζim = ∫
(Yi(t) − μY (t))ψm(t) dt], where φk and ψm are

the eigenfunctions of processes X and Y , defined in the Ap-
pendix. We note that the FPC scores satisfy Eξik = 0 and
E(ξikξik′) = 0 for k �= k′, and E(ξ2

ik) = λk [resp. Eζim = 0 and
E(ζimζim′) = 0 for m �= m′ and E(ζ 2

im) = ρm].
Invoking the population least squares property of condi-

tional expectation and using the fact that the predictors are
uncorrelated leads to an extension of the representation β1 =
cov(X,Y )/var(X) of the slope parameter in the simple lin-
ear regression model E(Y |X) = β0 + β1X to the functional
case. By solving a “functional population normal equation”
(He, Müller, and Wang 2000, 2003), we obtain for scalar (resp.
functional) responses

β(s) =
∞∑

k=1

E(ξkY )

E(ξ2
k )

φk(s) and

(3)

β(s, t) =
∞∑

k=1

∞∑
m=1

E(ξkζm)

E(ξ2
k )

φk(s)ψm(t).

Plugging (3) into (1)–(2) and observing (A.1) in the Appen-
dix then leads to

E(Y |X) = μY +
∞∑

k=1

bkξk, with bk = E(ξkY )

E(ξ2
k )

(4)

and

E(ζm|X) =
∫

E(Y(t) − μY (t)|X)ψm(t) dt

=
∞∑

k=1

bkmξk, with bkm = E(ξkζm)

E(ξ2
k )

, (5)
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for scalar responses Y and for each FPC score ζm of the re-
sponse process. In practice, when fitting a functional regres-
sion model and estimating the regression parameter function β ,
we need to regularize by truncating these expansions at a finite
number of components K and M .

3. FUNCTIONAL ADDITIVE MODELING

Suppose for the moment that the true FPC scores ξik for pre-
dictor processes are known. Then the functional linear models
(1) and (2) are reduced to a standard linear model with infinitely
many of these FPC scores as predictors, as demonstrated in eqs
(4) and (5). Moreover, the linear structure in the predictor scores
and the uncorrelatedness of the FPC scores then imply that

E(Y − μY |ξk) = bkξk and E(ζm|ξk) = bkmξk (6)

for scalar and functional response models. Accordingly, the best
predictor is the linear predictor, and the regressions on predictor
scores are lines through the origin.

This observation provides a key motivation for the extension
of the functional linear model to the FAM. It seems natural to
generalize the well-known extension of (generalized) linear
to (generalized) additive models (Hastie and Tibshirani 1990)
to the functional case by replacing the linear terms bkξk and
bkmξk in (6) and (4)–(5) by more general relationships. We thus
generalize the linear relationship with ξk to arbitrary functional
relations fk(ξk), where functions fk(·), k = 1,2, . . . [resp. func-
tions fkm(·), k,m = 1,2, . . .], are assumed to be smooth; be-
yond smoothness, nothing more is needed. This substitution
transforms functional linear models (1) and (2) to FAMs with
the underlying FPC scores ξk as predictors,

E(Y |X) = μY +
∞∑

k=1

fk(ξk) (7)

and

E(Y(t)|X) = μY (t) +
∞∑

k=1

∞∑
m=1

fkm(ξk)ψm(t), (8)

for scalar and functional response cases. To ensure identifiabil-
ity, we also require that

Efk(ξk) = 0, k = 1,2, . . . , and
(9)

Efkm(ξk) = 0, k = 1,2, . . . ,m = 1,2, . . . .

In this model the linear relationship between the response Y

and the predictor FPC scores ξk is replaced by an additive re-
lation that gives rise to a far more flexible and essentially non-
parametric model while avoiding the curse of dimension, which
for infinite-dimensional functional data is unsurmountable if no
structure is imposed. Beyond additivity, a second key assump-
tion that we make from now on is that the predictor FPC scores
ξk are independent. Because these scores are always uncorre-
lated, this assumption is, for example, satisfied for the case in
which predictor processes are Gaussian. Then the basic FAM
assumptions (7) and (8) imply that

E(Y − μY |ξk) = E
{
E(Y − μY |X)|ξk

}

= E

{ ∞∑
j=1

fj (ξj )

∣∣∣ξk

}
= fk(ξk), (10)

and for the functional response case, analogously,

E(ζm|ξk) = E
{
E(ζm|X)|ξk

}

= E

{ ∞∑
j=1

fjm(ξj )

∣∣∣ξk

}
= fkm(ξk). (11)

The relations fk(ξk) = E(Y − μY |ξk) and fkm(ξk) =
E(ζm|ξk), for all k,m = 1,2, . . . , are straightforward gener-
alizations of the decomposition of functional linear regres-
sion into simple linear regressions against the predictor FPC
scores as in (6). They are key for surprisingly simple im-
plementations of the FAM. Whereas complex iterative pro-
cedures are required to fit a regular additive model (back-
fitting and variants; see, e.g., Hastie and Tibshirani 1990;
Mammen and Park 2005), representations (10) and (11) moti-
vate a straightforward estimation scheme to recover the compo-
nent functions fk and fkm, through a series of one-dimensional
smoothing steps. This not only leads to fast and easily diag-
nosed procedures for the underlying infinite-dimensional data,
but also facilitates asymptotic analysis. The high degree of flex-
ibility and the simplicity of model fitting makes FAM an espe-
cially attractive alternative to the special case of the standard
functional linear models (1) and (2).

4. FITTING OF FUNCTIONAL ADDITIVE MODELS

We begin with an overview of the estimation procedures.
In a first step, smooth estimates of the mean and covariance
functions for the predictor processes are obtained by scatterplot
smoothing. This is followed by FPC analysis, which yields es-
timates φ̂k for the eigenfunctions, λ̂k for the eigenvalues, and
ξ̂ik for the FPC scores of individual predictor trajectories; some
additional details are given in the Appendix. The estimation
steps are implemented with the principal analysis by condi-
tional expectation (PACE) approach, also regarding the choice
of the number of included eigenfunctions K through a pseudo–
Akaike information criterion (AIC) (Yao et al. 2005a), avail-
able in the PACE package. This has been shown to work for
densely sampled trajectories and in the Gaussian case in addi-
tion to the case of sparse and irregular measurements, and also
has been demonstrated to be fairly robust against violations of
the Gaussian assumption.

Once these preliminary estimates are in hand, obtaining es-
timates f̂k and f̂km of the smooth component functions fk and
fkm is straightforward. We implement all smoothing steps with
local polynomial fitting; other smoothing techniques can be
used equally well. For the case of scalar responses, we estimate
the functions fk by fitting a local linear regression to the data
{ξ̂ik, Yi}i=1,...,n, where ξ̂ik is obtained by (A.4) in the Appendix.
Minimizing

n∑
i=1

K1

(
ξ̂ik − x

hk

)
{Yi − β0 − β1(x − ξ̂ik)}2 (12)

with respect to β0 and β1, leads to f̂k(x) = β̂0(x)− Ȳ , where hk

is the bandwidth used for this smoothing step and K1 is a sym-
metric probability density that serves as a kernel function. For
the functional response case, the functions fmk are analogously
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estimated by passing a local linear smoother through the data
{ξ̂ik, ζ̂im}i=1,...,n that are obtained by (A.4), that is, minimizing

n∑
i=1

K1

(
ξ̂ik − x

hmk

)
{ζ̂im − β0 − β1(x − ξ̂ik)}2 (13)

with respect to β0 and β1, leading to f̂mk(x) = β̂0(x), where
hmk is the bandwidth. Then the fitted version of the FAM (7)
with scalar response is

Ê(Y |X) = Ȳ +
K∑

k=1

f̂k(ξk). (14)

To quantify the strength of the regression relationship, we
use a global measure similar to the coefficient of determination
R2 in standard linear regression (Draper and Smith 1998), with
population and sample versions

R2 = 1 −
∑n

i=1{Yi − E(Yi |Xi)}2∑
i=1(Yi − μY )2

and

(15)

R̂2 = 1 −
∑n

i=1{Yi − Ê(Yi |Xi)}2

∑
i=1(Yi − Ȳ )2

,

where E(Yi |Xi) and Ê(Yi |Xi) for the ith subject are as in (7)
and (14).

Analogously, the fitted FAM for functional responses, based
on (8), is

Ê{Y(t)|X} = μ̂Y (t) +
M∑

m=1

K∑
k=1

f̂mk(ξk)ψ̂m(t), t ∈ T ,

(16)

and the strength of the regression for this case can be measured
by

R2 = 1 −
∑n

i=1

∫
T [Yi(t) − E{Yi(t)|Xi}]2 dt∑n

i=1

∫
T {Yi(t) − μY (t)}2 dt

,

(17)

R̂2 = 1 −
∑n

i=1
∑mi

l=2[Vil − Ê{Yi(til)|Xi}]2(til − ti,l−1)∑n
i=1

∑mi

l=2{Vil − μY (til)}2(til − ti,l−1)

for population and sample versions, where E{Yi(t)|Xi} and
Ê(Yi(t)|Xi) for the ith subject are as in (8) and (16), and a
dense grid of measurements til is assumed for each subject.

5. THEORETICAL RESULTS

Establishing relevant asymptotic results requires studying the
relationship between the true and estimated FPC scores ξik and
ξ̂ik , ζim and ζ̂im, k = 1, . . . ,K , m = 1, . . . ,M , because the esti-
mates of the FAM component functions fk and fkm must be
based on the estimated scores. Starting with known conver-
gence results for the estimated population components such
as mean function, eigenfunction, and eigenvalue estimates in
model (A.2) or (A.3) (see Yao et al. 2005a; Hall and Hosseini-
Nasab 2006), a key step in the mathematical analysis is to es-
tablish exact upper bounds of |ξ̂ik − ξik| and |ζ̂im − ζim|, that
are iid in terms of i or do not depend on i, i = 1, . . . , n (see
the Supplement for details). The convergence properties of the
estimated additive model components fk in (7) or fmk in (8)
will follow from those upper bounds, because these estimates

are obtained by applying a nonparametric smoothing method to
{ξ̂ik, Yi} or {ξ̂ik, ζ̂im} for i = 1, . . . , n.

Asymptotic results are obtained for n → ∞, and the num-
ber of included components K and M needs to satisfy K =
K(n) → ∞ and M = M(n) → ∞ for a genuinely functional
(infinite-dimensional) approach. The results concern consis-
tency of estimates (12) and (13) and of predicted responses (14)
and (16) obtained for new predictor processes. Details on the
regularity assumptions are given in the Appendix.

Theorem 1. Under assumptions (A1.1)–(A5), (C1.1), (C1.2),
(C2.1), and (C2.3) (see the App.), in the scalar response case,
for all k ≥ 1 for which λj , j ≤ k are eigenvalues of multiplic-
ity 1,

f̂k(x) − fk(x)
p−→0, (18)

for estimates (12). Under the additional assumptions (B1.1)–
(B4) and (C2.2), in the functional response case, for all k and
m for which λj , j ≤ k and ρl, l ≤ m are eigenvalues of multi-
plicity 1,

f̂km(x) − fkm(x)
p−→0, (19)

for estimates (13).

Additional results on the rates of convergence of θ̃k(x) =
|f̂k(x) − fk(x)| and ϑ̃mk(x) = |f̂mk(x) − fmk(x)| are given in
the Supplement, eq. (41). Next, we consider consistency of the
predictions obtained by applying FAM.

Theorem 2. Under (A1.1)–(A4), (A6), (A7), (C1.1), (C1.2),
(C2.1), and (C2.3), for the scalar response case,

Ê(Y |X) − E(Y |X)
p−→0, (20)

where Ê(Y |X) = Ȳ + ∑K
k=1 f̂k(ξk) as in (12). Under the addi-

tional assumptions (B1.1)–(B4), (B5), (B6), and (C2.2), it holds
for the functional response case that for all t ∈ T ,

Ê{Y(t)|X} − E{Y(t)|X} p−→0, (21)

where Ê{Y(t)|X} = μ̂Y (t) + ∑K
k=1

∑M
m=1 f̂mk(ξk)ψ̂m(t), with

f̂mk(ξk) as in (13).

Additional results on the rates of convergence of θ∗
n =

|Ê(Y |X) − E(Y |X)| and ϑ∗
n = |Ê(Y (t)|X) − E(Y(t)|X)| are

given in eq. (42) of the Supplement.

6. SIMULATION STUDIES

We conducted simulation studies to illustrate the empirical
performance of the FAMs (7) with scalar and (8) with func-
tional response. For both cases, we generated 200 simulation
runs, each consisting of a sample of n = 100 predictor trajecto-
ries Xi , with mean function μX(s) = s + sin(s), 0 ≤ s ≤ 10,
and a covariance function derived from two eigenfunctions,
φ1(s) = − cos(πs/10)/

√
5 and φ2(s) = sin(πs/10)/

√
5, 0 ≤

s ≤ 10. The corresponding eigenvalues were chosen as λ1 = 4,
λ2 = 1, and λk = 0, k ≥ 3, with measurement errors in (A.2)

as εij
iid∼ N(0, .52). We consider two different underlying dis-

tributions of the predictor FPC scores: (a) ξik ∼ N (0, λk) and

(b) ξik = √
λk(Zik − 4)/2, where Zik

iid∼ gamma(4,1), which is
a right-skewed distribution, k = 1,2.
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As for the design of the number and spacing of the mea-
surement locations at which predictor trajectories are sampled,
we considered both dense and sparse designs to check the ro-
bustness of our methods against violations of the dense de-
sign assumption. For the dense case, each predictor trajectory
was sampled at locations distributed uniformly over the domain
[0,10], where the number of measurements was chosen sep-
arately and randomly for each predictor trajectory, by select-
ing a number from {30, . . . ,40} with equal probability. For the
more challenging sparse case, the number of measurements was
chosen from {3, . . . ,6} with equal probability. For each simula-
tion run, we generated 100 new predictor trajectories X∗

i with
measurements U∗

ij , taken at the same time points Uij as for the
100 observed predictor trajectories and 100 associated response
variables (resp. response functions Y ∗

i ).
For the scalar response case, we generated responses Yi =∑2
k=1 fk(ξik)+ εi , where the fk’s are the true component func-

tions that relate the FPC scores ξik of the predictor trajectories
Xi to the responses Yi , with errors εi

iid∼ N(0, .1), so that μY = 0
and σ 2

Y = .1. We compared the performance of fitting the FAM
(7) and the functional linear regression model (1) under two sit-
uations: (a) the true functions fk(x) = x2 − λk for k = 1,2 are
nonlinear, and (b) the true functions f1(x) = 2x and f2(x) =
x/2 are linear. As we demonstrated in (6), the functions fk

become lines through the origin for the case of the functional
linear regression model. The representation (6) immediately

suggests the estimates f̂k(x) = ∑n
i=1(Yi − Ȳ )(ξ̂ik − ¯̂

ξ ·k)λ̂−1
k x,

where Ȳi = ∑n
i=1 Yi/n, ¯̂

ξ ·k = ∑n
i=1 ξ̂ik/n, λ̂k is the estimate of

the kth eigenvalue of the predictor process X, and the ξ̂ik’s are
obtained by the PACE method in (A.4).

For both the scalar and functional response cases, we imple-
mented the FAM as described in Section 4, including choosing
the number of model components for the predictor processes
by the AIC, and applied local polynomial smoothing to esti-
mate the functions fk , with leave-one-out cross-validation for
automatic choice of the smoothing bandwidths. We fitted the
functional linear model as described earlier and compared the
quality of the prediction of responses for the new subjects.

For the functional response case, we also compared the pre-
dictive performance of FAM with that of functional linear re-
gression. For the latter, we estimated the (in this case linear)

component functions fkm by f̂km(x) = ∑n
i=1(ζ̂im − ζ̄·m)(ξ̂ik −

¯̂
ξ ·k)λ̂−1

k x. The simulation settings were the same as those
for the scalar response case. In addition, we generated func-
tional response trajectories as Yi(t) = μY (t) + ζi1ψ1(t), where
μY (t) = t + sin(t), ψ1(t) = − cos(πt/10)/

√
5, and ζi1 were

the only nonzero FPC scores for the responses, 0 ≤ t ≤ 10.
To generate the scores ζi1, as before, we considered nonlin-
ear and linear scenarios for the component functions fkm, k =
1,2,m = 1: (a) the true functions fk1(x) = x2 − λk were non-
linear, k = 1,2, that is, ζi1 = ∑2

k=1(ξ
2
ik − λk), and (b) the

true functions f11(x) = 2x, f21(x) = x/2 were linear, that is,
ζi1 = 2ξi1 + ξi2/2. The measurement errors εil in (A.3) were
generated iid from N (0, .1). The designs for sampling the re-
sponse trajectories were chosen in the same way as those for
sampling the predictor trajectories, with both sparse and dense
cases included.

To evaluate the prediction of new responses from future sub-
jects, we generated 100 new predictor and response trajectories
X∗

i and Y ∗
i , with measurements U∗

ij and V ∗
il taken at the same

time points as Uij and Vil . The quality of the responses was
measured in terms of the relative prediction errors (RPEs),

RPEi = (Y ∗
i − Ŷ ∗

i )2

Y ∗2
i

and

(22)

RPEi,f =
∫

S (Y ∗
i (t) − Ŷ ∗

i (t))2 dt∫
S Y ∗2

i (t) dt
,

for scalar and functional response cases.
The results for the RPE when the predictor FPC scores are

normal, given in Table 1, suggest that FAM leads to similar
prediction errors in the sparse and somewhat larger prediction
errors in the dense case compared with the functional linear ap-
proach when the true functions fk or fkm are linear, whereas
FAM improves on functional linear regression when the under-
lying component functions are nonlinear. This holds equally for
scalar and functional responses.

Similar results emerge for the case of right-skewed distribu-
tions (Table 2). Again, the median losses when using FAM for
the case of an underlying linear model are small in the sparse
case, whereas they are now more noticeable in the dense case.
The improvements obtained when using FAM for the nonlinear
case for both dense and sparse designs are found to persist for

Table 1. Simulation results for the comparison of predictions obtained by the FAM and functional linear regression (LIN), for models with
scalar response [see (7) for the FAM version, (1) for the linear version] and with functional response [(8) for the FAM version,

(2) for the linear version], for both dense and sparse designs

Design Response Model True 25th 50th 75th True 25th 50th 75th

Dense Scalar FAM NLF .0683 .2983 1.820 LF .0075 .0431 .3024
LIN .6458 1.068 1.870 .0102 .0335 .1362

Functional FAM NLF .0025 .0086 .0279 LF .0005 .0012 .0031
LIN .0109 .0363 .0705 .0004 .0009 .0019

Sparse Scalar FAM NLF .1124 .4437 2.884 LF .0176 .1066 .7149
LIN .6614 1.071 1.822 .0270 .1133 .5378

Functional FAM NLF .0066 .0156 .0432 LF .0023 .0042 .0090
LIN .0138 .0389 .0737 .0023 .0044 .0094

NOTE: The true component functions are linear (LF) and nonlinear (NLF), and the true FPC scores of the predictor process are generated from normal distributions, as described in
Section 6. Simulations were based on 400 Monte Carlo runs with n = 100 predictors and responses per sample. Shown in the table are the Monte Carlo estimates of the 25th, 50th, and
75th percentiles of the relative prediction error, RPE (22).
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Table 2. Simulation results obtained for the same settings as in Table 1, but with the true FPC scores of the predictor process generated
from right-skewed distributions related to gamma(4, 1), as described in Section 6

Design Response Model True 25th 50th 75th True 25th 50th 75th

Dense Scalar FAM NLF .0163 .0885 1.035 LF .0014 .0066 .0410
LIN .0396 .1827 3.383 .0008 .0030 .0135

Functional FAM NLF .0028 .0101 .0375 LF .0005 .0013 .0034
LIN .0126 .0417 .0819 .0003 .0005 .0010

Sparse Scalar FAM NLF .0448 .2775 3.558 LF .0291 .1511 1.031
LIN .1867 .7179 3.642 .0305 .1423 .9316

Functional FAM NLF .0072 .0146 .0485 LF .0023 .0041 .0090
LIN .0156 .0422 .0803 .0021 .0042 .0091

the situation with skewed distributions. We note that the per-
formance of FAM appears to be less stable compared with the
linear model in the tails of the error distribution, as evidenced
by occasional relatively large values in the 75th percentiles of
RPEs. We conclude that in situations where the signal is not
too weak, the losses when using FAM in the linear case are
relatively small, whereas FAM performs better than the linear
model in situations when the underlying regression relationship
is nonlinear.

7. APPLICATION TO GENE EXPRESSION
TIME COURSE DATA

We applied our methods to gene expression profile data
where both predictors and responses are functional. Arbeitman
et al. (2002) obtained developmental gene expression profiles
over the entire lifespan of Drosophila, and we applied func-
tional regression to study the relation of the expression profiles
for different developmental periods (see also Müller, Chiou, and
Leng 2008). The genes in the biologically identified group of
n = 21 “transiently expressed zygotic genes” show early peaks
in expression during the embryonal phase and are active in the
cellularization phase of the embryo. For this well-defined gene
group, we studied how the expression in the pupa or metamor-
phosis phase depends on that in the embryo phase. The data

consist of 31 measurements during the embryo phase (i.e., the
predictor process) and 18 measurements during the pupa phase
(i.e., the response process). For one of the genes, data were
available only for the embryo phase, and thus we used the data
for this gene only to carry out the FPC analysis for predictor
processes. The linearly interpolated gene expression trajecto-
ries for both predictor and response processes, as well as their
mean functions, are shown in Figure 1, confirming an early
peak in the predictor trajectories and displaying quite a bit of
variation between genes.

The AIC method selected three components for predictor
processes and four components for response processes. The cor-
responding eigenfunctions are displayed in Figure 2; the legend
explains the fraction of variation explained by the correspond-
ing eigenvalues. Of interest are the pairwise scatterplots of all
pairings of response FPC scores ζ̂i1, ζ̂i2, ζ̂i3, and ζ̂i4 versus the
predictor FPC scores ξ̂i1, ξ̂i2, and ξ̂i3, as shown in Figure 3.
Judging from these scatterplots, there exist clear relationships
between response and predictor scores; whereas several of these
appear to be close to linear, for others a linear fit is not good,
pointing to the presence of nonlinear relationships. To interpret
these relations, we need to take the shape of both the predic-
tor and response eigenfunctions into account; for example, the
negative relationship between ζ̂i1 and ξ̂i1 implies that sharper

(a) (b)

Figure 1. Observed (thin curves) gene expression levels and smoothed estimates of the mean functions (thick curves) for embryo phase (a)
and pupa phase (b), for zygotic data.

http://pubs.amstat.org/action/showImage?doi=10.1198/016214508000000751&iName=master.img-000.png&w=164&h=183
http://pubs.amstat.org/action/showImage?doi=10.1198/016214508000000751&iName=master.img-001.png&w=170&h=180
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(a) (b)

Figure 2. (a) Estimates of the first three eigenfunctions for predictor trajectories from the embryo phase (predictor process), K = 3 compo-
nents selected by AIC, accounting for 80.69% (first component; —), 13.65% (second component; −−), and 2.71% (third component; −·−·) of
the total variation. (b) Estimates of the first 4 eigenfunctions of the pupa (metamorphosis) phase (response process), M = 4 components selected
by AIC, accounting for 80.47% (first component; —), 8.89% (second component; −−), 4.2% (third component; − · −·), and 1.55% (fourth
component; · · · ·) of the total variation.

initial peaks and lower late embryonal gene expression is cou-
pled with an overall lower pupa phase expression, in the sense
that the contribution of the first eigenfunction in the response is
reduced.

Interpretation of FAM can be aided by a “principal response
plot,” displayed in Figure 4, where one predictor FPC score is

varied while the others are kept fixed at level 0. This can be
visualized by looking at a set of predictor functions moving
in a certain direction “away” from the mean function of the
predictor process, where the direction depends on the chosen
eigenfunction; each of these predictor functions, when plugged
into FAM, then generates a corresponding response function.

Figure 3. Scatterplots (·), local polynomial (—) and linear (−−) estimates for the regressions of estimated FPC scores of the pupa phase
(responses, y-axis) versus those for the embryo phase (predictors, x-axis). The FPC scores of the embryo phase expressions are arranged from
left to right (ξk, k = 1,2,3), and the FPC scores of the pupa phase expressions are arranged from top to bottom (ζm,m = 1,2,3,4), for the
zygotic data.

http://pubs.amstat.org/action/showImage?doi=10.1198/016214508000000751&iName=master.img-002.png&w=147&h=176
http://pubs.amstat.org/action/showImage?doi=10.1198/016214508000000751&iName=master.img-003.png&w=147&h=176
http://pubs.amstat.org/action/showImage?doi=10.1198/016214508000000751&iName=master.img-004.png&w=355&h=283
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The set of these response functions is then jointly visualized
with the set of predictor functions in such a way that the corre-
sponding predictor/response pairs can be easily identified. This
device can be used for each predictor score. Because these act
independently from each other on the response, displaying a se-
ries of such plots for all relevant predictor scores then provides
a graphical representation of the FAM.

The left panels of Figure 4 indicate that shifts in the levels
on the right side of the peak of the predictor curves are asso-
ciated with broad shifts up or down in responses, the middle
panels indicate that the size of peak expression in predictors is
associated with amplitude shifts in the right half of response
curves, and the right panels indicate that combined time and
amplitude shifts of predictor peaks are associated with strong
amplitude shifts in responses in a nonlinear way. The principal
response plots thus characterize the response changes induced
by the modes of variation of the predictors. For proper inter-
pretation, it is helpful to note that the actual sample variation
of the predictor scores in the direction of each eigenfunction, as
depicted in the top panels of Figure 4, depends on the size of the
respective eigenvalue, which corresponds to the variance of the
FPC scores. This variation accordingly is much smaller for the
second or third eigenfunction, compared with the first eigen-
function, and thus the system’s response function changes, as
depicted in the lower panels, will be realized on increasingly
smaller scales for real functional data as the order of the eigen-
function increases.

The increased bias when fitting functional linear regression
to these data is evident in the observed leave-one-subject-out

Table 3. Functional R2 (17), 25th, 50th and 75th percentiles and
mean of the cross-validated observed relative prediction errors,

RPE(−i),f (22), comparing FAM and functional linear
regression models for zygotic data

25th 50th 75th Mean R2

FAM .0506 .0776 .1662 .1301 .19
LIN .0479 .0891 .1727 .1374 .16

PREs, that is, the cross-validated observed version of (22), de-
noted by RPE(−i),f ; mean and percentiles are listed in Table 3.
The median and mean of the errors are larger for the functional
linear model compared with the FAM. This finding is in line
with the increase in functional R2 (17) obtained for the FAM
compared with the functional linear regression model.

8. CONCLUDING REMARKS

The FAM strikes a fine balance between greatly enhancing
flexibility, compared with the functional linear model, and pre-
venting the curse of dimension incurred by a fully nonpara-
metric approach, due to its sensible structural constraints. This
is analogous to the situation in ordinary multiple regression,
where additive models do not suffer from the curse of dimen-
sion in the way in which unstructured nonparametric models
do. As a reviewer has pointed out, one also could imagine
other additive regression models geared toward specific regres-
sion relations, where the predictors correspond to suitably cho-

Figure 4. Top panels: Predictor trajectories μ̂X(s) + αφ̂k(s), for α = 0 (—), α = 1 (−−) and α = −1 (++) for k = 1 (left panels), k = 2
(middle panels), and k = 3 (right panels). Bottom panels: Corresponding response trajectories μ̂Y (t) + ∑M

m=1{f̂km(α) + ∑
��=k f̂�m(0)}ψ̂m(t),

for the zygotic data.

http://pubs.amstat.org/action/showImage?doi=10.1198/016214508000000751&iName=master.img-005.png&w=424&h=302
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sen functionals of the predictor processes other than the FPC
scores.

As we have demonstrated, specific advantages of using FPC
scores in an additive regression model are that (a) such a model
is a strict generalization of the functional linear model, which
emerges as a special case; (b) asymptotic consistency results
still can be derived under truly nonparametric (smoothness) as-
sumptions for all component functions, including mean and co-
variance functions; and (c) implementing the resulting additive
model requires no more than applying simple smoothing steps.
The necessary smoothing parameters for the component func-
tions can be easily selected in a data-adaptive way. The FAM
does not impose a largely increased computational burden over
the established functional linear regression model, and thus the
added flexibility comes at a low additional computational cost.
Judging from our simulations, the loss in efficiency against the
functional linear regression model when the underlying func-
tional regression is truly linear is quite limited. On the other
hand, the increased flexibility of the FAM can lead to substan-
tial gains.

APPENDIX: ESTIMATION PROCEDURES
AND ASSUMPTIONS

A.1 Eigenrepresentations and Estimating Functional
Principal Component Scores

The eigenfunctions φk, k = 1,2, . . . , for the representation of pre-
dictor processes X are the solutions of the equations (AGX

f )(s) =
λf (s) on the space of square-integrable functions f ∈ L2(S) under
constraints, where the autocovariance operator (AGX

f )(t) = ∫
f (s)×

GX(s, t) ds is a compact linear integral operator of Hilbert–Schmidt
type (Ash and Gardner 1975). The constraints correspond to ortho-
normality of the eigenfunctions, that is,

∫
φj (s)φk(s) ds = δjk , where

δjk = 1 if j = k and = 0 if j �= k. The eigenfunctions φj are ordered
according to the size of the corresponding eigenvalues, λ1 ≥ λ2 ≥ · · · .

Analogously, eigenfunctions and eigenvalues of the response process
Y are denoted by ψm and ρm. We assume that all functions {μX,φj }
and {μY ,ψk} are smooth (twice continuously differentiable).

We then have well-known representations GX(s1, s2) = ∑
k λk ×

φk(s1)φk(s2) and GY (t1, t2) = ∑
m ρmψm(t1)ψm(t2) of the covari-

ance functions of X and Y , as well as the Karhunen–Loève expansions
for processes X and Y ,

X(s) = μX(s) +
∞∑

j=1

ξj φj (s) and

(A.1)

Y (t) = μY (t) +
∞∑

k=1

ζkψk(t).

Because {φk, k = 1,2, . . .} and {ψm,m = 1,2, . . .} form orthonormal
bases of the respective space of square-integrable functions, it follows
that the regression parameter functions also can be represented on this
basis; that is, there exist coefficients βk and βkm such that β(s) =∑∞

k=1 βkφk(t) and β(s, t) = ∑∞
k=1

∑∞
m=1 βkmφk(s)ψm(t).

According to (A.1), we may represent the measurements for predic-
tor trajectories in (1) and both the predictor and response trajectories
in (2) as

Uij = Xi(sij ) + εij

= μX(sij ) +
∞∑

k=1

ξikφk(sij ) + εij ,

sij ∈ S,1 ≤ i ≤ n,1 ≤ j ≤ ni, (A.2)

Vil = Yi(til ) + εil

= μY (til ) +
∞∑

m=1

ζimψk(til) + εil ,

sil ∈ T ,1 ≤ i ≤ n,1 ≤ l ≤ mi. (A.3)

More specifically, writing Ui = (Ui1, . . . ,Uini
)T , μXi

= (μX(si1),

. . . ,μX(sini
))T , and φik = (φk(si1), . . . , φk(sini

))T , the best linear

prediction for ξik is λkφ
T
ik

�−1
Ui

(Ui −μXi
), where the (j, l) entry of the

ni × ni matrix �Ui
is (�Ui

)j,l = GX(sij , sil ) + σ 2
X

δjl , with δjl = 1
if j = l and δjl = 0 if j �= l. Then the estimates for the scores ξik are
obtained by substituting estimates for μXi

, λk and φik , �Xi
(see the

Supplement) obtained from the entire data ensemble, leading to

ξ̂ik = λ̂k φ̂
T
ik�̂

−1
Ui

(Ui − μ̂Xi
), (A.4)

where the (j, l) element of �̂Ui
is (�̂Ui

)j,l = ĜX(sij , sil ) +
σ̂ 2
Y
(sij )δj l . We note that it follows from results of Müller (2005) that

as designs become dense, these best linear (PACE) estimates ξ̂ik, ζ̂im
(A.4) converge to those obtained by the more traditional integration-
based estimates,

ξ̂ I
ik =

ni∑
j=2

(Uij − μ̂X(tij ))φ̂k(sij )(sij − si,j−1),

(A.5)

ζ̂ I
im =

ni∑
j=2

(Vij − μ̂Y (tij ))ψ̂k(tij )(tij − ti,j−1),

which are motivated by the definition of the FPC scores as in-
ner products, ξik = ∫ {Xi(s) − μX(s)}φk(s) ds and ζim = ∫ {Yi(t) −
μY (t)}ψm(t) dt . Thus, the PACE estimates and the estimates based
on integral approximations can be considered equivalent in the dense
design case that we consider here.

A.2 Estimation Procedures

To obtain the FPC scores for predictor and response processes (in
case of a functional response), we adopt the PACE methodology (Yao
et al. 2005a). Estimating the predictor mean function μX by local lin-
ear scatterplot smoothers, we minimize

n∑
i=1

ni∑
j=1

K1

(
sij − s

bX

)
{Uij − βX

0 − βX
1 (s − sij )}2 (A.6)

with respect to βX
0 and βX

1 , to obtain μ̂X(s) = β̂X
0 (s). The kernel K1

is assumed to be a smooth symmetric density function, and bX is a
bandwidth. Estimating the covariance function GX(s1, s2) of predic-
tor processes X, we define GX

i
(sij1 , sij2) = (Uij1 − μ̂X(sij1))(Uij2 −

μ̂X(sij2)) and the local linear surface smoother by minimizing

n∑
i=1

∑
1≤j1 �=j2≤ni

K2

(
sij1 − s1

hX
,
sij2 − s2

hX

)

× {
GX

i

(
sij1 , sij2

) − f
(
βX, (s1, s2),

(
sij1 , sij2

))}2
, (A.7)

where f (βX, (s1, s2), (sij1 , sij2)) = βX
0 + βX

11(s1 − sj l1) + βX
12(s2 −

sij2) with respect to βX = (βX
0 , βX

11, βX
12)T , yielding ĜX(s1, s2) =

β̂X
0 (s1, s2). Here the kernel K2 is a two-dimensional smooth density

with mean 0 and finite covariances, and hX is a bandwidth. An essen-
tial feature is the omission of the diagonal elements j1 = j2, which are
contaminated with the measurement errors.

To estimate the variance of the measurement error σ 2
X

, we fit a lo-
cal quadratic component orthogonal to the diagonal of GX and a lo-
cal linear component in the direction of the diagonal. We denote the
diagonal of the resulting surface estimate by G̃X(s) and a local lin-
ear smoother focusing on diagonal values {GX(s, s) + σ 2

X
} by V̂X(s),
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using bandwidth h∗
X

. We let a0 = inf{s : s ∈ S}, b0 = sup{s : s ∈ S},
|S| = b0 − a0, and S1 = [a0 + |S|/4, b0 − |S|/4]. The estimate of σ 2

X
is

σ̂ 2
X = 2

∫
S1

{V̂X(s) − G̃X(s)}ds/|S| (A.8)

if σ̂ 2
X

> 0, and σ̂ 2
X

= 0 otherwise. Estimates of eigenvalues/eigenfunc-
tions {λk,φk}k≥1 are obtained as numerical solutions {λ̂k, φ̂k}k≥1 of
suitably discretized eigenequations,∫

S
ĜX(s1, s2)φ̂k(s2) ds2 = λ̂kφ̂k(s1), (A.9)

with orthonormal constraints on {φ̂k}k≥1. These estimates are unique
up to a sign change, and a projection on the space of positive definite
covariance surfaces is obtained by simply omitting components with
nonpositive eigenvalues in the final representation. Analogous proce-
dures are applied to response processes Y .

A.3 Assumptions

Here we compile the necessary assumptions for establishing theo-
retical properties. Recall that bX = bX(n), hX = hX(n), h∗

X
= h∗

X
(n),

bY = bY (n), hY = hY (n), and h∗
Y

= h∗
Y
(n) are the bandwidths for es-

timating μ̂X and μ̂Y in (A.6), ĜX and ĜY in (A.7), and V̂X and V̂Y in
(A.8). As the number of subjects n → ∞, we require the following:

(A1.1) bX → 0, h∗
X

→ 0, nb4
X

→ ∞, nh∗
X

4 → ∞, nb6
X

< ∞, and

nh∗
X

6 < ∞
(A1.2) hX → 0, nh6

X
→ ∞, and nh8

X
< ∞.

For FAM with functional responses, analogous requirements are as fol-
lows:

(B1.1) bY → 0, h∗
Y

→ 0, nb4
Y

→ ∞, nh∗
Y

4 → ∞, nb6
Y

< ∞, and

nh∗
Y

6 < ∞.

(B1.2) hY → 0, nh6
Y

→ ∞, and nh8
Y

< ∞.

The time points {sij }i=1,...,n;j=1,...,ni
here are considered deter-

ministic. Write the sorted time points across all subjects as a0 ≤ s(1) ≤
· · · ≤ s(Nn) ≤ b0 and �X = max{s(k) − s(k−1) :k = 1, . . . ,N + 1},
where Nn = ∑n

i=1 ni , S = [a0, b0], s(0) = a0, and s(N+1) = b0. For
the ith subject, suppose that the time points sij have been ordered
nondecreasingly. Let �iX = max{sij − si,j−1 : j = 1, . . . , ni + 1} and
�∗

X
= max{�iX : i = 1, . . . , n}, where si0 = a0 and si,ni+1 = b0, and

n̄x = n−1 ∑n
i=1 ni . To obtain uniform consistency, we require both

the pooled data across all subjects and also the data from each subject
to be dense in the time domain S . Assume the following:

(A2.1) �X = O(min{n−1/2b−1
X

,n−1/2h∗
X

−1, n−1/4h−1
X

})
(A2.2) n̄x → ∞, max{ni : i = 1, . . . , n} ≤ Cn̄x for some C > 0

and �∗
X

= O(1/n̄x).

For the FAM with response process Y and observations {til , Vil}, l =
1, . . . ,mi , i = 1, . . . , n, we analogously define the quantities �Y , �iY ,
�∗

Y
, and m̄y and assume the following:

(B2.1) �Y = O(min{n−1/2b−1
Y

,n−1/2h∗
Y

−1, n−1/4h−1
Y

})
(B2.2) m̄y → ∞, max{mi : i = 1, . . . , n} ≤ Cm̄y for some C > 0,

and �∗
Y

= O(1/m̄y).

Let Ui(s)
iid∼ U(s) denote the distributions that generate Uij for the ith

subject at s = sij . Analogously, let Vi(t)
iid∼ V (t) denote the distribu-

tions that yield Vil for the ith subject at til . Assume that the fourth
moments of U(s) and V (t) are uniformly bounded for all s ∈ S and
t ∈ T , as follows:

(A3) sups∈S E[U4(s)] < ∞

(B3) supt∈T E[V 4(t)] < ∞.

Denoting the Fourier transforms of kernels K1 and K2 by κ1(t) =∫
e−iutK1(u) du and κ2(t, s) = ∫

e−(iut+ivs)K2(u, v) dudv, we re-
quire the following:

(C1.1) κ1(t) is absolutely integrable, that is,
∫ |κ1(t)|dt < ∞, and

K1 is Lipschitz-continuous on its compact support
(C1.2) κ2(t, s) is absolutely integrable, that is,

∫ ∫ |κ2(t,

s)|dt ds < ∞.

In the sequel, let gu1(u; s), gu2(u1, u2; s1, s2), gv1(v; t), and gv2(v1,

v2; t1, t2) denote the density functions of U(s), (U(s1),U(s2)), V (t),
and (V (t1),V (t2)), and let pk and qm denote the densities of ξk and
ζm. It is assumed that these density functions satisfy the following reg-
ularity conditions:

(C2.1) (d2/ds2)gu1(u; s) exists and is uniformly continuous on

� × S , and (d2/(ds
�1
1 ds

�2
2 ))gu2(u1, u2; s1, s2) exists and

is uniformly continuous on �2 × S 2, for �1 + �2 = 2,0 ≤
�1, �2 ≤ 2

(C2.2) (d2/dt2)gv1(v; t) exists and is uniformly continuous on

� × T , and (d2/(dt
�1
1 dt

�2
2 ))gv2(v1, v2; t1, t2) exists and is

uniformly continuous on �2 × T 2, for �1 + �2 = 2,0 ≤
�1, �2 ≤ 2

(C2.3) The second derivative p(2)(x) exists and is continuous on �.

Let ‖f ‖∞ = supx∈A |f (t)| for an arbitrary function f with sup-

port A, and ‖g‖ =
√∫

A g2(t) dt for any g ∈ L2(A). The following
assumptions are needed for Theorem 1:

(A4) E(‖X′‖2∞) < ∞, E(‖X′2‖2∞) = o(n̄x), and E(ξ4
k
) < ∞ for

any fixed k

(B4) E(‖Y ′‖2∞) < ∞, E(‖Y ′2‖2∞) = o(m̄y), and E(ζ 4
m) < ∞ for

any fixed m

(A5) nh4
X

h2
k

→ 0, nb2
X

h2
k

→ 0, and n̄xh2
k

→ 0.

For brevity, denote
∑K

k=1 by
∑

k ,
∑M

m=1 by
∑

m,
∑K

k=1
∑M

m=1 by∑
k,m, maxk=1,...,K by maxk , and maxm=1,...,M by maxm in the fol-

lowing assumptions, which are needed for Theorem 2 and are assumed
to hold for all fixed ξk , K ≤ K0:

(A6)
∑

k pk(ξk)h
−1
k

= o{min(n1/2bX, n̄
1/2
x )},maxk ‖φkφ

′
k
‖∞ =

O(n̄x),
∑

k pk(ξk)π
x
k
h−1
k

= o(n1/2h2
X

),
∑

k E(ξ4
k
) < ∞

(B5) For any fixed ξk , t ∈ T , K ≤ K0, M ≤ M0,
∑
k,m

pk(ξk)|ψm(t)|h−1
mk

= o
{
min

(
n1/2bX, n̄

1/2
x

)}
,

max
k

‖φkφ
′
k‖∞ = O(n̄x),

∑
k,m

pk(ξk)|ψm(t)| = o
{
min

(
n1/2bY , m̄

1/2
y

)}
,

max
m

‖ψmψ ′
m‖∞ = O(m̄y),

∑
k,m

pk(ξk)π
x
k |ψm(t)|h−1

mk
= o

(
n1/2h2

X

)
,

∑
k,m

pk(ξk)π
y
m|ψm(t)| = o

(
n1/2h2

Y

)
,

∑
k,m

π
y
m|fmk(ξk)| = o

(
n1/2h2

Y

)
,

∑
m

E(ζ 4
m) < ∞.
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To guarantee the consistency of predictions, we also require the fol-
lowing for fixed ξk and t ∈ T :

(A7)
∑K

k=1[|f ′′
k

(ξk)|h2
k

+ n−1/2{var(Y |ξk)}1/2p
−1/2
k

(ξk) ×
h
−1/2
k

] → 0

(B6)
∑K

k=1
∑M

m=1[|f ′′
mk

(ξk)ψm(t)|h2
mk

+n−1/2{var(ζm|ξk)}1/2 ×
p

−1/2
k

(ξk)|ψm(t)|h−1/2
mk

] → 0.

[Received August 2007. Revised June 2008.]
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Supplement for “Functional Additive Models”

1. NOTATIONS AND AUXILIARY RESULTS

Covariance operators are denoted by GX , ĜX , generated by kernels GX , ĜX ; i.e.,

GX(f) =
∫
T
GX(s, t)f(s)ds, ĜX(f) =

∫
T
ĜX(s, t)f(s)ds for any f ∈ L2(T ). Define

DX =
∫
T 2{ĜX(s, t) −GX(s, t)}2dsdt, δx

k = min1≤j≤k(λj − λj+1),

K0 = inf{j ≥ 1 : λj − λj+1 ≤ 2DX} − 1, πx
k = 1/λk + 1/δx

k .
(32)

Let K = K(n) denote the numbers of leading eigenfunctions included to approximate

X as sample size n varies; i.e., X̂i(s) = µ̂X(s)+
∑K

k=1 ξ̂ikφ̂k(s). Analogously, define the

quantities GY , ĜY , DY , δy
m πy

m, M0 and M for the process Y , for the case of functional

responses. The following lemma gives the weak uniform convergence rates for the

estimators of the FPCs, setting the stage for the subsequent developments. The proof

is in Section 2.

Lemma 1 Under (A1.1)-(A3), (C1.1), (C1.2) and (C2.1),

sup
t∈S

|µ̂X(s) − µX(s)| = Op(
1√
nbX

), sup
s1,s2∈S

|ĜX(s1, s2) −GX(s1, s2)| = Op(
1√
nh2

X

),(33)

and as a consequence, σ̂2
X − σ2

X = Op(n
−1/2h−2

X + n−1/2h∗X
−1). Considering eigenvalues

λk of multiplicity one, φ̂k can be chosen such that

P ( sup
1≤k≤K0

|λ̂k − λk| ≤ DX) = 1, sup
s∈S

|φ̂k(s) − φk(s)| = Op(
πx

k√
nh2

X

), k = 1, . . . , K0,(34)

where DX , πx
k and K0 are defined in (32).

Analogously, under (B1.1)-(B3), (C1.1), (C1.2) and (C2.2),

sup
t∈T

|µ̂Y (t) − µY (t)| = Op(
1√
nbY

), sup
t1,t2∈T

|ĜY (t1, t2) −GY (t1, t2)| = Op(
1√
nh2

Y

), (35)

and as a consequence, σ̂2
Y − σ2

Y = Op(n
−1/2h−2

Y + n−1/2h∗Y
−1). Considering eigenvalues

ρm of multiplicity one, ψ̂m can be chosen such that

P ( sup
1≤m≤M0

|ρ̂m − ρm| ≤ DY ) = 1, sup
t∈T

|ψ̂m(t) − ψm(t)| = Op(
πy

k√
nh2

Y

), m = 1, . . . ,M0,(36)

1



where DY , πy
k and M0 are defined analogously to (32) for process Y .

Recall that ‖f‖∞ = supx∈A |f(t)| for an arbitrary function f with support A, and

‖g‖ =
√∫

A
g2(t)dt for any g ∈ L2(A) and define

θ
(1)
ik = c1‖Xi‖ + c2‖XiX

′
i‖∞∆∗

X + c3, Z
(1)
k = sups∈S |φ̂k(s) − φk(s)|,

θ
(2)
ik = 1 + ‖φkφ

′
k‖∞∆∗

X , Z
(2)
k = sups∈S |µ̂X(s) − µX(s)|,

θ
(3)
ik = c4‖Xi‖∞ + c5‖X ′

i‖∞ + c6, Z
(3)
k = ‖φ′

k‖∞∆∗
X ,

θ
(4)
ik = |∑ni

j=2 ǫijφk(sij)(sij − si,j−1)|, Z
(4)
k ≡ 1,

θ
(5)
ik =

∑ni

j=2 |ǫij |(sij − si,j−1), Z
(5)
k ≡ Z

(1)
k ,

(37)

for some positive constants a1, . . . , c6 that do not depend on i or k. Similarly, define

corresponding quantities for the process Y as follows,

ϑ
(1)
im = d1‖Yi‖ + d2‖YiY

′
i ‖∞∆∗

Y + d3, Q
(1)
m = supt∈T |ψ̂m(t) − ψm(t)|,

ϑ
(2)
im = 1 + ‖ψmψ

′
m‖∞∆∗

Y , Q
(2)
m = supt∈T |µ̂Y (t) − µY (t)|,

ϑ
(3)
im = d4‖Yi‖∞ + d5‖Y ′

i ‖∞ + d6, Q
(3)
m = ‖ψ′

m‖∞∆∗
Y ,

ϑ
(4)
im = |∑mi

l=2 εilψm(til)(til − ti,l−1)|, Q
(4)
m ≡ 1,

ϑ
(5)
im =

∑mi

l=2 |εil|(til − ti,l−1), Q
(5)
m ≡ Q

(1)
m ,

(38)

for some positive constants d1, . . . , d6 that do not depend on i or m. We note that

the subscripts are mainly for notational convenience and do not necessarily reflect

dependence on these indices. Note that in (37), θ
(1)
ik , θ

(3)
ik , θ

(5)
ik in fact do not depend

on k and θ
(2)
ik does not depend on i, while Z

(3)
k is deterministic and Z

(4)
k is a constant.

More importantly, we emphasize that θ
(ℓ)
ik are i.i.d. over i (ℓ = 1, 3, 4, 5) or free of i

(ℓ = 2), and that the Z
(ℓ)
k do not depend on i.

The next lemma is critical for the subsequent developments, providing exact upper

bounds for the estimation errors |ξ̂I
ik − ξik| and |ζ̂I

im − ζim|, for the FPC estimates ξ̂I
ik,

ζ̂I
im (27).

2



Lemma 2 For θ
(ℓ)
ik , Z

(ℓ)
k , ϑ

(ℓ)
im and Q

(ℓ)
m as defined in (37) and (38),

|ξ̂I
ik − ξik| ≤

5∑

ℓ=1

θ
(ℓ)
ik Z

(ℓ)
k , |ζ̂I

im − ζim| ≤
5∑

ℓ=1

ϑ
(ℓ)
imQ

(ℓ)
m . (39)

The proof is in Section 2. In the sequel we suppress the superscript I in the FPC

estimates ξ̂I
ik and ζ̂I

im.

Recall that the sequences of bandwidths hk and hmk are employed to obtain the

estimates f̂k and f̂mk for the regression functions fk and fmk, and that the density of

ξk is denoted by pk. Define

θk(x) = pk(x){
πx

k√
nh2

X

+
1√
nbX

+
√

∆∗
X},

ϑmk(x) = pk(x){
πy

m√
nh2

Y

+
1√
nbY

+
√

∆∗
Y }. (40)

The weak convergence rates θ̃k and ϑ̃mk of the regression function estimators f̂k(x)

and f̂mk(x) (see Theorem 1) are as follows,

θ̃k(x) =
θk(x)

hk
+

1

2
|f ′′

k (x)|h2
k +

√
var(Y |x)‖K1‖2

pk(x)nhk
, (41)

ϑ̃mk(x) =
θk(x)

hmk
+ ϑmk(x) +

1

2
|f ′′

mk(x)|h2
mk +

√
var(ζm|x)‖K1‖2

pk(x)nhmk
.

Considering the predictions Ê(Y |X) for the scalar response case and Ê{Y (t)|X}
for the functional response case, the numbers of eigenfunctions K and M used for

approximating the infinite dimensional processes X and Y generally tend to infinity

as the sample size n increases. We require K ≤ K0 and M ≤ M0 in (A6). Since it

follows from (35) that K0 → ∞, as long as all eigenvalues λj are of multiplicity 1, and

analogously for M0, this is not a strong restriction. Denote the set of positive integers

by N and Nk = {1, . . . , k}. Convergence rates θ∗n and ϑ∗n for the predictions (20) and

3



(21) are as follows,

θ∗n =

K∑

k=1

{θk(ξk)

hk
+

1

2
|f ′′

k (ξk)|h2
k +

√
var(Y |ξk)‖K1‖2

pk(ξk)nhk
} +

∣∣ ∑

k≥K+1

fk(ξk)
∣∣, (42)

ϑ∗n =

K∑

k=1

M∑

m=1

{(θk(ξk)

hmk
+ ϑmk(ξk))|ψm(t)| + 1

2
|f ′′

mk(ξk)|ψm(t)|h2
mk +

√
var(ζm|ξk)‖K1‖2

pk(ξk)nhk
|ψm(t)|

+
πy

m|fmk(ξk)|√
nh2

Y

} +
∣∣ ∑

(k,m)∈N 2\NK×NM

fmk(ξk)ψm(t)
∣∣,

where θk and ϑk are defined in (40) and we note that ϑ∗n depends on t.

2. PROOFS

Proof of Lemma 1. It is sufficient to show (33) and (34). The weak convergence results

(33) for µ̂X and ĜX(s1, s2) have been derived in Lemma 2 of Yao and Lee (2006).

Theorem 1 of Hall and Hosseini-Nasab (2006) implies the first equation of (34) for the

estimated eigenvalues λ̂k. Assuming λk > 0 without loss of generality, we have

|λ̂kφ̂k(s) − λkφk(s)| = |
∫

S

ĜX(t, s)φ̂k(t)dt−
∫

S

GX(t, s)φk(t)dt|

≤
∫

S

|ĜX(t, s) −GX(t, s)| · |φ̂k(t)|dt+
∫

S

|GX(t, s)| · |φ̂k(t) − φk(t)|dt

≤
√∫

S

(ĜX(t, s) −GX(t, s))2dt+

√∫

S

G2
X(t, s)dt‖φ̂k − φk‖,

and |λ̂kφ̂k(s)/λk − φk(s)| = Op{DX(1/λk + 1/δx
k)} uniformly in s ∈ S for 1 ≤ k ≤ K0,

where K0 is defined in (32). The second equation of (34) follows immediately. �

Proof of Lemma 2. Let

η̂ik =

ni∑

j=2

{Xi(sij) − µ̂(sij)}φ̂k(sij)(sij − si,j−1),

η̃ik =

ni∑

j=2

{Xi(sij) − µ(sij)}φk(sij)(sij − si,j−1),

τ̂ik =

ni∑

j=2

ǫijφ̂k(sij)(sij − si,j−1), τ̃ik =

ni∑

j=2

ǫijφk(sij)(sij − si,j−1).

4



Noting ξ̂ik = η̂ik + τ̂ik, one finds

|ξ̂ik − ξik| ≤ {|η̂ik − η̃ik| + |η̃ik − ξik| + |τ̂ik|}. (43)

Without loss of generality, assume ‖φk‖∞ ≥ 1, ‖φ′
k‖∞ ≥ 1, ‖Xi‖∞ ≥ 1 and ‖X ′

i‖∞ ≥ 1.

For θ
(ℓ)
ik and Z

(ℓ)
k (37), ℓ = 1, . . . , 5, the first term on the r.h.s. of (43) is bounded by

{
ni∑

j=2

[|Xi(sij) − µ̂(sij)| · |φ̂k(sij) − φk(sij)| + |µ̂(sij) − µ(sij)| · |φk(sij)|](sij − si,j−1)}

≤ {
ni∑

j=1

[|Xi(sij)| + |µ(sij)| + 1]2(sij − si,j−1)}1/2{
ni∑

j=2

[φ̂k(sij) − φk(sij)]
2(sij − si,j−1)}1/2

+{
ni∑

j=1

[µ̂(sij) − µ(sij)]
2(sij − si,j−1)}1/2{

ni∑

j=2

φ2
k(sij)(sij − si,j−1)}1/2

≤ θ
(1)
ik Z

(1)
k + θ

(2)
ik Z

(2)
k .

The second term on the r.h.s. of (43) has the upper bound

|η̃ij − ξik| ≤ ‖(Xi + µ)′φk + (Xi + µ)φ′
k‖∞∆∗

X ≤ θ
(3)
ik Z

(3)
k .

From the above, the third term on the r.h.s. of (43) is bounded by (θ
(4)
ik Z

(4)
k + θ

(5)
ik Z

(5)
k ).

�

Proof of Theorem 1. For simplicity, denote “
∑n

i=1” by “
∑

i”, wi = K1{(x−ξik)/hk}/(nhk),

ŵi = K1{(x − ξ̂ik)/hk}/(nhk), and write θk = θk(x). From (12), the local linear esti-

mator f̂k(x) of the regression function fk(x) can be explicitly written as

f̂k(t) =

∑
i ŵiYi∑
i ŵi

−
∑

i ŵi(ξ̂ik − x)∑
i ŵi

f̂ ′
k(x), (44)

where

f̂ ′
k(x) =

∑
i ŵi(ξ̂ik − x)Yi − {∑i ŵi(ξ̂ik − x)

∑
i ŵiYi}/

∑
i ŵi∑

i ŵi(ξ̂ik − x)2 − {∑i ŵi(ξ̂ik − x)}2/
∑

i ŵi

. (45)

Let f̃k(x) be a hypothetical estimator, obtained by substituting the true values wi and

ξik for ŵi, ξ̂ik in (44) and (45). To evaluate |f̂k(x) − f̃k(x)|, one has to quantify the

5



orders of the differences

D1 =
∑

i

(ŵi − wi), D2 =
∑

i

(ŵi − wi)Yi,

D3 =
∑

i

(ŵiξ̂ik − wiξik), D4 =
∑

i

(ŵiξ̂
2
ik − wiξ

2
ik).

Considering D1, without loss of generality, assume the compact support ofK1 is [−1, 1].

Since K1 is Lipschitz continuous on its support,

D1 ≤
c

nh2
k

∑

i

|ξ̂ik − ξik|{I(|x− ξik| ≤ hk) + I(|x− ξ̂ik| ≤ hk)}, (46)

for some c > 0, where I(·) is an indicator function. Lemma 2 implies for the first term

on the r.h.s. of (46)

1

nh2
k

∑

i

|ξ̂ik − ξik|I(|x− ξik| ≤ hk) ≤
5∑

ℓ=1

Z
(ℓ)
k

1

nh2
k

∑

i

θ
(ℓ)
ik I(|x− ξik| ≤ hk).

Applying the central limit theorem for a random number of summands (Billingsley,

1995, page 380), observing
∑

i I(|x− ξik| ≤ hk)/(nhk)
p→ 2pk(x), one finds

1

nhk

∑

i

θ
(ℓ)
ik I(|x− ξik| ≤ hk)

p−→ 2pk(x)E(θ
(ℓ)
ik ), (47)

provided that E(θ
(ℓ)
ik ) <∞ for ℓ = 1, . . . , 5. Note that Eθ

(1)
ik <∞, Eθ

(3)
ik <∞ by (A4),

Eθ
(4)
ik ≤ 2σX

√
∆∗

X and Eθ
(5)
ik ≤ |S|σX by the Cauchy-Schwarz inequality. Then

Z
(1)
k

1

nh2
k

∑

i

θ
(1)
ik I(|x− ξik| ≤ hk) = Op{

πx
k√

nh2
Xhk

pk(x)},

Z
(2)
k

1

nh2
k

∑

i

θ
(2)
ik I(|x− ξik| ≤ hk) = Op{

1√
nbXhk

pk(x)},

Z
(3)
k

1

nh2
k

∑

i

θ
(3)
ik I(|x− ξik| ≤ hk) = Op{

‖φk‖∞∆∗
X

hk
pk(x)},

Z
(4)
k

1

nh2
k

∑

i

θ
(4)
ik I(|x− ξik| ≤ hk) = Op{

√
∆∗

X

hk
pk(x)},

Z
(5)
k

1

nh2
k

∑

i

θ
(5)
ik I(|x− ξik| ≤ hk) = Op{

πx
k√

nh2
Xhk

pk(x)}. (48)
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We now obtain (nh2
k)

−1
∑

i |ξ̂ik − ξik|I(|x − ξik| ≤ hk) = Op(θkh
−1
k ). The asymptotic

rate of the second term can be derived analogously, observing

1

nhk

∑

i

I(|x−ξ̂ik| ≤ hk) ≤
1

nhk

∑

i

{I(|x−ξik| ≤ 2hk)+I(

5∑

ℓ=1

θ
(ℓ)
ik Z

(ℓ)
k > hk)} p−→ 4pk(x),

leading to (nh2
k)

−1
∑

i |ξ̂ik − ξik|I(|x− ξ̂ik| ≤ hk) = Op(θkh
−1
k ). Then D1 = Op(θkh

−1
k )

follows.

Analogously, one shows D2 = Op(θkh
−1
k ), applying the Cauchy-Schwarz inequality

for θ
(ℓ)
ik , ℓ = 1, 3, and observing the independence between Yi and θ

(ℓ)
ik for ℓ = 2, 4, 5,

given the moment condition (A4). For D3, observe

D3 =
∑

i

{(ŵi − wi)ξik + (ŵi − wi)(ξ̂ik − ξik) + wi(ξ̂ik − ξik)} ≡ D31 +D32 +D33.

Then D31 = Op(θkh
−1
k ), analogously to D1. It is easy to see that D32 = op(D31).

Since D33 ≤ c
∑5

ℓ=1 Z
(ℓ)
k (nhk)

−1
∑

i θ
(ℓ)
ik I(|x − ξik| ≤ hk) for some c > 0, one also has

D33 = op(D31). This results in D3 = Op(θkh
−1
k ). Observing |ξ̂2

ik − ξ2
ik| ≤ |ξ̂ik − ξik| ·

|ξik| + (ξ̂ik − ξik)
2, one can show D4 = Op(θkh

−1
k ), using similar arguments as for D3,

and Eξ4
ik < ∞ from (A4). Combining the results for Dℓ, ℓ = 1, . . . , 4, and applying

Slutsky’s Theorem leads to |f̂k(x) − f̃k(x)| = Op(θkh
−1
k ). Using (A5), and applying

standard asymptotic results for the hypothetical local linear smoother f̃k(x) completes

the proof of (18).

To derive (19), additionally one only needs to consider
∑

i(ŵiζ̂im−wiζim) =
∑

i({ŵi−
wi)ζim + (ŵi − wi)(ζ̂im − ζim) + wi(ζ̂im − ζim)}, where the third term yields an extra

term of order Op(ϑmk) by observing

|
∑

i

wi(ζ̂im − ζim)| ≤
5∑

ℓ=1

Q(ℓ)
m

∑

i

wiϑ
(ℓ)
im ≤ 1

nhmk

5∑

ℓ=1

Q(ℓ)
m

∑

i

ϑ
(ℓ)
imI(|x− ξik| ≤ hmk)

Similar arguments as above complete this derivation. �

Proof of Theorem 2. Using (A7), the derivation of θ∗n in (42) is straightforward,
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following the above arguments. To obtain (21), note that

Ê{Y (t)|X} − E{Y (t)|X}

≤
K∑

k=1

M∑

m=1

|f̂mk(ξk)ψ̂m(t) − fmk(ξk)ψm(t)| + |
∑

k≥K+1

∑

m≥M+1

fmk(ξk)ψm(t)|

≤
K∑

k=1

M∑

m=1

[|f̂mk(ξk) − fmk(ξk)|{|ψm(t)| + |ψ̂m(t) − ψm(t)|} + |fmk(ξk)| · |ψ̂m(t) − ψm(t)|]

+|
∑

(k,m)∈N 2\NK×NM

fmk(ξk)ψm(t)|.

This implies the convergence rate ϑ∗n in (42).
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