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Abstract

We introduce the concept of mixture inner product spaces associated with a given separable

Hilbert space, which feature an infinite-dimensional mixture of finite-dimensional vector spaces

and are dense in the underlying Hilbert space. Any Hilbert valued random element can be arbi-

trarily closely approximated by mixture inner product space valued random elements. While this

concept can be applied to data in any infinite-dimensional Hilbert space, the case of functional

data that are random elements in the L2 space of square integrable functions is of special interest.

For functional data, mixture inner product spaces provide a new perspective, where each realiza-

tion of the underlying stochastic process falls into one of the component spaces and is represented

by a finite number of basis functions, the number of which corresponds to the dimension of the

component space. In the mixture representation of functional data, the number of included mix-

ture components used to represent a given random element in L2 is specifically adapted to each

random trajectory and may be arbitrarily large. Key benefits of this novel approach are, first, that

it provides a new perspective on the construction of a probability density in function space under

mild regularity conditions, and second, that individual trajectories possess a trajectory-specific

dimension that corresponds to a latent random variable, making it possible to use a larger num-

ber of components for less smooth and a smaller number for smoother trajectories. This enables

flexible and parsimonious modeling of heterogeneous trajectory shapes. We establish estimation

consistency of the functional mixture density and introduce an algorithm for fitting the functional

mixture model based on a modified expectation-maximization algorithm. Simulations confirm

that in comparison to traditional functional principal component analysis the proposed method

achieves similar or better data recovery while using fewer components on average. Its practical

merits are also demonstrated in an analysis of egg-laying trajectories for medflies.
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1 Introduction

Introducing the concept of mixture inner product spaces is motivated by one of the basic problems in

functional data analysis, namely to efficiently represent functional trajectories by dimension reduc-

tion. Functional data correspond to random samples {X̃1, X̃2, . . . , X̃n} drawn from a square-integrable

random process defined on a finite interval D, X̃ ∈ L2(D). Random functions X̃i are generally consid-

ered to be inherently infinite-dimensional and therefore finite-dimensional representations are essen-

tial. A commonly employed approach for dimension reduction is to expand the functional data in a

suitable basis in function space and then to represent the random functions in terms of the sequence

of expansion coefficients. This approach has been very successful and has been implemented with

B-spline bases (Ramsay and Silverman, 2005) and eigenbases, which consist of the eigenfunctions of

the covariance operator of the underlying stochastic process that generates the data. The estimated

eigenbasis expansion then gives rise to functional principal component analysis, which was intro-

duced in a rudimentary form in Rao (1958) for the analysis of growth curves. Earlier work on eigende-

compositions of square integrable stochastic processes (Grenander, 1950; Gikhman and Skorokhod,

1969) paved the way for statistical approaches.

By now there is a substantial literature on functional principal component analysis, including

basic developments (Besse and Ramsay, 1986; Castro et al., 1986), advanced smoothing implemen-

tations and the concept of modes of variation (Rice and Silverman, 1991; Silverman, 1996), theory

(Boente and Fraiman, 2000; Kneip and Utikal, 2001; Hall and Hosseini-Nasab, 2006), as well as a

unified framework that covers functional principal component analysis for functional data with both

sparse and dense designs and therefore brings many longitudinal data under this umbrella (Yao et al.,

2005; Li and Hsing, 2010; Zhang and Wang, 2016). One of the attractions of functional principal

component analysis is that for any number of included components the resulting finite-dimensional

approximation to the infinite-dimensional process explains most of the variation. This has con-

tributed to the enduring popularity of functional principal component analysis (Li and Guan, 2014;

Chen and Lei, 2015), which differs in essential ways from classical multivariate principal component

analysis, due to the smoothness and infinite dimensionality of the functional objects.

Existing methods assume a common structural dimension for this approximation (Hall and Vial,

2006; Li et al., 2013), where for asymptotic consistency it is assumed that the number of included

components, which is the same for all trajectories in the sample, increases with sample size to en-

sure asymptotic unbiasedness. To determine an adequate number of components based on observed

functional data that is applied across the sample to approximate the underlying processes reasonably

well is crucial for the application of functional principal component analysis. This is challenging

for applications in which the trajectories recorded for different subjects exhibit different levels of

complexity. We introduce here an alternative to the prevailing paradigm that the observed functional

data are all infinite-dimensional objects, which are then approximated through a one-size-fits-all se-

quence of increasingly complex approximations. The proposed alternative model is to assume that
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each observed random trajectory is composed of only finitely many components, where the number

of components that constitutes an observed trajectory may be arbitrarily large without upper bound

and varies across the observed trajectories. This means that while each trajectory can be fully repre-

sented without residual by its projections on a finite number of components, the overall process is still

infinite-dimensional as no finite dimension suffices to represent it: For each fixed dimension d, there

generally exist trajectories that require more than d components for adequate representation. A key

feature of this new model is that the number of components used to represent a trajectory depends on

the trajectory to be represented.

In this paper, we develop the details of this model and show in data analysis and simulations

that its implementation leads to more parsimonious representations of heterogeneous functional data

when compared with classical functional principal component analysis. Its relevance for functional

data analysis motivates us to develop this model in the context of a general infinite-dimensional

separable Hilbert space; we note that all Hilbert spaces considered in this paper are assumed to be

separable. For any given infinite-dimensional Hilbert space and an orthonormal basis of this space, we

construct an associated mixture inner product space (MIPS). The mixture inner product space consists

of an infinite mixture of vector spaces with different dimensions d, d = 1,2,3, . . .. We investigate

properties of probability measures on these dimension mixture spaces and show that the mixture inner

product space associated with a given Hilbert space is dense in the Hilbert space and is well suited to

approximate individual Hilbert space elements as well as probability measures on the Hilbert space.

The mixture inner product space concept has direct applications in functional data analysis. It is

intrinsically linked to a trajectory-adaptive choice of the number of included components and more-

over can be harnessed to construct a density for functional data. The density problem when viewed

in the Hilbert space L2 arises due to the well-known non-existence of a probability density for func-

tional data with respect to Lebesgue measure in L2, which is a consequence of the low small ball

probabilities (Li and Linde, 1999; Niang, 2002) in this space. The lack of a density is a drawback

that negatively impacts various methods of functional data analysis. For example, it is difficult to

rigorously define modes, likelihoods or other density-dependent methods, such as functional clus-

tering or functional Bayes classifiers. It has therefore been proposed to approach this problem by

defining a sequence of approximating densities, where one considers the joint density of the first K

functional principal components, as K increases slowly with sample size. This leads to a sequence

of finite-dimensional densities that can be thought of as a surrogate density (Delaigle and Hall, 2010;

Bongiorno and Goia, 2016). This approach bypasses but does not resolve the key issue that a density

in the functional space L2 does not exist.

In contrast, if the random functions lie in a mixture inner product space, which includes functions

of arbitrarily large dimension, one can construct a well-defined target density by introducing a suitable

measure for mixture distributions. This density is a mixture of densities on vector spaces of various

dimensions d and its existence follows from the fact that a density exists with respect to the usual

Lebesgue measure for each component space, which is a finite-dimensional vector space. Therefore,
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the proposed mixture inner product space approach is of relevance for the foundations of the theory

of functional data analysis.

The paper is organized as follows. We develop the concept of mixture inner product spaces and

associated probability measures on such spaces in Section 2 and then apply it to functional data

analysis in Section 3. This is followed by simulation studies in Section 4 and an application of the

proposed method to a real data set in Section 5. Conclusions are in Section 6. All proofs and technical

details are in the Appendix.

2 Random Elements in Mixture Inner Product Spaces

In the theory of functional data analysis, functional data can be alternatively viewed as random ele-

ments in L2 or as realizations of stochastic processes. Under joint measurability assumptions, these

perspectives coincide; see Chapter 7 of Hsing and Eubank (2015). We adopt the random element

perspective in this paper, which is more convenient as we will develop the concept of a mixture inner

product space (MIPS) first for general infinite-dimensional Hilbert spaces, and will then take up the

special case of functional data and L2 in Section 3. In this section we consider probability measures

on Hilbert spaces and random elements that are Hilbert space valued random variables.

2.1 Mixture Inner Product Spaces

Let H be an infinite-dimensional Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let

Φ = (φ1,φ2, . . .) be a complete orthonormal basis (CONS) of H . We also assume that the ordering

of the sequence φ1,φ2, . . . is given and fixed. Define Hk, k = 0,1, . . . , as the linear subspace spanned

by φ1,φ2, . . . ,φk, where H0 = /0, and set Sk = Hk\Hk−1 for k = 1,2, . . . and S =
⋃∞

k=1 Sk, where also

S =
⋃∞

k=1 Hk. Then S is an infinite-dimensional linear subspace of H with inner product inherited

from H . Since S has an inner product and is a union of the k-dimensional subsets Sk, we refer to S

as mixture inner product space (MIPS). The definition of Sk depends on Φ and thus on the ordered

sequence φ1,φ2, . . ., while S depends on Φ only in the sense that any permutation of φ1,φ2, . . . yields

the same space S = S(Φ). It is easy to see that two CONS Φ = (φ1,φ2, . . .) and Ψ = (ψ1,ψ2, . . .)

result in the same MIPS, i.e., S(Φ) = S(Ψ), if and only if for each k = 1,2, . . ., there exists a positive

integer nk < ∞, positive integers k1,k2, . . . ,knk
< ∞ and real numbers ak1

,ak2
, . . . ,aknk

, such that φk =

∑
nk

j=1 ak j
ψk j

.

In the sequel, we assume a CONS Φ is pre-determined, and S(Φ) is simply denoted by S. Let

B(H) be the Borel σ-algebra of H and (Ω,E ,P) a probability space. A H-valued random element

XH is a E -B(H) measurable mapping from Ω to H . Recall that S is an inner product space, and hence

it has its own Borel σ-algebra B(S). Therefore, S-valued random elements can be defined as E -B(S)

measurable maps from Ω to S. The following proposition establishes some basic properties of MIPS,

where it should be noted that S is a proper subspace of H; for example, h = ∑∞
k=1 2−kφk is in H but

not S.
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Proposition 1. Let S be a MIPS of H. Then,

1. S is a dense subset of H;

2. S ∈ B(H) and B(S)⊂ B(H);

3. Every S-valued random element XS is also an H-valued random element.

An important consequence of the denseness of S is that any H-valued random element can be

uniformly approximated by S-valued random elements to an arbitrary precision: Consider ξ j = 〈X ,φ j〉
and Xk = ∑k

j=1 ξ jφ j. For each j,k = 1,2, . . ., define Ω j,k = {ω ∈ Ω : ‖X −Xk‖H < j−1}\Ω j,k−1, with

Ω1,0 = /0. Because ‖X(ω)−Xk(ω)‖H → 0 for each ω ∈ Ω, Ω j,1,Ω j,2, . . . form a measurable partition

of Ω for each j. Defining Yj(ω) = ∑∞
k=1 Xk(ω)1ω∈Ω j,k

, where 1ω∈Ω j,k
is the indicator function of

Ω j,k, for each ω, there is a k such that Yj(ω) = Xk(ω) ∈ S. Moreover, if A ∈ B(S), then Y−1
j (A) =⋃∞

k=1(X
−1
k (A)∩Ω j,k) ∈ E , as each Xk is measurable. Therefore, each Yj is E -B(S) measurable and

hence an S-valued random element. Finally, the construction of Yj guarantees that supω∈Ω ‖X(ω)−
Yj(ω)‖H < j−1 → 0 as j → ∞. This leads to the following uniform approximation result.

Theorem 1. If X is a H-valued random element and S is a MIPS of H, there exists a sequence of

S-valued random elements Y1,Y2, . . ., such that supω∈Ω ‖X(ω)−Yj(ω)‖H → 0 as j → ∞.

From the above discussion, we see that in approximating X with precision j−1, the number of

components used for different ω might be different. For example, if ω ∈ Ω j,k, then k components

are used. This adaptivity of S-valued random elements can lead to an overall more parsimonious

approximation of X compared to approximations with fixed choice of k. We characterize this property

in the following result. For each S-valued random element Y , the average number of components of

Y is naturally given by K (Y ) = ∑∞
k=1 kP(Y ∈ Sk).

Proposition 2. Suppose k > 1 and 1 ≤ p < ∞. Let X be a H-valued random element, ξ j = 〈X ,φ j〉
and Xk = ∑k

j=1 ξ jφ j. If {E(‖X −Xk‖p
H)}1/p < ε, then there exists an S-valued random element Y

such that {E(‖X −Y‖p
H)}1/p < ε and K (Y ) < K (Xk), provided that the probability density fk of ξ j

is continuous at 0 and fk(0)> 0.

We note that the above result can be extended to the case p = ∞, where {E(‖Z‖p
H)}1/p is replaced

by inf{w ∈ R : P(ω ∈ Ω : ‖Z(ω)‖H ≤ w) = 1}.

2.2 Probability Densities on Mixture Inner Product Spaces

For S-valued random elements X , defining K = K(X) = ∑∞
k=1 k1X∈Sk

and Xk = ∑k
j=1〈X ,φ j〉φ j, then

X = ∑∞
k=1 Xk1K=k, and X = Xk with probability πk = P(K = k). Since each Xk is of finite dimension, if

the conditional density f (Xk |K = k) exists for each k, then it is possible to define a probability density

for X with respect to a base measure whose restriction to each Sk coincides with the k-dimensional

Lebesgue measure. In contrast, for general random processes, it is well known that the small ball
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probability density does not exist (Li and Linde, 1999; Delaigle and Hall, 2010). An intuitive expla-

nation is that with the mixture representation the probability mass of X is essentially concentrated

on the mixture components Sk, each of which has a finite dimension, with high concentration on the

leading components. The decay of the mixture proportions πk as k increases then prevents the overall

probability mass from escaping to infinity. Below we provide the details of this concept of a mixture

density associated with MIPS.

It is well known that each Hk is isomorphic to R
k, with associated Lebesgue measure τk. Defining

a base measure τ(A) = ∑∞
k=1 τk(A∩ Sk) for A ∈ B(S), where we note that τ depends on the choice

of the CONS, as change in the CONS leads to a different MIPS, the restriction of τ to each Sk is

τk. Therefore, although τ itself is not a Lebesgue measure, the restriction to each finite-dimensional

subspace Hk is.

For the random variables ξ j = 〈X ,φ j〉, j ≥ 1, for a S-valued random element X assume that the

conditional densities fk(ξ1,ξ2, . . . ,ξk) = f (ξ1,ξ2, . . . ,ξk |K = k) exist. With πk = P(X ∈ Sk) =P(K =

k) we then define the mixture density function

f (x) =
∞

∑
k=1

πk fk(〈x,φ1〉,〈x,φ2〉, . . . ,〈x,φk〉)1x∈Sk
, ∀x ∈ S. (1)

Note that even though there are infinitely many terms in (1), for any given realization x = X(·,ω),
only one of these terms is non-zero due to the presence of the indicator 1x∈Sk

and the fact that X ∈ S.

Therefore, f is well defined for all x ∈ S given ∑k πk = 1.

The presence of the indicator function 1x∈Sk
implies that the mixture density in (1) is distinct from

any classical finite mixture model, where each component might have the same full support, while

here the support of the each mixture component is specific to the component. The key difference

to usual mixture models is that our model entails a mixture of densities that are defined on disjoint

subsets, rather than on a common support. The following result implies that the problem of non-

existence of a probability density in L2 can be addressed by viewing functional data as elements of a

mixture inner product space.

Theorem 2. The measure τ is a σ-finite measure on S. In addition, if the conditional density

fk(ξ1,ξ2, . . . ,ξk) exists for each k, then the probability distribution PX on S induced by X is abso-

lutely continuous with respect to τ. Moreover, the function f defined in (1) is a probability density of

PX with respect to τ.

We note that the domain of f is S. Although S is dense in H , since f is not continuous, there is

no natural extension of f to the whole space H . Nevertheless, we can extend both τ and f to H in

the following straightforward way. Define the extended measure τ∗ on H by τ∗(A) = τ(A∩S) for all

A ∈ B(H). To extend f , we simply define f (x) = 0 if x ∈ H\S. One can easily verify that τ∗ is a

measure on H extending τ, and f is a density function of X with respect to τ∗.
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2.3 Constructing Mixture Inner Product Space Valued Random Elements

In this section, we focus on an important class of MIPS-valued random elements. Let ξ̃1, ξ̃2, . . .

be a sequence of uncorrelated centered random variables such that joint probability densities f̃k of

ξ̃1, ξ̃2, . . . , ξ̃k exist for all k. Suppose K is a positive random integer with distribution π = (π1,π2, . . .)

where K is independent of ξ̃1, ξ̃2, . . ., and πk = Pr(K = k). Then we construct a random element

X = µ+∑K
k=1 ξ̃kφk, where µ ∈ H . We refer to a MIPS with random elements constructed in this way

as a generative MIPS. Note that the mean element µ is allowed to be in the space H . Therefore, the

centered process X −µ, which is the primary object that the MIPS framework targets, takes value in a

MIPS. This feature enhances the practical applicability of the MIPS framework. A generative MIPS

has particularly useful properties that we discuss next.

In order to define mean and covariance of X , we also need that E(‖X‖2
H)< ∞; a simple condition

that implies this assumption is ∑∞
j=1(∑

∞
k= j πk)var(ξ̃ j)< ∞. Indeed, with π∗

j = ∑∞
k= j πk,

E(‖X −µ‖2
H) = E

(
K

∑
j=1

ξ̃2
j

)
= EE

(
K

∑
j=1

ξ̃2
j | K

)
=

∞

∑
k=1

πkE

(
k

∑
j=1

ξ̃2
j

)

=
∞

∑
k=1

πk

k

∑
j=1

var(ξ̃ j) =
∞

∑
j=1

( ∞

∑
k= j

πk

)
var(ξ̃ j) =

∞

∑
j=1

π∗
jvar(ξ̃ j)< ∞,

E(‖X‖2
H)≤ E(‖X −µ‖2

H)+‖µ‖2
H < ∞, and (X −µ) is seen to be a S-valued random element. Under

the condition E(‖X − µ‖2
H) < ∞, E(X − µ) = 0 and hence E(X) = µ. Without loss of generality, we

assume µ = 0 in the following.

To analyze the covariance structure of X = ∑K
k=1 ξ̃kφk, consider ξk = 〈X ,φk〉. Then ξk = ξ̃k1K≥k,

E(ξk) = 0, var(ξk) = π∗
kvar(ξ̃k), and E(ξ jξk) = 0, and ξ1,ξ2, . . . are seen to be uncorrelated centered

random variables with variance π∗
kvar(ξ̃k). Furthermore, because K is independent of the ξ̃k, the

conditional density of ξ1,ξ2, . . . ,ξk given K = k is the joint density of ξ̃1, ξ̃2, . . . , ξ̃k. If E(‖X‖2
H)< ∞,

the covariance operator Γ for X exists (Hsing and Eubank, 2015). The φk are eigen-elements of Γ, as

Γφk = E(X〈X ,φk〉) = E(Xξk) = E(X ξ̃k1K≥k) = EE(X ξ̃k1K≥k | K) (2)

=
∞

∑
j=1

π jE(X ξ̃k1K≥k | K = j) =
∞

∑
j=k

π jE(ξ̃k

j

∑
m=1

ξ̃mφm) = π∗
kvar(ξ̃k)φk,

where the last equality is due to uncorrelatedness of ξ̃1, ξ̃2, . . .. From (2), the eigenvalue λk corre-

sponding to the k-th eigen-element φk is

λk = π∗
kvar(ξ̃k). (3)

Since φ1,φ2, . . . is a CONS of H , Γ has no other eigen-element in H . Therefore, Γ admits the

eigen decomposition Γ = ∑∞
k=1 λkφk ⊗φk, where (x⊗ y)z = 〈x,z〉y for x,y,z ∈ H . For the special case
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where H = L2, this feature establishes a connection to traditional functional principal component

analysis and suggests implementation of MIPS in this special case by adopting well studied functional

principal component analysis methods; see the next section for details.

An important consequence of these considerations is that for each random element X̃ ∈ H with

E(‖X̃‖2
H) < ∞ and for which the covariance operator Γ̃ has an eigendecomposition Γ̃ = ∑∞

k=1 λ̃kφ̃k ⊗
φ̃k (assuming w.l.o.g. that φ̃1, φ̃2, . . . form a CONS of H), there exists a MIPS S̃ and a S̃-valued

random element Z, such that the covariance operator Γ of Z has the same set of eigen-elements.

To see this, define S̃ to be the MIPS generated by φ̃1, φ̃2, . . . and note that ζk = 〈X̃ , φ̃k〉,k ≥ 1, are

uncorrelated random variables with variances λ̃k (Hsing and Eubank, 2015). Choose an independent

random positive integer K with distribution π=(π1,π2, . . .) and πk > 0 for all k, and set Z =∑K
k=1 ζkφ̃k.

Since ∑∞
j=1 π∗

jvar(ζ j) ≤ ∑∞
j=1 var(ζ j) < ∞, we have E(‖Z‖2

H) < ∞. Therefore, the derivation in (2)

applies to Z and shows that the covariance operator of Z has exactly the eigen-elements φ̃1, φ̃2, . . ..

3 Application to Functional Data Analysis

In this section we demonstrate how the MIPS concept can be applied to provide a new approach for

the analysis of functional data and demonstrate how this can be utilized to define a density function

for functional data via the density function (1), thus providing a new perspective on one of the foun-

dational issues of functional data analysis. In the following sections, we show how to apply the theory

of MIPS to analyze functional data.

3.1 Lp-Denseness of Mixture Inner Product Space Valued Random Processes

Theorem 1 implies that any given H-valued random element can be uniformly approximated by

MIPS-valued random elements. An important consequence is that the set of MIPS-valued random

elements is dense in an Lp sense, as follows. For 1 ≤ p < ∞, let Lp(Ω,E ,P;H) be the space of

H-valued random elements X such that E(‖X‖p
H) < ∞. It is well known (Vakhania et al., 1987)

that Lp(Ω,E ,P;H) (with elements defined as equivalence classes) is a Banach space with norm

‖X‖Lp = {E(‖X‖p
H)}1/p for every X ∈ Lp(Ω,E ,P;H), where for p = ∞, L∞(Ω,E ,P;H) denotes

the Banach space with the essential supremum norm. Since each S-valued random element is also

an H-valued random element according to Proposition 1, the space Lp(Ω,E ,P;S) is a subspace of

Lp(Ω,E ,P;H). The following corollary states that Lp(Ω,E ,P;S) is dense in Lp(Ω,E ,P;H), which

is an immediate consequence of Theorem 1.

Corollary 1. If X is a H-valued random element and S is a MIPS of H, there exists a sequence

of S-valued random elements Y1,Y2, . . ., such that ‖X −Yj‖Lp → 0 as j → ∞ for 1 ≤ p ≤ ∞, i.e.,

Lp(Ω,E ,P;S) is a dense subset of Lp(Ω,E ,P;H).

Applying this result to the Hilbert space H = L2(D), which is the set of real functions f : D → R

such that
∫

D | f (t)|2dt < ∞, where D is a compact subset of R, e.g. D = [0,1], we conclude that the
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set of MIPS-valued random processes is dense in the space of all L2(D) random processes. This

denseness implies that when modelling functional data with MIPS-valued random processes, the

results are arbitrarily close to those one would have obtained with the traditional L2 based functional

data analysis approaches in the L2 sense. A major difference between the two approaches is that each

functional element is always finite-dimensional in the MIPS framework, as it belongs to one of the

subspaces Sk, where the MIPS is S =
⋃∞

k=1 Sk, as defined above, while in the classical L2 framework

each element is infinite-dimensional. The denseness of MIPS in L2 provides additional justification

for the adoption of this new approach.

As we will demonstrate below, modeling functional data in the MIPS framework enjoys extra

flexibility and parsimony in representing observed functional data. And, as mentioned before, it

provides a way to define probability densities for functional data within the full MIPS space, avoiding

ad hoc truncation approaches to which one must resort when tackling the density problem directly in

the traditional functional data space L2.

3.2 Model and Estimation

In the following, we develop a MIPS based functional mixture model from a practical modeling

perspective. A practical motivation to adopt a mixture model is that it enables adaptive choice of

the number of components that are included to represent a given functional trajectory. This adaption

is with respect to the complexity of the trajectory that is to be represented. The basic idea is that

trajectories that have more features and shape variation relatively to other trajectories require a larger

number of components to achieve a good representation, while those that are flat and have little

shape variation will require fewer components. This contrasts with the “one size fits all” approach of

functional principal component analysis or other expansions in basis functions, where the expansion

series always includes infinitely many terms.

To implement MIPS based shape-adaptive modeling, we require that the process X underlying

the observed data is a generative MIPS random process, as defined in the beginning of Section 2.3.

This requirement is formalized in the following assumption.

(A0) The observed functional data X1,X2, . . . ,Xn are i.i.d. realizations of a generative MIPS

random process X , i.e., X = ∑K
k=1 ξ̃kφk for a sequence of uncorrelated centered random

variables ξ̃k and a CONS Φ = {φ1,φ2, . . .} of the space L2. Here K is an integer valued

random variable that is independent of the ξ̃k and has the distribution P(K = k) = πk > 0

for a sequence πk, k ≥ 1, such that 0 ≤ πk ≤ 1 and ∑k πk = 1. The sequence λk = var(ξ̃k) is

strictly decreasing with increasing k, i.e., λ1 > λ2 > · · · .

Under this assumption, the CONS Φ = {φ1,φ2, . . .} is exactly the one featured in the Karhunen-Loève

decomposition, according to the discussion in Section 2.3.

We demonstrate that the probability density for functional mixtures as defined in the previous

section can be consistently estimated under suitable regularity conditions. For convenience, the func-
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tions X1, . . . ,Xn are considered fully observed; densely sampled functional data can be individually

pre-smoothed to produce asymptotically equivalent estimates (Hall et al., 2006). The eigenfunctions

φ1,φ2, . . . and associated eigenvalues are unknown and need to be estimated from the data.

We consider the case where the component densities fk, k ≥ 1, are parametrizable by set of pa-

rameters θk = (θk,1,θk,2, . . . ,θk,dk
)T ∈R

dk for some sequence of integers dk, and the distribution of the

mixture proportions π is governed by a sequence of parameters θπ ∈ R
dπ . Although we develop here

a parametric approach to model each component density fk, it is worth noting that a nonparametric

approach might be taken in a similar spirit as the nonparametric estimation of finite mixtures, devel-

oped by Benaglia et al. (2009) and Levine et al. (2011), where substantial additional technicalities

are involved. We leave this topic for future research.

For notational convenience, let θ[k] be the sequence of parameter sets, containing distinct param-

eters θ1,θ2, . . . ,θk, as well as the parameters in θπ that determine π1, . . . ,πk−1, with the dimension

denoted by d[k], where θ[∞] stands for the sequence of all distinct parameters, such that

θ[k] = (θ[∞],1,θ[∞],2, . . . ,θ[∞],d[k]), (4)

where θ[∞], j is the jth coordinate of θ[∞]. Let I[∞], j denote the domain of θ[∞], j, and define Θ =

∏∞
j=1 I[∞], j. We write fk(·) as fk(· | θk) to emphasize the dependence on θk. Similarly, f (·) is written

as f (· | θ[∞]) to indicate that f is parametrized by θ[∞], i.e.,

f (X(ω) | θ[∞]) =
∞

∑
k=1

πk fk(ξ1(ω),ξ2(ω), . . . ,ξk(ω) | θk)1X(ω)∈Sk
. (5)

For a generic parameter θ, we use θ0 to denote its true value, and θ̂ to denote corresponding maximum

likelihood estimators, e.g., θ[∞],0 denotes the true parameters of θ[∞].

To illustrate the key idea, we make the simplifying assumption of compactness of the parameter

space, which may be relaxed by introducing more technicalities. The condition below character-

izes the compactness of the parameter space Θ = ∏∞
j=1 I[∞], j as a product of compact spaces, using

Tychonoff’s theorem.

(A1) For each j = 1,2, . . ., I[∞], j is a non-empty compact subset of R, and thus Θ = ∏∞
j=1 I[∞], j is

compact (by Tychonoff’s theorem).

With eigenfunctions φ1,φ2, . . . estimated by decomposing the sample covariance operator, the

principal component scores ξik are estimated by ξ̂ik = 〈Xi, φ̂k〉 for each i = 1,2, . . . ,n and k = 1,2, . . .,

where φ̂k are the standard estimates of φk. To quantify the estimation quality, we postulate a standard

regularity condition for X (Hall and Hosseini-Nasab, 2006) and a polynomial decay assumption for

the eigenvalues λ1 > λ2 > · · ·> 0 (Hall and Horowitz, 2007).

(A2) For all C > c′ and some ε′ > 0, where c′ > 0 is a constant, supt∈D E{|X(t)|C} < ∞ and

sups,t∈D E[{|s− t|−ε′|X(s)−X(t)|}C]< ∞.

10



(A3) For all k ≥ 1, λk −λk+1 ≥C0k−b−1 for constants C0 > 0 and b > 1, and also πk = O(k−β)

for a constant β > 1.

Note that ∑k λk < ∞ and ∑πk = 1 imply b > 1 and β > 1 and one also has π∗
k = ∑∞

j=k πk = O(k−β+1).

Condition (A3) also implies that λk ≥C′k−b for a constant C′ > 0 for all k. Therefore, if ρk = var(ξ̃k),

the relation λk = π∗
kvar(ξ̃k) that was derived in (3) implies ρk = λk/π∗

k ≥ Cρk−b+β−1 for a constant

Cρ > 0 and for all k. Note that the case −b+β−1 > 0, for which the variances of the ξ̃k diverge, is

not excluded.

Our next assumption concerns the regularity of mixture components fk(ξ̃1, ξ̃2, . . . , ξ̃k) and

gk(ξ̃1, ξ̃2, . . . , ξ̃k) = log fk(ξ̃1, ξ̃2, . . . , ξ̃k), where the dependence on θk is suppressed when no confu-

sion arises.

(A4) For k= 1,2, . . ., fk(· | θk) is continuous at all arguments θk. There exist constants C1,C2,C3 ≥
0, −∞ < α1,α2 < ∞, 0 < ν1 ≤ 1, 0 < ν2 ≤ 2 and functions Hk(·) such that, for all k =

1,2, . . . , gk satisfies |gk(u)−gk(v)| ≤C1Hk(v)‖u−v‖ν1 +C2kα2‖u−v‖ν2 for all u,v ∈R
k,

and E{Hk(ξ1,ξ2, . . . ,ξk)}2 ≤C3k2α1 .

In the following, we use α = max{α1,α2} and ν = min(2ν1,ν2). Note that Hölder continuity is

a special case for C1 = 0. Given (A3), one can verify that (A4) is satisfied for the case of Gaussian

component densities with C1,C2,C3 > 0, ν1 = 1, ν2 = 2, α1 > 2−1 max(1−b,2b−3β+4) and α2 =

max(0,b−β+1). The condition on |gk(u)−gk(v)| in (A4) implicitly assumes a certain growth rate

of d[k] as k goes to infinity. For instance, E{Hk(ξ1,ξ2, . . . ,ξk)}2 is a function of the parameter set

θ[k]. By the compactness assumption on θ[∞], the parameters have a common upper bound. With

this upper bound, E{Hk(ξ1,ξ2, . . . ,ξk)}2 can be bounded by some function R of d[k]. By postulating

E{Hk(ξ1,ξ2, . . . ,ξk)}2 ≤C3k2α1 in (A4), we implicitly assert that the function R(d[k]) can be bounded

by a polynomial of k, with the exponent 2α1. We would need a larger value for α1 when d[k] grows

faster with k. A similar argument applies to α2.

To state the needed regularity conditions for the likelihood function, we need some notations. Let

Qr = min(K,r), and define Zi = ∑
Qr

j=1〈Xi,φ j〉φ j, so that Zi ∈ Sq, q ≤ r. The log-likelihood of a single

observation Z is

Lr,1(Z | θ[r]) = log

{
(1−

r−1

∑
k=1

πk) fr(Z | θ[r])1Z∈Sr
+

r−1

∑
k=1

πk fk(Z | θ[k])1Z∈Sk

}
. (6)

The log-likelihood function of θ[r] for a sample Z1, . . . ,Zn accordingly is

Lr,n(θ[r]) = n−1
n

∑
i=1

Lr,1(Zi | θ[r]), (7)

with maximizer θ̂[r]. We impose the following regularity condition on Lr(θ[r]) = E{Lr,1(Z | θ[r])}.
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(A5) There exist constants h1,h2,h3,a1,a2,a3 > 0 such that for all r ≥ 1, Ur = {θ[r] : Lr(θ[r],0)−
Lr(θ[r]) < h1r−a1} is contained in a neighborhood Br = {θ[r] : ‖θ[r],0 − θ[r]‖ < h2r−a2} of

θ[r],0, where θ[r],0 denotes the true parameters of θ[r]. Moreover, Lr(θ[r],0)− Lr(θ[r]) ≥
h3r−a3‖θ[r],0 −θ[r]‖2 for all θ[r] ∈Ur.

Writing a = max{a1,a3}, we observe that (A5) is satisfied when each component fk is Gaussian

for any a > 1, and (A1) and (A3) hold. (A5) essentially states that the global maximizer of Lr is

unique and uniformly isolated from other local maximizers with an order r−a. Such a condition on

separability is necessary when there are infinitely many mixture components in a model. We note that

(A5) also ensures identifiability of the global maximizer.

The next assumption is used to regulate the relationship between the mixture proportions πk and

the magnitude of gk(ξ̃1, ξ̃2, . . . , ξ̃k), by imposing a bound on gk for increasing k.

(A6) For a constant c < β−1, E|gk(ξ̃1, ξ̃2, . . . , ξ̃k)| = O(kc−a), where a is defined in (A5) and β

in (A3) and gk(ξ̃1, ξ̃2, . . . , ξ̃k) = log fk(ξ̃1, ξ̃2, . . . , ξ̃k).

The constraint β > c+ 1 in (A6) guarantees that in light of πk = O(k−β), as per (A3), the mixture

proportions πk decay fast enough relative to average magnitude of gk(ξ̃1, ξ̃2, . . . , ξ̃k) to avoid a singu-

larity that might arise in the summing operation to construct the density f in (1) when the magnitude

of gk(ξ̃1, ξ̃2, . . . , ξ̃k) grows too fast. This bound will prevent that too much mass is allocated to the

components with higher dimensions in the composite mixture density f . Such a scenario would pre-

clude the existence of a density and is avoided by tying the growth of gk to the decline rate of the πk,

as per (A6).

From a practical perspective, faster decay of the πk that places more probability mass on the

lower-order mixture components will help stabilize the estimation procedure, as it is difficult to es-

timate the high-order eigenfunctions that are needed for the higher order components. For the case

of Gaussian component densities, a simple calculation gives E|gk(ξ̃1, ξ̃2, . . . , ξ̃k)| = O(k logk), thus

(A6) is fulfilled for any c > a+ 1. This will also imply that β > a+ 2. An extreme situation arises

when πk = 0 for k ≥ k0 for some k0 > 0, i.e., the dimension of the functional space is finite and the

functional model essentially becomes parametric. In this case the construction of the mixture density

in functional space is particularly straightforward.

The following theorem establishes estimation consistency for a growing sequence of parameters

θ[rn] as the sample size n increases, and consequently the consistency of the estimated probability

density at any functional observation x ∈ S as argument. Define constants γ1 = (2b+3)ν/2+α−2β,

that γ2 = a+(γ1 +2)1{γ1>−2}, and set γ = min{ν/(2γ2),1/(2b+2)}.

Theorem 3. If assumptions (A0)-(A6) hold and rn = O(nγ−ε) for any 0 < ε ≤ γ, then the global

maximizer θ̂[rn] of L̂r,n(θ[rn]) satisfies

‖θ̂[rn]−θ[rn],0‖
p−→ 0,
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where θ[rn] is defined in (4), and L̂r,n(θ[k]) is the likelihood function obtained by plugging the estimated

quantities φ̂k and ξ̂ik into Lr,n(θ[rn]) defined in (7). Consequently, for any x ∈ S =
⋃∞

k=1 Sk, one has

∣∣ f (x | θ̂[rn])− f (x | θ[∞],0)
∣∣ p−→ 0,

where f is the mixture probability density defined in (5).

We see from Theorem 3 that the number of consistently estimable mixture components, rn, grows

with a polynomial rate in terms of the sample size n. From (A4), the proximity to a singularity of

the component density fk is seen to increase as α increases, indicating more difficulty in estimating

fk, and thus restricting the rate of increase in rn. Faster decay rates of the eigenvalues λk, relative to

the decline rates in the mixture proportions πk and quantified by b and (b−β+1) respectively, lead

to limitations in the number of eigenfunctions that can be reliably estimated and this is reflected in a

corresponding slowing of the rise of the number of mixture components rn that can be included. The

rate at which rn can increase also depends on the decay of the πk as quantified by β.

3.3 Fitting Algorithm

We present an estimation method based on the expectation-maximization algorithm to determine the

mixture probabilities πk for k = 1,2 . . ., and the number Ki of components that are associated with

each individual trajectory Xi. For simplicity, we assume that the mixture proportions πk are derived

from a known family of discrete distributions that can be parametrized with one or few unknown

parameters, denoted here by ϑ, simplifying the notation introduced in Section 3.2. A likelihood for

fitting individual trajectories with K components can then be constructed. The following algorithm is

based on fully observed Xi. Modifications for the case of discretely observed data are discussed at the

end of the section.

To be specific, we outline the algorithm for the mixture density of Gaussian processes, and use

π ∼ Poisson(ϑ), i.e., P(K = k | ϑ) = ϑke−ϑ/k!. Versions for other distributions can be developed

analogously. Assume that X1, . . . ,Xn are centered without loss of generality. Projecting Xi onto each

eigenfunction φ j, we obtain the functional principal component scores ξi1,ξi2, . . . of Xi. Given Ki = k,

(ξi1,ξi2, . . . ,ξik) = (ξ̃i1, . . . , ξ̃ik) and

(ξ̃i1, . . . , ξ̃ik)
T ∼N

(
0,Σ

(k)
ρ

)
, (8)

where Σ
(k)
ρ is the k × k diagonal matrix with diagonal elements ρ j = var(ξ̃ j), j = 1,2, . . . ,k. The

likelihood f (Xi | Ki = k) of Xi conditional on Ki = k is then given by

f (Xi | Ki = k) =
1√

(2π)k|Σ(k)
ρ |

exp

[
−1

2
(ξi1, . . . ,ξik)(Σ

(k)
ρ )−1(ξi1, . . . ,ξik)

T

]
. (9)

Note that one needs the eigenvalues ρk to characterize the distribution of the observations Xi given
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Ki. Based on equation (3), one can adopt standard functional principal component analysis for the

entire sample that contains realizations of X , i.e., extract the eigenvalues λk of G first and then utilize

ρk = λk/π∗
k . This however requires to infer the unknown mixture proportions πk. To address this

conundrum, we treat Ki as a latent variable or missing value and adopt the expectation-maximization

paradigm, as follows.

1. Obtain consistent estimates φ̂k(·) of φk(·) and λ̂k of λk, k = 1,2, . . ., from functional principal

component analysis by pooling the data from all individuals, following well-known procedures

(Dauxois et al., 1982; Hall and Hosseini-Nasab, 2006), followed by projecting each observa-

tion Xi onto each φ̂k to obtain estimated functional principal component scores ξ̂ik. As starting

value for the Poisson parameter ϑ, we set ϑ = k, where k is the smallest integer such that the

fraction of variation explained by the first k principal components exceeds 95%.

2. Plug in the estimate λ̂k for λk and calculate ρ̂k = λ̂k/π∗
k , with πk = p(k | ϑ) based on the current

estimate of ϑ, which we denote by ϑ(t). Obtain the conditional expectation of Ki given Xi,

E(Ki | Xi) =
∑∞

k=1 k f (Xi | Ki = k)P(Ki = k | ϑ(t))

∑∞
k=1 f (Xi | Ki = k)P(Ki = k | ϑ(t))

, (10)

where f (Xi |Ki = k) is given by (9). It is natural to use the nearest integer, denoted by Ei(Ki |Xi).

The updated estimate of ϑ is given by ϑ(t+1) = n−1 ∑n
i=1 Ei(Ki | Xi). Repeat this step until ϑ(t)

converges. By the ascent property of the EM algorithm, ϑ(t) converges to a local maximizer.

In practice, this step is repeated until a specified convergence threshold is reached that may be

defined in terms of the relative change of ϑ, i.e., |ϑ(t+1)−ϑ(t)|/ϑ(t).

3. Each Xi is represented by Xi = ∑
Ki

j=1 ξ̂i jφ̂ j, where Ki is obtained as in (10).

In the numerical implementation it is advantageous to only keep the positive eigenvalue estimates

ρ̂+
k , and to introduce a truncated Poisson distribution that is bounded by K+

n = max{k : ρ̂+
k > 0},

p+(k | ϑ,K+
n ) =

ϑk

k!(∑
K+

n

ℓ=0 ϑℓ/ℓ!)
≡ π+

k , k = 0,1, . . . ,K+
n . (11)

Since the maximum likelihood estimate of ϑ in (11) based on the truncated Poisson distribution

is complicated and does not have an analytical form, it is expedient to numerically maximize the

conditional expectation of the log-likelihood with respect to ϑ given the observed data Xi, i = 1, . . . ,n,

and the current estimate ϑ(t),

n

∑
i=1

E{log p+(Ki | ϑ,K+
n ) | Xi,ϑ

(t)}

=
n

∑
i=1

∑
K+

n

k=1 log p+(k | ϑ,K+
n ) f (Xi | Ki = k)p+(k | ϑ(t),K+

n )

∑
K+

n

k=1 f (Xi | Ki = k)p+(k | ϑ(t),K+
n )

, (12)
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and to consider the modified eigenvalues ρ+
k = λ+

k /(∑
K+

n

j=k π+
j ).

In many practical situations the trajectories Xi are measured at a set of discrete points ti1, . . . , timi
,

rather than fully observed. This situation requires some modifications of the estimation proce-

dures. For step 1, the eigenfunctions φk, k = 1,2, . . ., can be consistently estimated via a suitable

implementation of functional principal component analysis, where for this estimation step unified

frameworks have been developed for densely or sparsely observed functional data (Li and Hsing,

2010; Zhang and Wang, 2016). If the design points are sufficiently dense, alternatively, individual

smoothing as a preprocessing step may be applied and one may then treat the pre-smoothed functions

X̂1, . . . , X̂n as if they were fully observed.

In situations where the measurements are noisy, a possible approach is to compute the likelihoods

conditional on the available observations Ui = (Ui1, . . . ,Uimi
), where Ui j = Xi(ti j)+ εi j with measure-

ment errors εi j that are independently and identically distributed according N(0,σ2) and independent

of Xi. Under joint Gaussian assumptions on X
(k)
i and the measurement errors, the mi ×mi covariance

matrix of Ui is

cov(Ui | k) =
{ k

∑
r=1

ρrφr(ti j)φr(tiℓ)
}

1≤ j,ℓ≤mi

+σ2Imi
≡ Σ

(k)
Ui
, (13)

where Imi
denotes the mi×mi identity matrix. The likelihood f (Ui |K) is then derived from N

(
µi,Σ

(k)
Ui

)

with µi = {µ(ti1), . . . ,µ(timi
)}⊤ and the estimation procedure is modified by replacing f (Xi | Ki = k)

with f (Ui | Ki = k) in equation (10). The following modifications are applied at steps 1 and 3: in step

1, the projections of the Xi onto the φk are skipped; in step 3, the functional principal component scores

ξik, k = 1, . . . ,Ki, are obtained in a final step by numerical integration for the case of densely sampled

data, ξik =
∫

Xi(t)φk(t)dt, plugging in eigenfunction estimates φ̂k, or by PACE estimates for the case

of sparse data (Yao et al., 2005).

4 Simulation Study

To demonstrate the performance of the proposed mixture approach, we conducted simulations for

four different settings. For all settings, the simulations are based on n = 200 trajectories from an

underlying process X with mean function µ(t) = t + sin(t) and covariance function derived from the

Fourier basis φ2ℓ−1 = cos{(2ℓ−1)πt/10}/
√

5 and φ2ℓ = sin{(2ℓ−1)πt/10}/
√

5, ℓ= 1,2, . . ., t ∈ T =

[0,10]. For i = 1, . . . ,n, the ith trajectory was generated as Xi(t) = µ(x)+∑
Ki

k=1 ξikφk(t). Two different

cases for ξik were considered. One is Gaussian, where ξik ∼ N(0,ρk) with ρk = 16k−1.8. The other is

non-Gaussian, where ξik follows a Laplace distribution with mean zero and variance 16k−1.8, which

is included to illustrate the effect of mild deviations from the Gaussian case. Each trajectory was

sampled at m = 200 equally spaced time points ti j ∈ T , and measurements were contaminated with

independent measurement errors εik ∼ N(0,σ2), i.e., the actual observations are Ui j = Xi(ti j)+ εi j,
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j = 1, . . . ,m. Two different levels were considered for σ2, namely, 0.1 and 0.25.

The four settings differ in the choice of the latent trajectory dimensions Ki. In the multinomial

setting, Ki is independently sampled from a common distribution (π1, . . . ,π15), where the event proba-

bilities π1, . . . ,π15 are randomly generated according to a Dirichlet distribution. In the Poisson setting,

each Ki is independently sampled from a Poisson distribution with mean ϑ = 6. In the finite setting,

each Ki is set to a common constant equal to 12, and in the infinite setting, each Ki is set to a large

common constant equal to 25, which mimics the infinite nature of the process X . In the multinomial

and Poisson settings the Ki vary from subject to subject, while in the finite and infinite settings, they

are the same across all subjects. In the multinomial and finite settings, the K1, . . . ,Kn are capped by a

finite number that does not depend on n, whereas in the Poisson and infinite settings the Ki are in prin-

ciple unbounded and can be arbitrarily large. In our implementation, we used the Gaussian-Poisson

fitting algorithm described in Section 3.3 to obtain fits for the generated data in all four settings.

For evaluation purposes, we generated a test sample of size 20000 for each setting. The population

model components, such as the mean, covariance, eigenvalues and eigenfunctions and also the rate

parameter ϑ were estimated from the training sample, while the subject-level estimates, Ki and the

estimates of the functional principal component were obtained from the generated data {U∗
i j, j =

1, . . . ,m} that are observed for the i-th subject in the test set X∗
i . Of primary interest is to achieve

good trajectory recovery with the most parsimonious functional data representation possible, using as

few components as possible to represent each trajectory. The performance of the trajectory recovery

is measured in terms of the average integrated squared error obtained for the trajectories in the test set,

AISE = n−1 ∑n
i=1

∫
T{X∗

i (t)− X̂∗
i (t)}2dt. The parsimoniousness of the representations is quantified by

the average number of principal components Kavg = n−1 ∑n
i=1 Ki that are chosen for the subjects. For

the traditional functional principal component analysis this is always a common choice of Ki = K for

all subjects. The results are presented in Table 1. For comparison, the minimized average integrated

squared error for functional principal component analysis with its common choice K for the number

of components across all trajectories is also included in the last column.

The results clearly show that in both Poisson and multinomial settings the proposed mixture

method achieves often substantially smaller average integrated squared errors while utilizing fewer

components on average than the traditional functional principal component analysis. In contrast, in

the fixed and infinite settings, the proposed mixture method recovers trajectories with an error that

is comparable to that of traditional functional principal component analysis, using roughly the same

number of principal components. We conclude that the proposed mixture model is substantially bet-

ter in some situations where trajectories are not homogeneous in terms of their structure, while the

price to be paid for situations where the standard functional principal component analysis is the pre-

ferred approach is relatively small. We also note that a mild deviation from the Gaussian assumption

does not have much impact on the performance. We also ran additional simulations for the Poisson

settings with σ2 = 0.1 and different sample sizes. In comparison to the true value ϑ = 6 and the

estimate ϑ̂ = 6.78(0.14) for n = 200, the estimates 6.39(0.13),6.21(0.10),6.12(0.06),6.06(0.04) for
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n = 500,1000,2000,5000, respectively, provide empirical support for estimation consistency, where

the standard errors in parentheses are based on 100 Monte Carlo runs.

5 Application

Longitudinal data on daily egg-laying for female medflies, Ceratitis Capitata, were obtained in a

fertility study as described in Carey et al. (1998). The data set is available at

http://anson.ucdavis.edu/∼mueller/data/medfly1000.html. Selecting flies that survived

for at least 25 days to ensure that there is no drop-out bias yielded a subsample of n = 750 medflies.

For each of the flies one has then trajectories corresponding to the number of daily eggs laid from

birth to age 25 days. Shown in the top-left panel of Figure 1 are the daily egg-laying counts of 50

randomly selected flies. We apply a square-root transformation to the egg counts to symmetrize the

errors as a pre-processing step. Applying standard functional principal component analysis yields

estimates of the mean, covariance and eigenfunctions, as shown in the last three panels of Figure 1.

Visual inspection indicates that the egg-laying trajectories possess highly variable shapes with

different varying numbers of local modes. This motivates us to apply the proposed functional mixture

model. The goal is to parsimoniously recover the complex structure of the observed trajectories. For

evaluation, we conduct 100 runs of 10-fold cross-validation, where in each run, we shuffle the data

independently, and use 10% of the flies as validation set for obtaining the subject-level estimates,

which include the latent dimensions Ki and the functional principal component scores, and use the

remaining 90% of the flies as training set. The resulting cross-validated relative squared errors are

CVRSE = n−1
10

∑
l=1

∑
i∈Dl

(
[

m

∑
j=1

{Ui j − X̂
−Dl

i (ti j)}2]/
m

∑
j=1

U2
i j

)
,

where Dl is the lth validation set containing 10% of subjects.

The results are reported in Table 2 for the proposed functional mixture model and functional

principal component analysis for different fixed values for the number of included components K.

We find that the proposed method utilizes about 8 principal components on average (Kavg = 8.27)

and with this number achieves better recovery, compared to the results obtained by the traditional

functional principal component analysis using more components. Therefore, in this application, the

proposed mixture model provides both better and more parsimonious fits.

Figure 2 displays egg-laying counts for 6 randomly selected flies, overlaid with smooth estimates

obtained by the proposed mixture method and by traditional functional principal component analy-

sis using 8 components (similar to Kavg) and also K = 3, a choice that explains 95% of the variation

of the data and therefore would be adopted by the popular fraction of variance explained selection cri-

terion. This figure indicates that the functional mixture method appears to adapt better to the varying

shapes of the trajectories. The estimated probability densities of the first three mixture components

and their mixture proportions are depicted in Figure 3.
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Table 1: Average integrated squared error (AISE) and average number Kavg of principal components

across all subjects. The first column denotes the type of data generation, either according to the mix-

ture setting where the number of components varies from individual to individual, or according to the

common setting, where the number of components is common for all subjects. The second column

denotes the distribution of the number of principal components in the mixture setting and the number

of common components in the common setting. The third column indicates the variance of the mea-

surement error. The fifth and seventh columns show the AISE and the average number Kavg of chosen

components for the proposed mixture model for the Gaussian process and non-Gaussian process, re-

spectively, while these values are displayed in the sixth and eighth columns for functional principal

component analysis (FPCA), along with the common choice K for the number of components. The

Monte Carlo standard error based on 100 simulation runs is given in parentheses, multiplied by 100.

Gaussian Non-Gaussian

Simulation Setting MIPS FPCA MIPS FPCA

mixture

multinomial

σ2 = 0.1
AISE 7.01(0.40) 7.67(0.28) 6.98(0.46) 7.70(0.44)

Kavg 9.23(1.21) 16.7(1.76) 8.97(1.12) 16.5(1.93)

σ2 = 0.25
AISE 15.2(1.02) 17.5(0.81) 15.6(1.04) 17.9(1.19)

Kavg 8.66(1.32) 16.7(1.07) 8.58(1.08) 16.8(1.05)

Poisson

σ2 = 0.1
AISE 5.63(0.21) 6.32(0.23) 5.82(0.65) 6.61(0.89)

Kavg 6.78(0.14) 13.7(1.13) 6.68(0.27) 13.4(1.43)

σ2 = 0.25
AISE 12.1(0.37) 13.9(0.32) 12.2(0.66) 14.0(1.05)

Kavg 6.63(0.16) 14.5(1.17) 6.28(0.23) 13.4(1.94)

common

finite (K = 12)

σ2 = 0.1
AISE 6.55(0.07) 6.46(0.07) 6.56(0.07) 6.46(0.07)

Kavg 13.6(0.43) 12.1(0.47) 13.5(0.50) 12.2(0.56)

σ2 = 0.25
AISE 15.7(0.19) 15.5(0.15) 15.8(0.23) 15.5(0.21)

Kavg 12.9(1.00) 12.6(1.03) 12.7(0.81) 12.6(0.99)

infinite (K = 25)

σ2 = 0.1
AISE 13.2(0.01) 12.9(0.01) 13.3(0.12) 12.9(0.14)

Kavg 24.3(0.05) 25.0(0.00) 24.1(0.09) 25.0(0.00)

σ2 = 0.25
AISE 32.0(0.53) 31.4(0.51) 31.9(0.38) 31.5(0.70)

Kavg 23.8(0.19) 25.0(0.00) 23.6(0.17) 25.0(0.00)

Table 2: Egg-laying data: 10-fold cross-validated relative squared errors (CVRSE), as obtained for

the proposed functional mixture model and for traditional functional principal component analysis,

where the latter uses a common number K of components across all subjects, for K = 0,2, . . . ,18 and

Kavg is the mean of the number of principal components used by the proposed method. The results

are based on 100 random partitions with standard error in parentheses.

FPCA

K 0 2 4 6 8

CVRSE 3.3914(.0070) .2038(.0003) .1549(.0002) .1388(.0002) .1347(.0001)

K 10 12 14 16 18

CVRSE .1340(.0001) .1337(.0001) .1336(.0001) .1335(.0001) .1334(.0001)

MIPS CVRSE=.1319(.0002) Kavg = 8.2684(.0192)
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Figure 1: Top-left: Daily egg-laying counts, after square-root transformation, for 50 randomly se-

lected flies for the first 25 days of their lifespan. Top-right: Smooth estimate of the mean function.

Bottom-left: Smooth nonnegative definite estimate of the covariance surface. Bottom-right: Smooth

estimates of the first (solid), second (dashed) and third (dash-dotted) eigenfunctions, explaining 95%

of the total variation.
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data

MIPS (.076,k
i
=7)

fixed (.084,k
i
=8)

FVE (.145,k
i
=3)

data

MIPS (.019,k
i
=6)

fixed (.019,k
i
=8)

FVE (.036,k
i
=3)

data

MIPS (.078,k
i
=6)

fixed (.085,k
i
=8)

FVE (.276,k
i
=3)

data

MIPS (.299,k
i
=9)

fixed (.317,k
i
=8)

FVE (.423,k
i
=3)

data

MIPS (.238,k
i
=8)

fixed (.277,k
i
=8)

FVE (.456,k
i
=3)

data

MIPS (.068,k
i
=7)

fixed (.079,k
i
=8)

FVE (.321,k
i
=3)

Figure 2: Daily egg-laying counts for six randomly selected flies for the first 25 days of their lifespan,

overlaid with the smooth estimates obtained from the proposed functional mixture model, solid line,

from functional principal component analysis with a fixed number of 8 components, dashed line,

and for a fixed number of three components which explain 95% of the total variation, dash-dotted

line. Shown in parentheses are the individual relative squared errors and the included number of

components for that individual.
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Figure 3: Estimated probability density function for the first three mixture components and their cor-

responding mixture proportions πk. Top: left, the probability density function of the first component;

middle, the probability density function of the second component; right, the diagonal of the probabil-

ity density function of the third component. Bottom: 2-dimension slices of the probability densities

of the third component at ξ1 = 0, ξ2 = 0 and ξ3 = 0, respectively, in the left, middle and right panels.
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6 Discussion and Concluding Remarks

Density functions are important for many statistical applications that require the construction of a

likelihood, for example one could use maximum likelihood to find the best fit for a parametrized class

of densities. Similarly, Bayes classifiers for functional data can be based on a density ratio. Densi-

ties can also be used for the estimation of modes and level contours and also to estimate the shape

and location of ridges in functional data sets, extending the analogous problem for multivariate data.

Specifically, the importance of constructing modes for functional data distributions has been recog-

nized before (Gasser et al., 1998). One can consider related mode finding algorithms that can be used

for clustering functional data (Liu and Müller, 2003). As clustering of functional data is attracting

increasing attention (Chiou and Li, 2007; Slaets et al., 2012; Jacques and Preda, 2014) density based

clustering for functional data likely will be of increasing interest for data analysis.

In addition to this relevance of densities in function space for functional data applications, the

foundational issue of the existence and construction of densities in function space naturally puts the

problem of obtaining a density for functional data into focus. The fact that such a density does not

exist in the often considered function space L2 demonstrates the scope of the problem. This has led to

the construction of a surrogate density, which can be based on a truncated expansion of the functional

data into functional principal components (Delaigle and Hall, 2010; Bongiorno and Goia, 2016). This

construction is a workaround that provides a practical solution but leaves open the problem of finding

a theoretical solution, for which one has to move away from the whole space L2.

Motivated by practical consideration from applications of functional data analysis, we propose

here a construction that provides a theoretical solution to the density problem by essentially consid-

ering random functions in L2 whose distribution belongs to an infinite mixture of distributions on

k−dimensional subspaces. Each of the component distributions has a finite dimension k < ∞ and

corresponds to functions that can be fully described by an expansion into k components only. The

space is still infinite-dimensional overall, as the dimensions k are unlimited. This mixture distribution

approach has the advantage that an overall density can be well defined theoretically under regularity

assumptions. Moreover, the components of the expansion can be estimated by applying a usual eigen-

expansion that gives the correct eigenfunctions even if the mixture structure is ignored. To obtain the

correct eigenvalues, the mixture probabilities play a role, and they can be consistently estimated un-

der additional assumptions. We develop the construction of mixture inner product spaces for which

appropriate mixture densities can be found under certain conditions in a framework of general infinite

dimensional Hilbert spaces that transcends functional data analysis and therefore may be of more

general interest. In data applications, the proposed mixture model tends to use fewer components

than standard functional principal component analysis, while achieving the same or sometimes better

approximations to the observed trajectories, which demonstrates that mixture inner product spaces

are also of practical interest.
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Appendix: Technical Proofs

Proof of Proposition 1. Let x be an arbitrary element of H and ak = 〈x,φk〉. Since φ1,φ2, . . . form a

complete orthonormal basis of H , we have ‖x‖2 = ∑∞
k=1 a2

k < ∞. Now define xk = ∑k
j=1 a jφk. Then

xk ∈ S for each k = 1,2, . . .. Also, ‖x− xk‖2 = ∑∞
j=k+1 a2

j → 0 as k → ∞. This implies that for any

h > 0, the open ball B(x;h) with center at x and radius h contains some xk ∈ S for some k. This shows

that S is dense in H .

To show part (2), note that Hk =
⋃k

j=1 S j and hence S =
⋃∞

k=1 Sk =
⋃∞

k=1

⋃k
j=1 S j =

⋃∞
k=1 Hk. Since

each Hk is a closed subset of H and hence Hk ∈ B(H), we conclude that S =
⋃∞

k=1 Hk is in B(H).

To see B(S)⊂ B(H), we first note that, since the metric dS on S, defined by dS(x,y) = ‖x− y‖H for

all x,y ∈ S ⊂ H , is the restriction of the metric dH on H , the subspace topology of S coincides with

the topology induced by the metric dS. This implies that for any open set A of S there exists an open

subset B of H such that A = B∩S. As both B and S are in B(H), we have A ∈ B(H). In other words,

the collection τS of all open sets of S is a subset of B(H). This implies B(S)⊂ B(H), recalling that

B(S) is the smallest σ-algebra containing τS.

For part (3), we first note that B(S) = {B∩S : B ∈B(H)}, by Lemma 3 in Chapter II of Shiryaev

(1984). Now, if B ∈ B(H), then B∩S ∈ B(S) and hence X−1
S (B) = X−1

S (B∩S) ∈ E . Therefore, XS

is also E -B(H) measurable and hence an H-valued random element.

Proof of Proposition 2. We prove the claim by explicitly constructing such an S-valued random ele-

ment Y , as follows. Let ε1 = {E(‖X −Xk‖p
H)}1/p and δ = (ε− ε1)/2 > 0. Since fk(0) > 0 and fk is

continuous at 0, if Ωδ = {ω ∈ Ω : ξk(ω) ∈ (−δ/2,δ/2)}, then P(Ωδ) > 0. Define Y (ω) = Xk(ω) if

ω 6∈ Ωδ and Y (ω) = Xk−1(ω) otherwise. If we define Z(ω) = ξk(ω)φk1Ωδ
, then Y = Xk − Z. Since

{E(‖Z‖p
H)}1/p defines a norm on all H-valued random elements Z such that {E(‖Z‖p

H)}1/p < ∞

(Vakhania et al., 1987), this implies that {E(‖X −Y‖p
H)}1/p = {E(‖X −Xk +Z‖p

H)}1/p ≤ {E(‖X −
Xk‖p

H)}1/p +{E(‖Z‖p
H)}1/p < ε1 +δP(Ωδ) < ε. On the other hand, the continuity of fk at 0 implies

that P(ξk = 0) = 0, and hence we have K (Y ) = K (Xk)−P(Ωδ)< K (Xk).

Proof of Theorem 2. Note that each Lebesgue measure τk is σ-finite. This means that for each k there

is a countable partition Sk1,Sk2, . . . of Sk such that Sk j ∈ B(S) and τk(Sk j) < ∞ for all j = 1,2, . . ..

Since S =
⋃

k

⋃
j Sk j, we know that {Sk j : j = 1, . . . ,k = 1, . . .} forms a countable partition of S, where

each Sk j has finite measure τ(Sk j) = τk(Sk j)< ∞. This shows that τ is σ-finite.
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To show that PX is absolutely continuous to τ, suppose A ∈ B(S) and τ(A) = 0, and define Ak =

A∩Sk. Then τk(Ak) = 0 for all k. Note that PX(A) = ∑∞
k=1 PX(Ak). Define ηk(x) = (〈x,φ1〉,〈x,φ2〉, . . . ,

〈x,φk〉) ∈ R
k for each x ∈ Hk. Note that each ηk is a canonical isomorphic mapping between Hk

and R
k. Thus, the Lebesgue measure of ηk(Ak) is equal to τk(Ak) and is zero. Now, PX(Ak) =

P{(ξ1,ξ2, . . . ,ξk) ∈ ηk(Ak),X = k}= P{(ξ1,ξ2, . . . ,ξk) ∈ ηk(Ak) | X = k}P(X = k) =

πk

∫
ηk(Ak)

fk(t1, t2, . . . , tk)dt1dt2 · · ·dtk = 0, where the last equality is due the fact that the Lebesgue

measure of ηk(Ak) is zero and the fact that fk is a density function by assumption. Therefore, PX(A) =

0, and we conclude that PX is absolutely continuous w.r. to τ.

By the Radon-Nykodym theorem, there is a density f of PX on S with respect to τ. Now we show

that f defined in (1) is such a density. Let A ∈B(S). As above we define Ak = A∩Sk. Then A1,A2, . . .

form a partition of A, and hence

∫
A

f dτ = ∑
k

∫
Ak

f dτ =∑
k

πk

∫
Ak

fkdτk. (14)

Now, for each k,

PX(Ak) = Pr{(ξ1,ξ2, . . . ,ξk) ∈ η(Ak),K = k}= πkPr{(ξ1,ξ2, . . . ,ξk) ∈ η(Ak) | K = k}
= πk

∫
η(Ak)

fk(t1, t2, . . . , tk)dt1dt2 · · ·dtk = πk

∫
Ak

fkdτk. (15)

Given (14) and (15), we conclude that
∫

A f dτ = ∑k PX(Ak) = PX(A), and hence f is a probability

density function of PX w.r. to τ.

To simplify notations, we simply use r from now on, while one should be aware that r grows to

infinity as sample size n → ∞. The proof of Theorem 3 requires several lemmas.

Let Ĝ(s, t) = n−1 ∑n
i=1 Xi(s)Xi(t) denote the empirical version of G(s, t) and φ̂k be the kth eigen-

function of Ĝ. When it is clear from the context, we use G and Ĝ to denote the corresponding

covariance operator. Define ∆̂ = {∫D×D(Ĝ(s, t)−G(s, t))2dsdt}1/2 and for a constant C4 > 0,

J′ = { j−1 : λ j −λ j+1 ≥ 2∆̂}, and J = { j ∈ J′ : j ≤C4n1/(2b+2)}. (16)

From ∆̂ = Op(n
−1/2) (Hall and Hosseini-Nasab, 2006) and assumption (A3), we have

P(C5n1/(2b+2) ≤ supJ ≤C4n1/(2b+2))→ 1

for a positive constant C5 ≤C4. The following lemma quantifies the estimation quality of the eigen-

functions φ̂k and the principal component scores ξ̂ik. Let ξ̂i,(k) = (ξ̂i,1, ξ̂i,2, . . . , ξ̂i,k) where ξ̂i j =

〈Xi, φ̂ j〉.
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Lemma 1. If assumptions (A0), (A2) and (A3) hold,

sup
n≥1

sup
k∈J

n2k−4(b+1)E‖φ̂k −φk‖4 < ∞; (17)

sup
n≥1

sup
k∈J

nk−2b−3E‖ξi,(k)− ξ̂i,(k)‖2 < ∞. (18)

Proof. The bound in (17) directly follows from Lemma 3.4 of Hall and Hosseini-Nasab (2009),

E(∆̂4) = O(n−2) (Lemma 3.3 of Hall and Hosseini-Nasab, 2009) and (A3). To show (18),

E‖ξ̂i,(k)−ξi,(k)‖2 =
k

∑
j=1

E(|ξ̂i, j −ξi, j|2) =
k

∑
j=1

E(〈Xi, φ̂ j −φ j〉2)

≤
k

∑
j=1

E(‖Xi‖2‖φ̂ j −φ j‖2)≤
k

∑
j=1

{E(‖Xi‖4)E(‖φ̂ j −φ j‖4)}1/2

= {E(‖X‖4)}1/2
k

∑
j=1

{E(‖φ̂ j −φ j‖4)}1/2.

Then (18) follows with the fact E(‖X‖4)< ∞ and (17).

We next examine the discrepancy between true and estimated likelihood functions. Recall that

Qr = min(K,r), Z = ∑
Qr

j=1〈X ,φ j〉φ j, the log-likelihood of Z with π∗
r = 1−∑r−1

k=1 πk,

Lr,1(Z | θ[r]) = log

{
π∗

r fr(Z | θ(r))1Z∈Sr
+

r−1

∑
k=1

πk fk(Z | θ(k))1Z∈Sk

}
,

and Lr(θ[r]) = E{Lr,1(z | θ[r])}. Define the log-likelihood function of θ given Z1, . . . ,Zn by Lr,n(θ[r]) =
1
n ∑n

i=1 Lr,1(Zi | θ[r]). The following lemma quantifies the discrepancy between Lr,n(θ[r]) and Lr(θ[r]).

Lemma 2. If the assumptions in Theorem 3 hold, then for each θ[r],

ra|Lr,n(θ[r])−Lr(θ[r])|
p−→ 0.
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Proof. We first express Lr(θ[r]) = E{Lr,1(z | θ[r])} as follows,

Lr(θ[r]) = E log

{
π∗

r fr(Z | θ(r))1Z∈Sr
+

r−1

∑
k=1

πk fk(Zi | θ(k))1Z∈Sk

}

= EE

[
log{π∗

r fr(Z | θ(r))1Z∈Sr
+

r−1

∑
k=1

πk fk(Z | θ(k))1Z∈Sk
} | Qr

]

= π∗
r E
[
log{π∗

r fr(Z | θ(r))} | K ≥ r
]
+

r−1

∑
k=1

πkE
[
log{πk fk(Z | θ(k))} | K = k

]
(19)

= π∗
r log π∗

r +
r−1

∑
k=1

πk logπk +π∗
r E{gr(ξ̃1, ξ̃2, . . . , ξ̃r)}+

r−1

∑
k=1

πkE{gk(ξ̃1, ξ̃2, . . . , ξ̃k)},

where (19) is obtained by noting that 1Z∈Sk
= 0 if Qr 6= k, and 1Z∈Sk

= 1 if Qr = k. Let Wn,i = Lr,1(Zi |
θ[r])−Lr(θ[r]). Then E(Wn,i) = 0 and Lr,n(θ[r])−Lr(θ[r]) = n−1 ∑n

i=1Wn,i. We shall show that raWn,i

satisfies the Cesàro type uniform integrability defined in Sung (1999), and hence admits a weak law

of large numbers. First, we show that supn≥1 n−1 ∑n
i=1 raE|Wn,i|=O(1). For sufficiently large n, given

(A6), with definition ξ̃(k) = (ξ̃1, ξ̃2, . . . , ξ̃k), we have

E|Wn,i| ≤ E|gr(Z)1Z∈Sr
−π∗

r E(gr(ξ̃(r)))|+
r−1

∑
k=1

E|gk(Z)1Z∈Sk
−πkE(gk(ξ̃(k)))|

= E|gr(ξ̃(r))1K≥r −π∗
r E(gr(ξ̃(r)))|+

r−1

∑
k=1

E|gk(ξ̃(k))1K=k −πkE(gk(ξ̃(k)))|

≤ 2π∗
r E|gr(ξ̃(r))|+2

r−1

∑
k=1

πkE|gk(ξ̃(k))| ≤ r−a+c−β+1 + c2

r−1

∑
k=1

k−a+c−β

≤ c3r−a, (20)

where c3 is a constant that does not depend on n and i, and the last inequality is due to the condition

β > c+ 1 in (A6). Thus supn≥1 n−1 ∑n
i=1 E{ra|Wn,i|} = O(1). Since for any n, the random variables

Wn,1,Wn,2, . . . ,Wn,n are i.i.d.,

lim
u→∞

sup
n≥1

n−1
n

∑
i=1

E{ra|Wn,i|1|Wn,i|>u}= lim
u→∞

sup
n≥1

E{ra|Wn,1|1|Wn,1|>u}= 0, (21)

as E{ra|Wn,1|} < ∞ by (20). Then raWn,i satisfies the Cesàro type uniform integrability, and the

conclusion of the lemma follows from a weak law of large numbers for triangular arrays (Sung,

1999).

We are now ready to quantify the discrepancy from the estimated likelihood function L̂r,n by

plugging in the estimated quantities φ̂k and ξ̂ik.

25



Lemma 3. If the assumptions in Theorem 3 hold, then for each θ[r],

ra|L̂r,n(θ[r])−Lr(θ[r])|
p−→ 0.

Proof. Recall ξ̂i,(k) = (ξ̂i,1, ξ̂i,2, . . . , ξ̂i,k), and define

Yn,i = π∗
r{C1Hr(ξi,(r))‖ξ̂i,(r)−ξi,(r)‖ν11Zi∈Sr

+C2rα2‖ξ̂i,(r)−ξi,(r)‖ν2 1Zi∈Sr
}

+
r−1

∑
k=1

πk{C1Hk(ξi,(k))‖ξ̂i,(k)−ξi,(k)‖ν11Zi∈Sk
+C2kα2‖ξ̂i,(k)−ξi,(k)‖ν2 1Zi∈Sk

}.

By (A4), we have

|L̂r,n(θ[r])−Lr(θ[r])| ≤ |Lr,n(θ[r])−Lr(θ[r])|+n−1
n

∑
i=1

Yn,i.

From the condition r = nγ−ε in Theorem 3 and the definition of J in (16), we have P{r ∈ J} → 1 as

n → ∞. Thus we may assume r ∈ J in the sequel. With Lemma 1, if ν′ ≤ 2, then E‖ξ̂i,(k)−ξi,(k)‖ν′ ≤
{E‖ξ̂i,(k) − ξi,(k)‖2}ν′/2 = O(k(2b+3)ν′/2n−ν′/2) uniformly for k ≤ r and n. Since 2ν1 ≤ 2, ν2 ≤ 2,

α = max(α1,α2) and ν = min(2ν1,ν2), for some c0 > 0,

E{|Hk(ξi,(k))|‖ξ̂i,(k)−ξi,(k)‖ν1} ≤ [E{Hk(ξi,(k))}2]1/2(E‖ξ̂i,(k)−ξi,(k)‖2ν1)1/2

= O
(
k(2b+3)ν/2+αn−ν/2

)
,

E{kα2‖ξ̂i,(k)−ξi,(k)‖ν2} = O
(
k(2b+3)ν/2+αn−ν/2

)
.

Recall γ1 = (2b + 3)ν/2 + α − 2β, γ2 = a + (γ1 + 2)1γ1>−2, γ = min{ν/(2γ2),1/(2b + 2)} in

Theorem 3, implying γγ2 ≤ ν/2, and hence

E|Yn,i| ≤ (π∗
r )

2E{C1|Hr(ξi,(r))|‖ξ̂i,(r)−ξi,(r)‖ν1 +C2rα2‖ξ̂i,(r)−ξi,(r)‖ν2}

+
r−1

∑
k=1

π2
kE{C1|Hk(ξi,(k))|‖ξ̂i,(k)−ξi,(k)‖ν1 +C2kα2‖ξ̂i,(k)−ξi,(k)‖ν2}

≤ c1r−2β+2r(2b+3)ν/2+αn−ν/2 + c2

r−1

∑
k=1

k−2β+(2b+3)ν/2+αn−ν/2

= c1rγ1+2n−ν/2 + c2

r−1

∑
k=1

kγ1 n−ν/2 ≤ c3n−ν/2rγ2−a ≤ c4r−an−εγ2/2, (22)

where the last inequality is due to r = O(nγ−ε), and c1,c2,c3,c4 are positive constants that do not

depend on n. Setting δ = 3/(3+εν/γ2)< 1, by the Lyapunov inequality, raδE|Yn,i|δ ≤ raδ(E|Yn,i|)δ ≤
c4raδr−aδn−δεν/(2γ2) = c4n−δεν/(2γ2) uniformly for n and r = O(nγ−ε). Although the Yn,i are not inde-

pendent of Yn, j , they have the same distribution due to symmetry. Therefore, noting that 1− δ{1+

26



εν/(2γ2)}< 0, we have

sup
n≥1

n−δ
n

∑
i=1

E{raδ|Yn,i|δ} ≤ sup
n≥1

c4n−δnn−δεν/(2γ2) = sup
n≥1

c4n1−δ{1+εν/(2γ2)} = O(1). (23)

The result raδE|Yn,i|δ = O(n−δεν/(2γ2)) also implies that

lim
M→∞

sup
n≥1

n−δ
n

∑
i=1

E{raδ|Yn,i|δ1|Yn,i|δ>M}= 0. (24)

Then the Cesàro type uniform integrability is satisfied by raYn,i with exponent δ < 1, based on (23)

and (24), and the weak law of large numbers (Sung, 1999) implies n−1 ∑n
i=1 raYn,i = op(1). This result,

in conjunction with the fact ra|Lr,n(θ[r])−Lr(θ[r])|= op(1) and ra|L̂r,n(θ[r])−Lr(θ[r])| ≤ ra|Lr,n(θ[r])−
Lr(θ[r])|+n−1 ∑n

i=1 raYn,i, as well as Pr{r ∈ J}→ 1, yields the result.

Proof of Theorem 3. By assumption (A5), θ[r],0 is the maximizer of Lr(θ[r]). Let h5 = min{h1,h2,h3}
and Ua

r = {θ[r] : Lr(θ[r],0)−Lr(θ[r])< h5r−a}, whence Ua
r ⊂Ur ⊂ Br, where a = max(a1,a2), Ur and

Br are defined in (A5). Moreover, for all θ[r] ∈ Ua
r , there exists h4 > 0 not depending on r and θ[r],

such that

Lr(θ[r],0)−Lr(θ[r])≥ h4r−a‖θ[r]−θ[r],0‖2, (25)

From (A1), Θ = ∏∞
j=1 I[∞], j is compact due to Tychonoff’s theorem, which implies that the conver-

gence of ra|L̂r,n(θ[r])−Lr(θ[r])| in Lemma 3 is uniform over Θ. Thus for any 0 < ε2 < h5, there exists

Nε > 0 such that if n > Nε, then

Pr
(
{ra|L̂r,n(θ[r],0)−Lr(θ[r],0)|< ε2/2}

⋂
{ra|L̂r,n(θ̂[r])−Lr(θ̂[r])|< ε2/2}

)
> 1− ε/2, (26)

where θ̂[r] is a global maximizer of L̂r,n. Next we show that

Pr{ra|L̂r,n(θ̂[r])−Lr(θ[r],0)|< ε2/2}> 1− ε/2. (27)

If L̂r,n(θ̂[r])≥ Lr(θ[r],0), then 0 ≤ L̂r,n(θ̂[r])−Lr(θ[r],0)≤ L̂r,n(θ̂[r])−Lr(θ̂[r]) since Lr(θ̂[r])≤ Lr(θ[r],0),

due to the fact that θ[r],0 is the global maximizer of Lr(·). Similarly, if L̂r,n(θ̂[r]) ≤ Lr(θ[r],0), then

0 ≤ Lr(θ[r],0)− L̂r,n(θ̂[r]) ≤ Lr(θ[r],0)− L̂r,n(θ[r],0) since L̂r,n(θ[r],0) ≤ L̂r,n(θ̂[r]) due to the fact that

θ̂[r] is a global maximizer of L̂r,n(·). Combining these two cases yields |L̂r,n(θ̂[r])− Lr(θ[r],0)| ≤
max{|L̂r,n(θ̂[r])−Lr(θ̂[r])|, |Lr(θ[r],0)− L̂r,n(θ[r],0)|}. This result, in conjunction with (26), yields (27).

Then applying the triangle inequality in conjunction with (26) and (27) leads to Pr{ra|Lr(θ̂[r])−
Lr(θ[r],0)| < ε2} > 1− ε. Since ε2 < h5, we have θ̂[r] ∈ Ua

r with probability (1− ε), and then apply

(25) to conclude that Pr{‖θ̂[r]−θ[r],0‖< 2ε/
√

h4}> 1− ε, which yields the consistency of θ̂[r].

It remains to show the consistency of f (x | θ̂[r]) for any x ∈ ⋃∞
k=1 Sk, which implies that there

27



exists some k0 < ∞ such that x ∈ Sk0
. Then f (x) = ∑

k0

k=1 fk(x | θk)1Sk
, as the indicator functions

1S j
are all zero if j > k0. For sufficiently large n such that k0 ≤ rn, θ[rn], and hence θ1, . . . ,θk0

are

all consistently estimated. The continuity of each fk with respect to θk in (A4) then implies that∣∣ f (x | θ̂[r])− f (x | θ[∞],0)
∣∣ p−→ 0.
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