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In this work we develop a novel and foundational framework for
analyzing general Riemannian functional data, in particular a new de-
velopment of tensor Hilbert spaces along curves on a manifold. Such
spaces enable us to derive Karhunen-Loève expansion for Riemannian
random processes. This framework also features an approach to com-
pare objects from different tensor Hilbert spaces, which paves the way
for asymptotic analysis in Riemannian functional data analysis. Built
upon intrinsic geometric concepts such as vector field, Levi-Civita con-
nection and parallel transport on Riemannian manifolds, the devel-
oped framework applies to not only Euclidean submanifolds but also
manifolds without a natural ambient space. As applications of this
framework, we develop intrinsic Riemannian functional principal com-
ponent analysis (iRFPCA) and intrinsic Riemannian functional linear
regression (iRFLR) that are distinct from their traditional and ambient
counterparts. We also provide estimation procedures for iRFPCA and
iRFLR, and investigate their asymptotic properties within the intrinsic
geometry. Numerical performance is illustrated by simulated and real
examples.

1. Introduction. Functional data analysis (FDA) advances substantially in the past two
decades, as the rapid development of modern technology enables collecting more and more data
continuously over time. There is rich literature spanning more than seventy years on this topic, in-
cluding development on functional principal component analysis such as Rao (1958); Kleffe (1973);
Dauxois, Pousse and Romain (1982); Silverman (1996); Yao, Müller and Wang (2005a); Hall and
Hosseini-Nasab (2006); Zhang and Wang (2016), and advances on functional linear regression such
as Yao, Müller and Wang (2005b); Hall and Horowitz (2007); Yuan and Cai (2010); Kong et al.
(2016), among many others. For a thorough review of the topic, we refer readers to the review article
Wang, Chiou and Müller (2016) and monographs Ramsay and Silverman (2005); Ferraty and Vieu
(2006); Hsing and Eubank (2015); Kokoszka and Reimherr (2017) for comprehensive treatments
on classic functional data analysis. Although traditionally functional data take values in a vector
space, more data of nonlinear structure arise and should be properly handled in a nonlinear space.
For instance, trajectories of bird migration are naturally regarded as curves on a sphere which is a
nonlinear Riemannian manifold, rather than the three-dimensional vector space R3. Another exam-
ple is the dynamics of brain functional connectivity. The functional connectivity at a time point is
represented by a symmetric positive-definite matrix (SPD). Then the dynamics shall be modelled
as a curve in the space of SPDs that is endowed with either the affine-invariant metric (Moakher,
2005) or the Log-Euclidean metric (Arsigny et al., 2007) to avoid the “swelling” effect (Arsigny
et al., 2007). Both metrics turn SPD into a nonlinear Riemannian manifold. In this paper, we refer
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this type of functional data as Riemannian functional data, which are functions taking values on
a Riemannian manifold and modelled by Riemannian random processes, i.e., we treat Riemannian
trajectories as realizations of a Riemannian random process.

Analysis of Riemannian functional data is not only challenged by the infinite dimensionality and
compactness of covariance operator from functional data, but also obstructed by the nonlinearity of
the range of functions, since manifolds are generally not vector spaces and render many techniques
relying on linear structure ineffective or inapplicable. For instance, if the sample mean curve is
computed for bird migration trajectories as if they were sampled from the ambient space R3, this
naïve sample mean in general does not fall on the sphere of earth. For manifolds of tree-structured
data studied in Wang and Marron (2007), as they are naturally not Euclidean submanifolds which
refer to Riemannian submanifolds of a Euclidean space in this paper, the naïve sample mean can not
even be defined from ambient spaces, and thus a proper treatment of manifold structure is necessary.
While the literature for Euclidean functional data is abundant, works involving nonlinear manifold
structure are scarce. Chen and Müller (2012) and Lin and Yao (2017) respectively investigate
representation and regression for functional data living in a low-dimensional nonlinear manifold
that is embedded in an infinite-dimensional space, while Lila and Aston (2017) focuses principal
component analysis on functional data whose domain is a two-dimensional manifold. None of these
deal with functional data that take values on a nonlinear manifold, while Dai and Müller (2017) is
the only endeavor in this direction for Euclidean submanifolds.

As functional principal component analysis (FPCA) is an essential tool for FDA, it is of impor-
tance and interest to develop this notion for Riemannian functional data. Since manifolds are in
general not vector spaces, classic covariance functions/operators do not exist naturally for a Rie-
mannian random process. A strategy that is often adopted, e.g., Shi et al. (2009) and Cornea et al.
(2017), to overcome the lack of vectorial structure is to map data on the manifold into tangent
spaces via Riemannian logarithm map defined in Section 2.2. As tangent spaces at different points
are different vector spaces, in order to handle observations from different tangent spaces, some
existing works assume a Euclidean ambient space for the manifold and identify tangent vectors as
Euclidean vectors. This strategy is adopted by Dai and Müller (2017) on Riemannian functional
data such as compositional data modelled on the unit sphere for the first time. Specifically, they
assume that functional data are sampled from a time-varying geodesic submanifold, where at a
given time point, the functions take values on a geodesic submanifold of a common manifold. Such
a common manifold is further assumed to be a Euclidean submanifold that allows to identify all
tangent spaces as hyperplanes in a common Euclidean space (endowed with the usual Euclidean
inner product). Then, with the aid of Riemannian logarithm map, Dai and Müller (2017) are able
to transform Riemannian functional data into Euclidean ones while accounting for the intrinsic
curvature of the underlying manifold.

To avoid confusion, we distinguish two different perspectives to deal with Riemannian mani-
folds. One is to work with the manifold under consideration without assuming an ambient space
surrounding it or an isometric embedding into a Euclidean space. This perspective is regarded as
completely intrinsic, or simply intrinsic. Although generally difficult to work with, it can fully re-
spect all geometric structure of the manifold. The other one, referred to as ambient here, assumes
that the manifold under consideration is isometrically embedded in a Euclidean ambient space,
so that geometric objects such as tangent vectors can be processed within the ambient space. For
example, from this point of view, the local polynomial regression for SPD proposed by Yuan et al.
(2012) is intrinsic, while the aforementioned work by Dai and Müller (2017) takes the ambient
perspective.
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Figure 1. Left panel: illustration of ambient movement of tangent vectors. The tangent vector v0 at the point Q of
a unit circle embedded in a Euclidean plane is moved to the point P1 and P2 within the ambient space. v1 (resp. v2)
is a tangent vector at P1 (resp. P2). The differences v1 − v0 and v2 − v0 are not tangent to the circle at P1 and P2,
respectively. If v0, v1 and v2 have the same length, then the intrinsic parallel transport of v0 to Pk shall coincide
with vk, and Pv0 − vk = 0, where k = 1,2 and P represents the parallel transport on the unit circle with the canonical
metric tensor. Thus, ∥Pv0 − vk∥R2 = 0. However, ∥v0 − vk∥R2 > 0, and this non-zero value completely results from the
departure of the Euclidean geometry from the unit circle geometry. The ambient discrepancy ∥v0 − v1∥R2 is small as
P1 is close to P , while ∥v0 − v2∥R2 is large since P2 is far away from Q. Right panel: illustration of parallel transport.
A tangent vector v1 at the point p1 on the unit sphere is parallelly transported to the point p2 and p3 along curves C1
and C2, respectively. During parallel transportation, the transported tangent vector always stays within the tangent
spaces along the curve.

Although it is possible to account for some of geometric structure in the ambient perspective,
e.g., the curved nature of manifold via Riemannian logarithm map, several issues arise due to
manipulation of geometric objects such as tangent vectors in the ambient space. First, the essential
dependence on an ambient space restricts potential applications. It is not immediately applicable
to manifolds that are not a Euclidean submanifold or do not have a natural isometric embedding
into a Euclidean space, e.g., the Riemannian manifold of p × p (p ≥ 2) SPD matrices endowed
with the affine-invariant metric (Moakher, 2005) which is not compatible with the p(p + 1)/2-
dimensional Euclidean metric. Second, although an ambient space provides a common stage for
tangent vectors at different points, operation on tangent vectors from this ambient perspective can
potentially violate the intrinsic geometry of the manifold. To illustrate this, consider comparison
of two tangent vectors at different points (this comparison is needed in the asymptotic analysis
of Section 3.2; see also Section 2.4). From the ambient perspective, taking difference of tangent
vectors requires moving a tangent vector parallelly within the ambient space to the base point of
the other tangent vector. However, the resultant tangent vector after movement in the ambient
space is generally not a tangent vector for the base point of the other tangent vector; see the left
panel of Figure 1 for a geometric illustration. In another word, the ambient difference of two tangent
vectors at different points is not an intrinsic geometric object on the manifold, and the departure
from intrinsic geometry can potentially affect the statistical efficacy and/or efficiency. Lastly, since
manifolds might be embedded into more than one ambient space, the interpretation of statistical
results crucially depends on the ambient space and could be misleading if one does not choose the
ambient space appropriately.

In the paper, we develop a completely intrinsic framework that provides a foundational the-
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ory for general Riemannian functional data that paves the way for the development of intrinsic
Riemannian functional principal component analysis and intrinsic Riemannian functional linear
regression, among other potential applications. The key building block is a new concept of tensor
Hilbert space along a curve on the manifold, which is described in Section 2. On one hand, our ap-
proach experiences dramatically elevated technical challenge relative to the ambient counterparts.
For example, without an ambient space, it is nontrivial to perceive and handle tangent vectors.
On the other hand, the advantages of the intrinsic perspective are at least three-fold, in contrast
to ambient approaches. First, our results immediately apply to many important Riemannian man-
ifolds that are not naturally a Euclidean submanifold but commonly seen in statistical analysis
and machine learning, such as the aforementioned SPD manifolds and Grassmannian manifolds.
Second, our framework features a novel intrinsic proposal for coherent comparison of objects from
different tensor Hilbert spaces on the manifold, and hence makes the asymptotic analysis sensible.
Third, results produced by our approach are invariant to embeddings and ambient spaces, and can
be interpreted independently, which avoid potential misleading interpretation in practice.

As important applications of the proposed framework, we develop intrinsic Riemannian functional
principal component analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iR-
FLR). Specifically, estimation procedures of intrinsic eigenstructure are provided and their asymp-
totic properties are investigated within the intrinsic geometry. For iRFLR, we study a Riemannian
functional linear regression model, where a scalar response intrinsically and linearly depends on a
Riemannian functional predictor through a Riemannian slope function, a concept that is formulated
in Section 4, along with the concept of linearity in the context of Riemannian functional data. We
present an FPCA-based estimator and a Tikhonov estimator for the Riemannian slope function and
explore their asymptotic properties, where the proposed framework of tensor Hilbert space again
plays an essential role.

The rest of the paper is structured as follows. The foundational framework for intrinsic Rie-
mannian functional data analysis is laid in Section 2. Intrinsic Riemannian functional principal
component analysis is presented in Section 3, while intrinsic Riemannian functional regression is
studied in Section 4. In Section 5, numerical performance is illustrated through simulations, and an
application to Human Connectome Project analyzing functional connectivity and behavioral data
is provided.

2. Tensor Hilbert Space and Riemannian Random Process. In this section, we first
define the concept of tensor Hilbert space and discuss its properties, including a mechanism to deal
with two different tensor Hilbert spaces at the same time. Then, random elements on tensor Hilbert
space are investigated, with the proposed intrinsic Karhunen-Loève expansion for the random ele-
ments. Finally, practical computation with respect to an orthonormal frame is given. Throughout
this section, we assume a d-dimensional, connected and geodesically complete Riemannian manifold
M equipped with a Riemannian metric ⟨⋅, ⋅⟩, which defines a scalar product ⟨⋅, ⋅⟩p for the tangent
space TpM at each point p ∈M. This metric also induces a distance function dM onM. A prelim-
inary for Riemannian manifolds can be found in the appendix. For a comprehensive treatment on
Riemannian manifolds, we recommend the introductory text by Lee (1997) and also Lang (1995).

2.1. Tensor Hilbert Spaces along Curves. Let µ be a measurable curve on a manifold M and
parameterized by a compact domain T ⊂ R equipped with a finite measure υ. A vector field V
along µ is a map from T to the tangent bundle TM such that V (t) ∈ Tµ(t)M for all t ∈ T . It
is seen that the collection of vector fields V along µ is a vector space, where the vector addition
between two vector fields V1 and V2 is a vector field U such that U(t) = V1(t) + V2(t) for all t ∈ T ,
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and the scalar multiplication between a real number a and a vector field V is a vector field U such
that U(t) = aV (t) for all t ∈ T . Let T (µ) be the collection of (equivalence classes of) measurable
vector fields V along µ such that ∥V ∥µ ∶= {∫T ⟨V (t), V (t)⟩µ(t)dυ(t)}1/2 < ∞ with identification
between V and U in T (µ) (or equivalently, V and U are in the same equivalence class) when
υ({t ∈ T ∶ V (t) ≠ U(t)}) = 0. Then T (µ) is turned into an inner product space by the inner
product ⟪V,U⟫µ ∶= ∫T ⟨V (t), U(t)⟩µ(t)dυ(t), with the induced norm given by ∥ ⋅ ∥µ. Moreover, we
have that

Theorem 1. For a measurable curve µ onM, T (µ) is a separable Hilbert space.

We call the space T (µ) the tensor Hilbert space along µ, as tangent vectors are a special type
of tensor and the above Hilbertian structure can be defined for tensor fields along µ. The above
theorem is of paramount importance, in the sense that it suggests T (µ) to serve as a cornerstone for
Riemannian functional data analysis for two reasons. First, as shown in Section 2.2, via Riemannian
logarithm maps, a Riemannian random process may be transformed into a tangent-vector-valued
random process (called log-process in Section 2.2) that can be regarded as a random element in a
tensor Hilbert space. Second, the rigorous theory of functional data analysis formulated in Hsing
and Eubank (2015) by random elements in separable Hilbert spaces fully applies to the log-process.

One distinct feature of the tensor Hilbert space is that, different curves that are even parameter-
ized by the same domain give rise to different tensor Hilbert spaces. In practice, one often needs to
deal with two different tensor Hilbert spaces at the same time. For example, in the next subsection
we will see that under some conditions, a Riemannian random process X can be conceived as a
random element on the tensor Hilbert space T (µ) along the intrinsic mean curve µ. However, the
mean curve is often unknown and estimated from a random sample of X. Since the sample mean
curve µ̂ generally does not agree with the population one, quantities of interest such as covariance
operator and their sample versions are defined on two different tensor Hilbert spaces T (µ) and
T (µ̂), respectively. For statistical analysis, one needs to compare the sample quantities with their
population counterparts and hence involves objects such as covariance operators from two different
tensor Hilbert spaces.

In order to intrinsically quantify the discrepancy between objects of the same kind from different
tensor Hilbert spaces, we utilize the Levi-Civita connection (p. 18, Lee 1997) associated with the
Riemannian manifold M. The Levi-Civita connection is uniquely determined by the Riemannian
structure. It is the only torsion-free connection compatible with the Riemannian metric. Associated
with this connection is a unique parallel transport operator Pp,q that smoothly transports tangent
vectors at p along a curve to q and preserves the inner product. We shall emphasize that, the
parallel transportation is performed intrinsically. For instance, tangent vectors being transported
always stay tangent to the manifold during transportation, which is illustrated by the right panel
of Figure 1. Although transport operator Pp,q depends on the curve connecting p and q, there exists
a canonical choice of the curve connecting two points, which is the minimizing geodesic between p
and q (under some conditions, almost surely the minimizing geodesic is unique between two points
randomly sampled from the manifold). The smoothness of parallel transport also implies that if p
and q are not far apart, then the initial tangent vector and the transported one stays close (in the
space of tangent bundle endowed with the Sasaki metric (Sasaki, 1958)). This feature is desirable
for our purpose, as when sample mean µ̂(t) approaches to µ(t), one expects a tangent vector at µ̂(t)
converges to its transported version at µ(t). Owing to these nice properties of parallel transport, it
becomes an ideal tool to construct a mechanism of comparing objects from different tensor Hilbert
spaces as follows.
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Suppose f and h are two measurable curves onM defined on T . Let γt(⋅) ∶= γ(t, ⋅) be a family
of smooth curves that is parameterized by the interval [0,1] (the way of parameterization here
does not matter) and connects f(t) to h(t), i.e., γt(0) = f(t) and γt(1) = h(t), such that γ(⋅, s) is
measurable for all s ∈ [0,1]. Suppose v ∈ Tf(t)M and let V be a smooth vector field along γt such
that ∇γ̇V = 0 and V (0) = v, where ∇ denotes the Levi-Civita connection of the manifoldM. The
theory of Riemannian manifolds shows that such a vector field V uniquely exists. This gives rise
to the parallel transporter Pf(t),h(t) ∶ Tf(t)M → Th(t)M along γt, defined by Pf(t),h(t)(v) = V (1).
In other words, Pf(t),h(t) parallelly transports v to V (1) ∈ Th(t)M along the curve γt. As the
parallel transporter determined by the Levi-Civita connection, P preserves the inner product of
tangent vectors along transportation, i.e. ⟨u, v⟩f(t) = ⟨Pf(t),h(t)u,Pf(t),h(t)v⟩h(t) for u, v ∈ Tf(t)M.
Then we can define the parallel transport of vector fields from T (f) to T (h), denoted by Γf,h,
(Γf,hU)(t) = Pf(t),h(t)(U(t)) for all U ∈ T (f) and t ∈ T . One immediately sees that Γf,h is a linear
operator on tensor Hilbert space. Its adjoint, denoted by Γ∗f,h, is a map from T (h) to T (f) and
is given by ⟪U,Γ∗f,hV ⟫f = ⟪Γf,hU,V ⟫h for U ∈ T (f) and V ∈ T (h). Let C (f) denote the set of all
Hilbert-Schmidt operators on T (f), which is a Hilbert space with the Hilbert-Schmidt norm ∣∣∣⋅∣∣∣f .
We observe that the operator Γf,h also gives rise to a mapping Φf,h from C (f) to C (h), defined by
(Φf,hA)V = Γf,h(A(Γ∗f,hV )) for A ∈ C (f) and V ∈ T (h). The operator Φf,h is called the parallel
transporter of Hilbert-Schmidt operators. Below are some important properties of Γf,h and Φf,h,
where (x1 ⊗ x2)x3 ∶= ⟪x1, x3⟫fx2 for x1, x2, x3 ∈ T (f).

Proposition 2. Suppose U ∈ T (f), V ∈ T (h), A ∈ C (f) and B ∈ C (h) for two measurable
curves f and h onM. Let Γf,h and Φf,h be parallel transporters along a family of smooth curves γt
defined above, such that γ(t, ⋅) is smooth and γ(, s) is measurable. Then the following statements
regarding Γf,h and Φf,h hold.

1. The operator Γf,h is a unitary transformation from T (f) to T (h).
2. Γ∗f,h = Γh,f . Also, ∥Γf,hU − V ∥h = ∥U − Γh,fV ∥f .
3. Γf,h(AU) = (Φf,hA)(Γf,hU).
4. If A is invertible, then Φf,hA

−1 = (Φf,hA)−1.
5. Φf,h∑k ckϕk ⊗ϕk = ∑k ck(Γf,hϕk)⊗ (Γf,hϕk), where ck are scalar constants, and ϕk ∈ T (f).
6. ∣∣∣Φf,hA − B∣∣∣h =

∣∣∣A −Φh,fB∣∣∣f .

We define U ⊖Γ V ∶= Γf,hU − V for U ∈ T (f) and V ∈ T (h), and A ⊖Φ B ∶= Φf,hA − B for
operators A and B. To quantify the discrepancy between an element U in T (f) and another one V
in T (h), we can use the quantity ∥U⊖ΓV ∥h. Similarly, we adopt ∣∣∣A⊖Φ B∣∣∣h as discrepancy measure
for two covariance operators A and B. These quantities are intrinsic as they are built on intrinsic
geometric concepts. In light of Proposition 2, they are symmetric under the parallel transport, i.e.,
transporting A to B yields the same discrepancy measure as transporting B to A. We also note
that, whenM = Rd, the difference operators ⊖Γ and ⊖Φ reduce to the regular vector and operator
difference, i.e., U ⊖Γ V becomes U − V , while A ⊖Φ B becomes A − B. Therefore, ⊖Γ and ⊖Φ can
be viewed as generalization of the regular vector and operator difference to a Riemannian setting.
One shall note that Γ and Φ depend on the choice of the family of curves γ, a canonical choice of
which is discussed in Section 3.2.

2.2. Random Elements on Tensor Hilbert Spaces. Let X be a Riemannian random process. In
order to introduce the concept of intrinsic mean function for X, we define a family of functions
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indexed by t:

(1) F (p, t) = Ed2
M(X(t), p), p ∈M, t ∈ T .

For a fixed t, if there exists a unique q ∈M that minimizes F (p, t) over all p ∈M, then q is called
the intrinsic mean (also called Fréchet mean) at t, denoted by µ(t), i.e.,

µ(t) = arg min
p∈M

F (p, t).

As required for intrinsic analysis, we assume the following condition.

A.1 The intrinsic mean function µ exists.

We refer readers to Bhattacharya and Patrangenaru (2003) and Afsari (2011) for conditions under
which the intrinsic mean of a random variable on a general manifold exists and is unique. For
example, according to Cartan-Hadamard theorem, if the manifold is simply connected and complete
with non-positive sectional curvature, then intrinsic mean function always exists and is unique as
long as for all t ∈ T , F (p, t) <∞ for some p ∈M.

Since M is geodesically complete, by Hopf-Rinow theorem (p. 108, Lee 1997), its exponential
map Expp at each p is defined on the entire TpM. As Expp might not be injective, in order to
define its inverse, we restrict Expp to a subset of the tangent space TpM. Let Cut(p) denote the
set of all tangent vectors v ∈ TpM such that the geodesic γ(t) = Expp(tv) fails to be minimizing for
t ∈ [0,1 + ε) for each ε > 0. Now, we define Expp only on Dp ∶= TpM/Cut(p). The image of Expp,
denoted by Im(Expp), consists of points q inM, such that q = Exppv for some v ∈ Dp. In this case,
the inverse of Expp exists and is called Riemannian logarithm map, which is denoted by Logp and
maps q to v. We shall make the following assumption.

A.2 Pr{∀t ∈ T ∶X(t) ∈ Im(Expµ(t))} = 1.

Then, Logµ(t)X(t) is almost surely defined for all t ∈ T . The condition is superfluous if Expµ(t) is
injective for all t, like the manifold of m ×m SPDs endowed with the affine-invariant metric.

In the sequel we shall assume X satisfies conditions A.1 and A.2. An important observation is
that the log-process {Logµ(t)X(t)}t∈T (denoted by LogµX for short) is a random vector field along
µ. If we assume continuity for the sample paths of X, then the process LogµX is measurable with
respect to the product σ-algebra B(T )×E and the Borel algebra B(TM), where E is the σ-algebra
of the probability space. Furthermore, if E∥LogµX∥2

µ <∞, then according to Theorem 7.4.2 of Hsing
and Eubank (2015), LogµX can be viewed as a tensor Hilbert space T (µ) valued random element.
Observing that ELogµX = 0 according to Theorem 2.1 of Bhattacharya and Patrangenaru (2003),
the intrinsic covariance operator for LogµX is given by C = E(LogµX ⊗ LogµX). This operator is
nuclear and self-adjoint. It then admits the following eigendecomposition (Theorem 7.2.6, Hsing
and Eubank, 2015)

(2) C =
∞

∑
k=1

λkφk ⊗ φk

with eigenvalues λ1 ≥ λ2⋯ ≥ 0 and orthonormal eigenelements φk that form a complete orthonormal
system for T (µ). Also, with probability one, the log-process ofX has the following Karhunen-Loève
expansion

(3) LogµX =
∞

∑
k=1

ξkφk
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with ξk ∶= ⟪X,φk⟫µ being uncorrelated and centered random variables. Therefore, we obtain the
intrinsic Riemannian Karhunen-Loève (iRKL) expansion for X given by

(4) X(t) = Expµ(t)
∞

∑
k=1

ξkφk(t).

The elements φk are called intrinsic Riemannian functional principal component (iRFPC), while the
variables ξk are called intrinsic iRFPC scores. This result is summarized in the following theorem
whose proof is already contained in the above derivation and hence omitted. We shall note that the
continuity assumption on sample paths can be weakened to piece-wise continuity.

Theorem 3 (Intrinsic Karhunen-Loève Representation). Assume that X satisfies assumptions
A.1 and A.2. If sample paths of X are continuous and E∥LogµX∥2

µ <∞, then the intrinsic covariance
operator C = E(LogµX ⊗ LogµX) of LogµX admits the decomposition (2), and the random process
X admits the representation (4).

In practice, the series at (4) is truncated at some positive integer K, resulting in a truncated in-
trinsic Riemannian Karhunen-Loève expansion ofX, given byXK = ExpµWK withWK = ∑

K
k=1 ξkφk.

The quality of the approximation of XK for X is quantified by ∫T d
2
M(X(t),XK(t))dυ(t), and can

be shown by a method similar to Dai and Müller (2017) that if the manifold has non-negative
sectional curvature everywhere, then ∫T d

2
M(X(t),XK(t))dυ(t) ≤ ∥LogµX − WK∥2

µ. For mani-
folds with negative sectional curvatures, such inequality in general does not hold. However, for
Riemannian random process X that almost surely lies in a compact subset of M, the residual
∫T d

2
M(X(t),XK(t))dυ(t) can be still bounded by ∥LogµX −WK∥2

µ up to a scaling constant.

Proposition 4. Assume that conditions A.1 and A.2 hold, and the sectional curvature ofM is
bounded from below by κ ∈ R. Let K be a subset ofM. If κ ≥ 0, we let K =M, and if κ < 0, we assume
that K is compact. Then, for some constant C > 0, dM(P,Q) ≤

√
C ∣LogOP−LogOQ∣ for all O,P,Q ∈

K. Consequently, if X ∈ K almost surely, then ∫T d
2
M(X(t),XK(t))dυ(t) ≤ C∥LogµX −WK∥2

µ.

2.3. Computation in Orthonormal Frames. In practical computation, one might want to work
with specific orthonormal bases for tangent spaces. A choice of orthonormal basis for each tangent
space constitutes an orthonormal frame on the manifold. In this section, we study the representation
of the intrinsic Riemannian Karhunen-Loève expansion under an orthonormal frame and formulas
for change of orthonormal frames.

Let E = (E1, . . . ,Ed) be a continuous orthonormal frame, i.e., each Ej is a vector field of M
such that ⟨Ej(p),Ej(p)⟩p = 1 and ⟨Ej(p),Ek(p)⟩p = 0 for j ≠ k and all p ∈M. At each point p,
{E1(p), . . . ,Ed(p)} form an orthonormal basis for TpM. The coordinate of Logµ(t)X(t) with respect
to {E1(µ(t)), . . . ,Ed(µ(t))} is denoted by ZE(t), with the subscript E indicating its dependence on
the frame. The resulting process ZE is called the E-coordinate process ofX. Note that ZE is a regular
Rd valued random process defined on T , and classic theory in Hsing and Eubank (2015) applies to
ZE. For example, its L2 norm is defined by ∥ZE∥

L2 = {E ∫T ∣ZE(t)∣2dt}1/2, where ∣ ⋅ ∣ denotes the
canonical norm on Rd. One can show that ∥ZE∥2

L2 = E∥LogµX∥2
µ. Therefore, if E∥LogµX∥2

µ <∞, then
the covariance function exists and is d× d matrix-valued, quantified by CE(s, t) = E{ZE(s)ZE(t)T }
(Kelly and Root, 1960; Balakrishnan, 1960), noting that EZE(t) = 0 as ELogµ(t)X(t) = 0 for all
t ∈ T . Also, the vector-valued Mercer’s theorem implies the eigendecomposition

(5) CE(s, t) =
∞

∑
k=1

λkφE,k(s)φ
T
E,k(t),
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with eigenvalues λ1 ≥ λ2 ≥ ⋯ and corresponding eigenfunctions φE,k. Here, the subscript E in
φE,k is to emphasize the dependence on the chosen frame. One can see that φE,k is a coordinate
representation of φk, i.e., φk = φTE,kE.

The coordinate process ZE admits the vector-valued Karhunen-Loève expansion

(6) ZE(t) =
∞

∑
k=1

ξkφE,k(t)

under the assumption of mean square continuity of ZE, according to Theorem 7.3.5 of Hsing and
Eubank (2015), where ξk = ∫T Z

T
E(t)φE,k(t)dυ(t). While the covariance function and eigenfunctions

of ZE depend on frames, λk and ξk in (4) and (6) are not, which justifies the absence of E in their
subscripts and the use of same notation for eigenvalues and iRFPC scores in (2), (4), (5) and (6).
This follows from the formulas for change of frames that we shall develop below.

Suppose A = (A1, . . . ,Ad) is another orthonormal frame. Change from E(p) = {E1(p), . . . ,Ed(p)}
to A(p) = {A1(p), . . . ,Ad(p)} can be characterized by a unitary matrix Op. For example, A(t) =
OT
µ(t)E(t) and hence ZA(t) = Oµ(t)ZE(t) for all t. Then the covariance function of ZA is given by

CA(s, t) = E{ZA(s)ZA(t)T } = E{Oµ(s)ZE(s)ZE(t)TOT
µ(t)} = Oµ(s)CE(s, t)OT

µ(t),(7)

and consequently,

CA(s, t) =
∞

∑
k=1

λk{Oµ(s)φE,k(s)}{Oµ(t)φE,k(t)}
T .

From the above calculation, we immediately see that λk are also eigenvalues of CA. Moreover, the
eigenfunction associated with λk for CA is given by

(8) φA,k(t) = Oµ(t)φE,k(t).

Also, the variable ξk in (4) and (6) is the functional principal component score for ZA associated with
φA,k, as seen by ∫T Z

T
A(t)φA,k(t)dυ(t) = ∫T Z

T
E(t)OT

µ(t)Oµ(t)φE,k(t)dυ(t) = ∫T Z
T
E(t)φE,k(t)dυ(t).

The following proposition summarizes the above results.

Proposition 5 (Invariance Principle). Let X be aM-valued random process satisfying condi-
tions A.1 and A.2. Suppose E and A are measurable orthonormal frames that are continuous on a
neighborhood of the image of µ, and ZE denotes the E-coordinate log-process of X. Assume Op is
the unitary matrix continuously varying with p such that A(p) = OT

p E(p) for p ∈M.

1. The Lr-norm of ZE for r > 0, defined by ∥ZE∥Lr = {E ∫T ∣ZE(t)∣rdυ(t)}1/r, is independent of
the choice of frames. In particular, ∥ZE∥2

L2 = E∥LogµX∥2
µ for all orthonormal frames E.

2. If E∥LogµX∥2
µ < ∞, then the covariance function of ZE exists for all E and admits decom-

position of (5). Also, (2) and (5) are related by φk(t) = φTE,k(t)E(µ(t)) for all t, and the
eigenvalues λk coincide. Furthermore, the eigenvalues of CE and the principal component
scores of Karhunen-Loève expansion of ZE do not depend on E.

3. The covariance functions CA and CE of respectively ZA and ZE, if exist, are related by (7).
Furthermore, their eigendecomposions are related by (8) and ZA(t) = Oµ(t)ZE(t) for all t ∈ T .

4. If E∥LogµX∥2
µ < ∞ and sample paths of X are continuous, then the scores ξk (6) coincides

with the iRFPC scores in (4).
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We conclude this subsection by emphasizing that the concept of covariance function of the log-
process depends on the frame E, while the covariance operator, eigenvalues, eigenelements and
iRFPC scores do not. In particular, the scores ξk, which are often the input for further statistical
analysis such as regression and classification, are invariant to the choice of coordinate frames. An
important consequence of the invariance principle is that, these scores can be safely computed in
any convenient coordinate frame without altering the subsequent analysis.

2.4. Connection to the Special Case of Euclidean Submanifolds. Our framework applies to gen-
eral manifolds that include Euclidean submanifolds as special examples to which the methodology
of Dai and Müller (2017) also applies. When the underlying manifold is a d-dimensional subman-
ifold of the Euclidean space Rd0 with d < d0, we recall that the tangent space at each point is
identified as a d-dimensional linear subspace of Rd0 . For such Euclidean manifolds, Dai and Müller
(2017) treat the log-process of X as a Rd0-valued random process, and derive the representation
for the log-process (Eq. (5) in their paper) within the ambient Euclidean space. This is distinctly
different from our intrinsic representation (3) based on the theory of tensor Hilbert spaces, despite
their similar appearance. For instance, Eq. (5) in their work can only be defined for Euclidean
submanifolds, while ours is applicable to general Riemannian manifolds. Similarly, the covariance
function defined in Dai and Müller (2017), denoted by CDM(s, t), is associated with the ambient
log-process V (t) ∈ Rd0 , i.e., CDM(s, t) = EV (s)TV (t). Such an ambient covariance function can
only be defined for Euclidean submanifolds but not general manifolds.

Nevertheless, there are connections between the ambient method of Dai and Müller (2017) and
our framework when M is a Euclidean submanifold. For instance, the mean curve is intrinsically
defined in the same way in both works. For the covariance structure, although our covariance
function CE is a d × d matrix-valued function while CDM(s, t) is a d0 × d0 matrix-valued function,
they both represent the intrinsic covariance operator whenM is a Euclidean submanifold. To see so,
first, we observe that the ambient log-process V (t) as defined in Dai and Müller (2017) at the time
t, although is ambiently d0-dimensional, lives in a d-dimensional linear subspace of Rd0 . Second, the
orthonormal basis E(t) for the tangent space at µ(t) can be realized by a d0×d full-rank matrix Gt

by concatenating vectors E1(µ(t)), . . . ,Ed(µ(t)). Then U(t) = GT
t V (t) is the E-coordinate process

of X. This implies that CE(s, t) = GT
s C

DM(s, t)Gt. On the other hand, since V (t) = GtU(t), one
has CDM(s, t) = GtCE(s, t)GT

t . Thus, CE and CDM determine each other and represent the same
object. In light of this observation and the invariance principle stated in Proposition 5, when M
is a Euclidean submanifold, CDM can be viewed as the ambient representation of the intrinsic
covariance operator C, while CE is the coordinate representation of C with respect to the frame E.
Similarly, the eigenfunctions φDMk of CDM are the ambient representation of the eigenelements φk
of C. The above reasoning also applies to sample mean functions and sample covariance structure.
Specifically, whenM is a Euclidean submanifold, our estimator for the mean function discussed in
Section 3 is identical to the one in Dai and Müller (2017), while the estimators for the covariance
function and eigenfunctions proposed in Dai and Müller (2017) are the ambient representation of
our estimators stated in Section 3.

However, when quantifying the discrepancy between the population covariance structure and its
estimator, Dai and Müller (2017) adopt the Euclidean difference as a measure. For instance, they
use φ̂DMk −φDMk to represent the discrepancy between the sample eigenfunctions and the population
eigenfunctions, where φ̂DMk is the sample version of φDMk . When µ̂(t), the sample version of µ(t),
is not equal to µ(t), φ̂DMk (t) and φDMk (t) belong to different tangent spaces. In such case, the
Euclidean difference φ̂DMk − φDMk is a Euclidean vector that does not belong to the tangent space
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at either µ̂(t) or µ(t), as illustrated in the left panel of Figure 1. In other words, the Euclidean
difference of ambient eigenfunctions does not obey the geometry of the manifold, hence might
not properly measure the intrinsic discrepancy. In particular, the measure ∥φ̂DMk − φDMk ∥Rd0 might
completely result from the departure of the ambient Euclidean geometry from the manifold, rather
than the intrinsic discrepancy between the sample and population eigenfunctions, as demonstrated
in the left panel of Figure 1. Similar reasoning applies to ĈDM − CDM . In contrast, we base on
Proposition 2 to propose an intrinsic measure to characterize the intrinsic discrepancy between a
population quantity and its estimator in Section 3.2.

3. Intrinsic Riemannian Functional Principal Component Analysis.

3.1. Model and Estimation. Suppose X admits the intrinsic Riemannian Karhunen-Loève ex-
pansion (4), and X1, . . . ,Xn are a random sample of X. In the sequel, we assume that trajectories
Xi are fully observed. In the case that data are densely observed, each trajectory can be individ-
ually interpolated by using regression techniques for manifold valued data, such as Steinke, Hein
and Schölkopf (2010), Cornea et al. (2017) and Petersen and Müller (2017). This way the densely
observed data could be represented by their interpolated surrogates, and thus treated as if they
were fully observed curves. When data are sparse, delicate information pooling of observations
across different subjects is required. The development of such methods is substantial and beyond
the scope of this paper.

In order to estimate the mean function µ, we define the finite-sample version of F in (1) by

Fn(p, t) =
1
n

n

∑
i=1
d2
M(Xi(t), p).

Then, an estimator for µ is given by

µ̂(t) = arg min
p∈M

Fn(p, t).

The computation of µ̂ depends on the Riemannian structure of the manifold. Readers are referred
to Cheng et al. (2016) and Salehian et al. (2015) for practical algorithms. For a subset A of M,
Aε denotes the set ⋃p∈AB(p; ε), where B(p; ε) is the ball with center p and radius ε inM. We use
Im−ε(Expµ(t)) to denote the setM/{M/Im(Expµ(t))}ε. In order to define Logµ̂Xi, at least with a
dominant probability for a large sample, we shall assume a slightly stronger condition than A.2:

A.2′ There is some constant ε0 > 0 such that Pr{∀t ∈ T ∶X(t) ∈ Im−ε0(Expµ(t))} = 1.

Then, combining the fact supt ∣µ̂(t) − µ(t)∣ = oa.s.(1) that we will show later, we conclude that for
a large sample, almost surely, Im−ε(Expµ(t)) ⊂ Im(Expµ̂(t)) for all t ∈ T . Therefore, under this
condition, Logµ̂(t)Xi(t) is well define almost surely for a large sample.

The intrinsic Riemannian covariance operator is estimated by its finite-sample version

Ĉ =
1
n

n

∑
i=1

(Logµ̂Xi)⊗ (Logµ̂Xi).

This sample intrinsic Riemannian covariance operator also admits an intrinsic eigendecomposion
Ĉ = ∑

∞
k=1 λ̂kφ̂k for λ̂1 ≥ λ̂2 ≥ ⋯ ≥ 0. Therefore, the estimates for the eigenvalues λk are given by

λ̂k, while the estimates for φk are given by φ̂k. These estimates can also be conveniently obtained



12 Z. LIN AND F. YAO

under a frame, due to the invariance principle stated in Proposition 5. Let E be a chosen orthonor-
mal frame and ĈE be the sample covariance function based on ẐE,1, . . . , ẐE,n, where ẐE,i is the
coordinate process of Logµ̂(t)Xi(t) under the frame E with respect to µ̂. We can then obtain the
eigendecomposition ĈE(s, t) = ∑∞

k=1 λ̂kφ̂E,k(s)φ̂E,k(t)
T , which yields φ̂k(t) = φ̂TE,k(t)E(t) for t ∈ T .

Finally, the truncated process for Xi is estimated by

(9) X̂
(K)

i = Expµ̂
K

∑
k=1

ξ̂ikφ̂k,

where ξ̂ik = ⟪Logµ̂Xi, φ̂k⟫µ̂ are estimated iRFPC scores. The above truncated iRKL expansion can
be regarded as generalization of the representation (10) in Dai and Müller (2017) from Euclidean
submanifolds to general Riemannian manifolds.

3.2. Asymptotic Properties. To quantify the difference between µ̂ and µ, it is natural to use the
square geodesic distance dM(µ̂(t), µ(t)) as a measure of discrepancy. For the asymptotic properties
of µ̂, we need following regularity conditions.
B.1 The manifold M is connected and complete. In addition, the exponential map Expp ∶

TpM→M is surjective at every point p ∈M.
B.2 The sample paths of X are continuous.
B.3 F is finite. Also, for all compact subsets K ⊂M, supt∈T supp∈KEd2

M(p,X(t)) <∞.
B.4 The image U of the mean function µ is bounded, i.e the diameter is finite, diam(U) <∞.
B.5 For all ε > 0, inft∈T infp∶dM(p,µ(t))≥ε F (p, t) − F (µ(t), t) > 0.
To state the next condition, let Vt(p) = LogpX(t). The calculus of manifolds suggests that Vt(p) =
−dM(p,X(t))gradpdM(p,X(t)) = gradp(−d2

M(p,X(t))/2), where gradp denotes the gradient oper-
ator at p. For each t ∈ T , let Ht denote the Hessian of the real function d2

M( ⋅ ,X(t))/2, i.e., for
vector fields U and W onM,

⟨HtU,W ⟩(p) = ⟨−∇UVt,W ⟩(p) = Hessp (
1
2
d2
M(p,X(t))) (U,W ).

B.6 inft∈T {λmin(EHt)} > 0, where λmin(⋅) denotes the smallest eigenvalue of an operator or
matrix.

B.7 EL(X)2 <∞ and L(µ) <∞, where L(f) ∶= sups≠t dM(f(s), f(t))/∣s − t∣ for a real function
f onM.

The assumption B.1 regarding the property of manifolds is met in general, e.g. the d-dimensional
unit sphere Sd, SPD manifolds, etc. By Hopf-Rinow theorem, the condition also implies that M
is geodesically complete. Conditions similar to B.2, B.5, B.6 and B.7 are made in Dai and Müller
(2017). The condition B.4 is a weak requirement for the mean function and is automatically satisfied
if the manifold is compact, while B.3 is analogous to standard moment conditions in the literature
of Euclidean functional data analysis and becomes superfluous whenM is compact. IfM = R, then
B.3 is equivalent to supt∈T E∣X(t)∣2 <∞, a condition commonly made in the literature of functional
data analysis, e.g., Hall and Hosseini-Nasab (2006). The following theorem summarizes asymptotic
properties of µ̂ for general Riemannian manifolds. Its proof can be obtained by mimicking the
techniques in Dai and Müller (2017), with additional care of the case thatM is noncompact. For
completeness, we provide its proof in Appendix. As noted by Dai and Müller (2017), the root-n
rate can not be improved in general.
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Theorem 6. Under conditions A.1, A.2′ and B.1-B.4, the following holds.

1. µ is uniformly continuous, and µ̂ is uniformly continuous with probability one.
2. µ̂ is a uniformly strong consistent estimator for µ, i.e., supt dM(µ̂(t), µ(t)) = oa.s.(1).
3. If additional conditions B.5-B.7 are assumed, then

√
nLogµµ̂ converges in distribution to a

Gaussian measure on the tensor Hilbert space T (µ).
4. If additional conditions B.5-B.7 are assumed, then supt∈T d2

M(µ̂(t), µ(t)) = OP (n
−1) and

∫T d
2
M(µ̂(t), µ(t))dυ(t) = OP (n−1).

For asymptotic analysis of the estimated eigenstructure, as discussed in Section 2.1 and 2.4, Ĉ−C
and φ̂k −φk are not defined for intrinsic Riemannian functional data analysis, since they are objects
originated from different tensor Hilbert spaces T (µ) and T (µ̂) induced by different curves µ and
µ̂. Therefore, we shall adopt the intrinsic measure of discrepancy developed in Section 2.1, namely,
Ĉ ⊖Φ C and φ̂k ⊖Γ φk, where the dependence of Φ and Γ on µ̂ and µ is suppressed for simplicity.
As mentioned at the end of Section 2.1, both Γ and Φ depend on the choice of the family of
curves γ. Here, a canonical choice for each γ(t, ⋅) is the minimizing geodesic between µ(t) and µ̂(t).
The existence and uniqueness of such geodesics can be deduced from assumptions A.1 and A.2′.
Also, the continuity of µ(t) and µ̂(t) implies the continuity of γ(⋅, ⋅) and hence the measurability
of γ(⋅, s) for each s ∈ [0,1]. By Proposition 2, one sees that ΦĈ = n−1

∑
n
i=1(ΓV̂i ⊗ ΓV̂i), recalling

that V̂i = Logµ̂Xi is a vector field along µ̂. It can also be seen that (λ̂k,Γφ̂k) are eigenpairs of
ΦĈ. These identities match our intuition that the transported sample covariance operator ought to
be an operator derived from transported sample vector fields, and that the eigenfunctions of the
transported operator are identical to the transported eigenfunctions.

To state the asymptotic properties for the eigenstructure, we define

ηk = min
1≤j≤k

(λj − λj+1), J = inf{j ≥ 1 ∶ λj − λj+1 ≤ 2∣∣∣Ĉ ⊖Φ C∣∣∣µ},

η̂j = min
1≤j≤k

(λ̂j − λ̂j+1), Ĵ = inf{j ≥ 1 ∶ λ̂j − λ̂j+1 ≤ 2∣∣∣Ĉ ⊖Φ C∣∣∣µ}.

Theorem 7. Assume that every eigenvalue λk has multiplicity one, and conditions A.1, A.2′
and B.1-B.7 hold. Suppose tangent vectors are parallel transported along minimizing geodesics for
defining the parallel transporters Γ and Φ. If E∥LogµX∥4

µ <∞, then ∣∣∣Ĉ ⊖Φ C∣∣∣
2
µ
= OP (n

−1). Further-
more, supk≥1 ∣λ̂k − λk∣ ≤ ∣∣∣Ĉ ⊖Φ C∣∣∣µ and for all 1 ≤ k ≤ J − 1,

(10) ∥φ̂k ⊖Γ φk∥
2
µ ≤ 8∣∣∣Ĉ ⊖Φ C∣∣∣

2
µ
/η2
k.

If (J, ηj) is replaced by (Ĵ , η̂j), then (10) holds with probability 1.

In this theorem, (10) generalizes Lemma 4.3 of Bosq (2000) to the Riemannian setting. Note that
he intrinsic rate for Ĉ is optimal. Also, from (10) one can deduce the optimal rate ∥φ̂k ⊖Γ φk∥

2
µ =

OP (n
−1) for a fixed k. We stress that, these results apply to not only Euclidean submanifolds, but

also general Riemannian manifolds.

4. Intrinsic Riemannian Funcitonal Linear Regression.
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4.1. Regression Model and Estimation. Classical functional linear regression for Euclidean func-
tional data is well studied in the literature, i.e., the model relating a scalar response Y and a
functional predictor X by Y = α + ∫T X(t)β(t)dυ(t) + ε, where α is the intercept, β is the slope
function and ε represents measurement errors, e.g., Cardot, Ferraty and Sarda (2003), Cardot, Mas
and Sarda (2007), Hall and Horowitz (2007) and Yuan and Cai (2010), among others. However, for
Riemannian functional data, both X(t) and β(t) take values in a manifold and hence the product
X(t)β(t) is not well defined. Rewriting the model as Y = α + ⟪X,β⟫L2 + ε, where ⟪⋅, ⋅⟫L2 is the
canonical inner product of the L2 square integrable functions, we propose to replace ⟪⋅, ⋅⟫L2 by the
inner product on the tensor Hilbert space T (µ), and define the following Riemannian functional
linear regression model:

(11) Y = α + ⟪LogµX,Logµβ⟫µ + ε,

where we require conditions A.1 and A.2. Note that β is a manifold valued function defined on
T , namely the Riemannian slope function of the model (11), and this model is linear in terms of
Logµ(t)β(t). We stress that the model (11) is intrinsic to the Riemannian structures of the manifold.

According to Theorem 2.1 of Bhattacharya and Patrangenaru (2003), the process Logµ(t)X(t)
is centered at its mean function, i.e., ELogµ(t)X(t) ≡ 0, which also implies that α = EY . Since the
focus is the Riemannian slope function β, in the sequel, without loss of generality, we assume that
Y is centered and hence α = 0. In practice, we may use sample mean of Y for centering. With
the same reasoning as Cardot, Ferraty and Sarda (2003), one can see that Logµβ and hence β are
identifiable if A.1, A.2 and the following condition hold.

C.1 The random pair (X,Y ) satisfies ∑∞
k=1 λ

−2
k [E{Y ⟪LogµX,φk⟫µ}]2 < ∞, where (λk, φk) are

eigenpairs of the covariance operator C of LogµX.

To estimate the Riemannian slope function β, by analogy to the FPCA approach in traditional
functional linear regression (Hall and Horowitz, 2007), we represent β by β = Expµ∑k bkφk. Then
bk = λ

−1
k ak with ak = ⟪χ,φk⟫µ and χ(t) = E{Y Logµ(t)X(t)}. The empirical iRFPCA estimate of β

is then given by

(12) β̂ = Expµ̂
K

∑
k=1

b̂kφ̂k,

where b̂k = λ̂−1
k âk, âk = ⟪χ̂, φ̂k⟫µ̂, χ̂(t) = n−1

∑
n
i=1(Yi − Ȳ )Logµ̂(t)Xi(t) and Ȳ = n−1

∑
n
i=1 Yi. We can

also obtain a Tikhonov estimator β̃ as follows. For ρ > 0, define Ĉ+ = (Ĉ + ρIµ̂)
−1, where Iµ̂ is the

identity operator on T (µ̂). The Tikhonov estimator is given by

(13) β̃ = Expµ̂(Ĉ+χ̂).

In practice, it is convenient to conduct computation with respect to an orthonormal frame E.
For each Xi, the E-coordinate along the curve µ̂ is denoted by ẐE,i. Note that by Theorem 2.1
of Bhattacharya and Patrangenaru (2003), n−1

∑
n
i=1 Logµ̂Xi = 0 implies that n−1

∑
n
i=1 ẐE,i(t) ≡ 0.

Thus, the empirical covariance function ĈE is computed by ĈE(s, t) = n−1
∑
n
i=1 ẐE,i(s)Ẑ

T
E,i(t). Then,

χ̂E = n−1
∑
n
i=1(Yi − Ȳ )ẐE,i and âk = ∫T χ̂

T
E,i(t)φ̂E,k(t)dυ(t), recalling that φ̂E,k are eigenfunctions

of ĈE. Finally, the E-coordinate of Logµ̂β̂ is given by ∑Kk=1 b̂kφ̂E,k. For the Tikhonov estimator,
we first observe that Ĉ+ shares the same eigenfunctions with Ĉ, while the eigenvalues λ̂+k of Ĉ+ is
related to λ̂k by λ̂+k = 1/(λ̂k + ρ). Therefore, Ĉ+χ̂ = ∑

∞
k=1 λ̂

+
k⟪φ̂k, χ̂⟫µ̂φ̂k and its E-coordinate is given
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by ∑∞
k=1 λ̂

+
k âkφ̂E,k. We emphasize that both estimators β̂ and β̃ are intrinsic and hence independent

of frames, while their coordinate representations depend on the choice of frames. In addition, as
a special case, when M is a Euclidean submanifold, an argument similar to that in Section 2.4
can show that, if one treats X as an ambient random process and adopts the FPCA and Tikhonov
regularization approaches (Hall and Horowitz, 2007) to estimate the slope function β in the ambient
space, then the estimates are the ambient representation of our estimates Logµ̂β̂ and Logµ̂β̃ in (12)
and (13), respectively.

4.2. Asymptotic Properties. In order to derive convergence of the iRFPCA estimator and the
Tikhonov estimator, we shall assume the sectional curvature of the manifold is bounded from below
by κ to exclude pathological cases. The compact support condition on X in the case κ < 0 might
be relaxed to weaker assumptions on the tail decay of the distribution of LogµX. Such weaker
conditions do not provide more insight for our derivation, but complicate the proofs significantly,
which is not pursued further.

C.2 If κ < 0, X is assumed to lie in a compact subset K almost surely. Moreover, errors εi are
identically distributed with zero mean and variance not exceeding a constant C > 0.

The follow conditions concern the spacing and the decay rate of eigenvalues λk of the covariance
operator, as well as the strength of the signal bk. They are standard in the literature of functional
linear regression, e.g. Hall and Horowitz (2007).

C.3 For k ≥ 1, λk − λk+1 ≥ Ck
−α−1.

C.4 ∣bk∣ ≤ Ck
−%, α > 1, and (α + 1)/2 < %.

Let F(C,α, %) be the collection of distributions f of (X,Y ) satisfying conditions C.2-C.4. The
following theorem establish the convergence rate of the iRFPCA estimator β̂ for the class of models
in F(C,α, %).

Theorem 8. Assume that conditions A.1, A.2′, B.1-B.7 and C.1-C.4 hold. If K ≍ n1/(2α+2%),
then

lim
c→∞

lim sup
n→∞

sup
f∈F

Prf {∫
T
d2
M(β̂(t), β(t))dυ(t) > cn−

2%−1
2%+2α} = 0.

For the Tikhonov estimator β̃, we have a similar result. Instead of conditions C.3-C.4, we make
the following assumptions, which again are standard in the functional data literature.

C.5 k−α ≤ Cλk.
C.6 ∣bk∣ ≤ Ck

−%, α > 1, and α − 1/2 < %.

Let G(C,α, %) be the class of distributions of (X,Y ) that satisfy C.2 and C.5-C.6. The following
result shows that, the convergence rate of β̃ is at least n−(2%−α)/(α+2%) in terms of integrated square
geodesic distance.

Theorem 9. Assume that conditions A.1, A.2′, B.1-B.7, C.1-C.2, and C.5-C.6 hold. If ρ ≍

n−α/(α+2%), then

lim
c→∞

lim sup
n→∞

sup
f∈G

Prf {∫
T
d2
M(β̃(t), β(t))dυ(t) > cn−

2%−α
2%+α} = 0.
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It is important to point out that the theory in Hall and Horowitz (2007) is formulated for
Euclidean functional data and hence do not apply to Riemannian functional data. In particular,
their proof machinery depends on the linear structure of the sample mean function n−1

∑
n
i=1Xi

for Euclidean functional data. However, the intrinsic empirical mean generally does not admit
an analytic expression, which hinges derivation of the optimal convergence rate. We leave the
refinement on minimax rates of iRFPCA and Tikhonov estimators to future research. Note that
model (11) can be extended to include a finite and fixed number of scalar predictors with slight
modification, and the asymptotic properties of β̂ and β̃ remain unchanged.

5. Numerical Examples.

5.1. Simulation Studies. We consider two manifolds that are frequently encountered in prac-
tice1. The first one is the unit sphere Sd which is a compact nonlinear Riemannian submanifold of
Rd+1 for a positive integer d. The sphere can be used to model compositional data, as exhibited in
Dai and Müller (2017) which also provides details of the geometry of Sd. Here we consider the case
of d = 2. The sphere S2 consists of points (x, y, z) ∈ R3 satisfying x2 + y2 + z2 = 1. Since the intrinsic
Riemannian geometry of S2 is the same as the one inherited from its ambient space (refereed as
ambient geometry hereafter), according to the discussion in Section 2.4, the ambient approach to
FPCA and functional linear regression yields the same results as our intrinsic approach.

The other manifold considered is the space of m ×m symmetric positive definite matrices, de-
noted by Sym+

⋆(m). The space Sym+
⋆(m) includes nonsingular covariance matrices which naturally

arise from the study of DTI data (Dryden, Koloydenko and Zhou, 2009) and functional connectivity
(Friston, 2011). Transitionally, it is treated as a convex cone of the linear space Sym(m) of sym-
metric m ×m matrices. However, as discussed in Arsigny et al. (2007), this geometry suffers from
the undesired swelling effect. To rectify the issue, several intrinsic geometric structures have been
proposed, including the affine-invariant metric (Moakher, 2005) which is also known as the trace
metric (Chapter XII, Lang 1999). This metric is invariant to affine transformation (i.e., change of
coordinates) on S ∈ Sym+

⋆(m) and thus suitable for covariance matrices; see Arsigny et al. (2007)
as well as Fletcher and Joshib (2007) for more details. Moreover, the affine-invariant metric has a
negative sectional curvature, and thus the Fréchet mean is unique if it exists. In our simulation, we
consider m = 3. We emphasize that the affine-invariant geometry of Sym+

⋆(m) is different from the
geometry inherited from the linear space Sym(m). Thus, the ambient RFPCA of Dai and Müller
(2017) might yield inferior performance on this manifold.

We simulate data as follows. First, the time domain is set to T = [0,1]. The mean curves for
S2 and Sym+

⋆(m) are, respectively, µ(t) = (sinϕ(t) cos θ(t), sinϕ(t) sin θ(t), cosϕ(t)) with θ(t) =

2t2 + 4t + 1/2 and ϕ(t) = (t3 + 3t2 + t + 1)/2, and µ(t) = (t0.4,0.5t,0.1t1.5; 0.5t, t0.5,0.5t; 0.1t1.5,0.5t,
t0.6) that is a 3 × 3 matrix. The Riemannian random processes are produced in accordance to
X = Exp (∑

20
k=1

√
λkξkφk), where ξk

i.i.d.
∼ Uniform(−π/4, π/4) for S2 and ξk

i.i.d.
∼ N(0,1) for Sym+

⋆(m).
We set iRFPCs φk(t) = (Aψk(t))

TE(t), where E(t) = (E1(µ(t)), . . . ,Ed(µ(t))) is an orthonormal
frame over the path µ, ψk(t) = (ψk,1(t), . . . , ψk,d(t))

T with ψk,j being orthonormal Fourier basis
functions on T , and A is an orthonormal matrix that is randomly generated but fixed throughout all
simulation replicates. We take λk = 2k−1.2 for all manifolds. Each curve X(t) is observed atM = 101
regular design points t = 0,0.01, . . . ,1. The slope function is β = ∑

K
k=1 ckφk with ck = 3k−2/2.

Two different types of distribution for ε in (11) are considered, namely, normal and Student’s
t distribution with degree of freedom df = 2.1. Note that the latter is a heavy-tailed distribution,

1Implementation of iRFPCA on these manifolds can be found on Github: https://github.com/linulysses/iRFDA.
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Table 1
The root mean integrated squared error (RMISE) of the estimation of the mean function, and the intrinsic RMISE
(iRMISE) and the ambient RMISE (aRMISE) of the estimation for the first two eigenfunctions in the case of S2

manifold. The Monte Carlo standard error based on 100 simulation runs is given in parentheses.

n = 50 n = 150 n = 500

µ 0.244 (0.056) 0.135 (0.029) 0.085 (0.019)

iRMISE aRMISE iRMISE aRMISE iRMISE aRMISE

φ1 0.279 (0.073) 0.331 (0.078) 0.147 (0.037) 0.180 (0.042) 0.086 (0.022) 0.106 (0.027)

φ2 0.478 (0.133) 0.514 (0128) 0.264 (0.064) 0.287 (0.061) 0.147 (0.044) 0.167 (0.042)

with a smaller df suggesting a heavier tail and df > 2 ensuring the existence of variance. In addition,
the noise ε is scaled to make the signal-to-noise ratio equal to 2. Three different training sample
sizes are considered, namely, 50, 150 and 500, while the sample size for test data is 5000. Each
simulation setup is repeated independently 100 times.

First, we illustrate the difference between the intrinsic measure and the ambient counterpart for
the discrepancy of two random objects residing on different tangent spaces, through the examples
of the sphere manifold S2 and the first two iRFPCs. Recall that the metric of S2 agrees with
its ambient Euclidean geometry, so that both iRFPCA and RFPCA essentially yield the same
estimates for iRFPCs. We propose to use the intrinsic root mean integrated squared error (iRMISE)
{E∥φ̂k ⊖Γ φk∥

2
µ}

1/2 to characterize the difference between φk and its estimator φ̂k, while Dai and
Müller (2017) adopt the ambient RMISE (aRMISE) {E∥φ̂k − φk∥

2
Rd0}

1/2, as discussed in Section
2.4. The numerical results of iRMISE and aRMISE for φ̂1 and φ̂2, as well as the RMISE for µ̂,
are showed in Table 1. We see that, when n is small and hence µ̂ is not sufficiently close to µ, the
difference between iRMISE and aRMISE is visible, while such difference decreases as the sample
size grows and µ̂ converges to µ. In particular, aRMISE is always larger than iRMISE since aRMISE
contains an additional ambient component that is not intrinsic to the manifold, as illustrated on
the left panel of Figure 1.

We now use iRMISE to assess the performance of iRFPCA by comparing to the ambient coun-
terpart RFPCA proposed by Dai and Müller (2017). Table 2 presents the results for the top 5
eigenelements. The first observation is that iRFPCA and RFPCA yield the same results on the
manifold S2, which numerically verifies our discussion in Section 2.4. We notice that in Dai and
Müller (2017) the quality of estimation of principal components is not evaluated, likely due to
the lack of a proper tool to do so. In contrast, our framework of tensor Hilbert space provides an
intrinsic gauge (e.g. iRMISE) to naturally compare two vector fields along different curves. For
the case of Sym+

⋆(m) which is not a Euclidean submanifold, the iRFPCA produces more accurate
estimation than RFPCA. In particular, as sample size grows, the estimation error for iRFPCA
decreases quickly, while the error of RFPCA persists. This coincides with our intuition that when
the geometry induced from the ambient space is not the same as the intrinsic geometry, the ambient
RFPCA incurs loss of statistical efficiency, or even worse, inconsistent estimation. In summary, the
results Sym+

⋆(m) numerically demonstrate that the RFPCA proposed by Dai and Müller (2017)
does not apply to manifolds that do not have an ambient space or whose intrinsic geometry differs
from its ambient geometry, while our iRFPCA are applicable to such Riemannian manifolds.

For functional linear regression, we adopt iRMISE to quantify the quality of the estimator β̂ for
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Table 2
Intrinsic root integrated mean squared error (iRMISE) of estimation for eigenelements. The first column denotes the

manifolds, where S2 is the unit sphere and Sym+
⋆(m) is the space of m ×m symmetric positive-definite matrices

endowed with the affine-invariant metric. In the second column, φ1, . . . , φ5 are the top five intrinsic Riemannian
functional principal components. Columns 3-5 are (iRMISE) of the iRFPCA estimators for φ1, . . . , φ5 with different
sample sizes, while columns 5-8 are iRMISE for the RFPCA estimators. The Monte Carlo standard error based on

100 simulation runs is given in parentheses.

Manifold FPC
iRFPCA RFPCA

n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

S2

φ1 0.279 (.073) 0.147 (.037) 0.086 (.022) 0.279 (.073) 0.147 (.037) 0.086 (.022)
φ2 0.475 (.133) 0.264 (.064) 0.147 (.044) 0.475 (.133) 0.264 (.064) 0.147 (.044)
φ3 0.647 (.153) 0.389 (.120) 0.206 (.054) 0.647 (.153) 0.389 (.120) 0.206 (.054)
φ4 0.818 (.232) 0.502 (.167) 0.261 (.065) 0.818 (.232) 0.502 (.167) 0.261 (.065)
φ5 0.981 (.223) 0.586 (.192) 0.329 (.083) 0.981 (.223) 0.586 (.192) 0.329 (.083)

Sym+
⋆(m)

φ1 0.291 (.105) 0.155 (.046) 0.085 (.025) 0.707 (.031) 0.692 (.021) 0.690 (.014)
φ2 0.523 (.203) 0.283 (.087) 0.143 (.040) 0.700 (.095) 0.838 (.113) 0.684 (.055)
φ3 0.734 (.255) 0.418 (.163) 0.206 (.067) 0.908 (.116) 0.904 (.106) 0.981 (.039)
φ4 0.869 (.251) 0.566 (.243) 0.288 (.086) 0.919 (.115) 1.015 (.113) 0.800 (.185)
φ5 1.007 (.231) 0.699 (.281) 0.378 (.156) 0.977 (.100) 1.041 (.140) 1.029 (.058)

slope function β, and assess the prediction performance by prediction RMSE on independent test
dataset. For comparison, we also fit the functional linear model using the principal components
produced by RFPCA (Dai and Müller, 2017), and hence we refer this competing method as RFLR.
For both methods, the tuning parameter which is the number of principal components included
for β̂, is selected by using an independent validation data of the same size of the training data to
ensure fair comparison between two methods. The simulation results are presented in Table 3. As
expected, we observe that on S2 both methods produce the same results. For the SPD manifold, in
terms of estimation, we see that iRFLR yields far better estimators than RFLR does. Particularly,
we again observe that, the quality of RFLR estimators does not improve significantly when sample
size increases, in contrast to estimators based on the proposed iRFLR. For prediction, iRFLR
outperforms RFLR by a significant margin. Interestingly, comparing to estimation of slope function
where the RFLR estimator is much inferior to the iRFLR one, the prediction performance by RFLR
is relatively closer to that by iRFLR. We attribute this to the smoothness effect brought by the
integration in model (11). Nevertheless, although the integration cancels out certain discrepancy
between the intrinsic and the ambient geometry, the loss of efficiency is inevitable for the RFLR
method that is bound to the ambient spaces. In addition, we observe that the performance of both
methods for Gaussian noise is slightly better than that in the case of heavy-tailed noise.

5.2. Data Application. We apply the proposed iRFPCA and iRFLR to analyze the relationship
between functional connectivity and behavioral data from the HCP 900 subjects release (Essen et al.,
2013). Although neural effects on language (Binder et al., 1997), emotion (Phana et al., 2002), and
fine motor skills (Dayan and Cohen, 2011) have been extensively studied in the literature, scarce is
the exploration on human behaviors that do not seem related to neural activities, such as endurance.
Nevertheless, a recent research by Raichlen et al. (2016) suggests that endurance can be related to
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Table 3
Estimation quality of slope function β and prediction of y on test datasets. The second column indicates the

distribution of noise, while the third column indicates the manifolds, where S2 is the unit sphere and Sym+
⋆(m) is the

space of m ×m symmetric positive-definite matrices endowed with the affine-invariant metric. Columns 4-6 are
performance of the iRFLR on estimating the slope curve β and predicting the response on new instances of

predictors, while columns 7-9 are performance of the RFLR method. Estimation quality of slope curve is quantified
by intrinsic root mean integrated squared errors (iRMISE), while the performance of prediction on independent test
data is measured by root mean squared errors (RMSE). The Monte Carlo standard error based on 100 simulation

runs is given in parentheses.

iRFLR RFLR
n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

E
st
im

at
io
n

no
rm

al S2 0.507 (0.684) 0.164 (0.262) 0.052 (0.045) 0.507 (0.684) 0.164 (0.262) 0.052 (0.045)
SPD 1.116 (2.725) 0.311 (0.362) 0.100 (0.138) 2.091 (0.402) 1.992 (0.218) 1.889 (0.126)

t(2
.1
) S2 0.575 (0.768) 0.183 (0.274) 0.053 (0.050) 0.575 (0.768) 0.183 (0.274) 0.053 (0.050)

SPD 1.189 (2.657) 0.348 (0.349) 0.108 (0.141) 2.181 (0.439) 1.942 (0.209) 1.909 (0.163)

P
re
di
ct
io
n

no
rm

al S2 0.221 (0.070) 0.135 (0.046) 0.083 (0.019) 0.221 (0.070) 0.135 (0.046) 0.083 (0.019)
SPD 0.496 (0.184) 0.284 (0.092) 0.165 (0.062) 0.515 (0.167) 0.328 (0.083) 0.248 (0.047)

t(2
.1
) S2 0.251 (0.069) 0.142 (0.042) 0.088 (0.020) 0.251 (0.069) 0.142 (0.042) 0.088 (0.020)

SPD 0.532 (0.189) 0.298 (0.097) 0.172 (0.066) 0.589 (0.185) 0.360 (0.105) 0.268 (0.051)

functional connectivity. Our goal is to study the endurance performance of subjects based on their
functional connectivity.

The data consists of n = 330 subjects who are healthy young adults, in which each subject is
asked to walk for 2 minutes and the distance in feet is recorded. Also, each subject participates
in a motor task, where participants are asked to act according to presented visual cues, such as
tapping their fingers, squeezing their toes, or moving their tongue. During the task, the brain
of each subject is scanned and the neural activities are recorded at 284 equispaced time points.
After preprocessing, the average BOLD (blood-oxygen-level dependent) signals at 68 different brain
regions are obtained. The details of experiment and data acquisition can be found in the reference
manual of WU-Minn HCP 900 Subjects Data Release that is available on the website of human
connectome project.

Our study focuses onm = 6 regions that are related to primary motor cortex, including precentral
gyrus, Broca’s area, etc. At each design time point t, the functional connectivity of the ith subject
is represented by the covariance matrix Si(t) of BOLD signals from regions of interest (ROI). To
practically compute Si(t), let Vit be an m-dimensional column vector that represents the BOLD
signals at time t from them ROIs of the ith subject. We then adopt a local sliding window approach
(Park et al., 2017) to compute Si(t) by

Si(t) =
1

2h + 1

t+h

∑
j=t−h

(Vij − V̄it)(Vij − V̄it)
T with V̄it =

1
2h + 1

t+h

∑
j=t−h

Vij ,

where h is a positive integer that represents the length of the sliding window to compute Si(t) for
t = h + 1, h, . . . ,284 − h. Without loss of generality, we reparameterize each Si(⋅) from the domain
[h+1,284−h] to [1,284−2h]. In practice, the window length h is required to be sufficiently large to
make St nonsingular, but not too large in order to avoid significant bias. We found that the analysis
below is not sensitive to the choice of h as long as it is in a reasonable range, e.g., h ∈ [m,3m].
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Thus, we simply set h = 2m throughout our study.
The functional predictors are then the functions Si(⋅) whose values are covariance matrices, or

SPDs, and hence is regarded as a curve on Sym+
⋆(m). The heat maps of the first two iRFPCs along

8 time points are depicted in the top two rows of Figure 2, which shows the modes of variation in
the functional connectivity with contrasts between early and middle/later times in both iRFPCs.
The scalar response is the distance that subjects walked in two minutes. A scatterplot of the
first two principal component scores labeled by the response variable for 10 randomly selected
subjects is given in Figure 3 respectively for iRFPCA and RFPCA, to visualize the difference of
scores produced by these methods. Gender, age, gait speed and strength are included as baseline
covariates, selected by the forward-stepwise selection method (Section 3.3, Hastie, Tibshirani and
Friedman 2009). Among these covariates, gender and age are in accordance with the common sense
about endurance, while gait speed and muscle strength could be influential since endurance is
measured by the distance walked in two minutes. Our primary interest is to assess the significance
of the functional predictor when effect of the baseline covariates is controlled.

To fit the intrinsic functional linear model, we adopt the cross-validation procedure to select the
number of components to be included in representing the Riemannian functional predictor and the
Riemannian slope function β. For assessment, we conduct 100 runs of 10-fold cross-validation, where
in each run we permute the data independently. In each run, the model is fitted on 90% data and
the MSE for predicting the walking distance is computed on the other 10% data for both iRFLR
and RFLR methods. The fitted intrinsic Riemannian slope function Logµ̂β̂ displayed in the bottom
panel of Figure 2 shows the pattern of weight changes. The MSE for iRFLR is reduced by around
9.7%, compared to that for RFLR. Moreover, the R2 for iRFLR is 0.338, with a p-value 0.012 based
on a permutation test of 1000 permutations, which is significant at level 5%. In contrast, the R2

for RFLR drops to 0.296 and the p-value is 0.317 that does not spell significance at all.
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Figure 2. The φ̂1, φ̂2 and Logµ̂β̂ at time points t = 1 + 24k, k = 1, . . . ,8.
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APPENDIX A: BACKGROUND ON RIEMANNIAN MANIFOLD

We introduce geometric concepts related to Riemannian manifolds from an intrinsic perspective
without referring to any ambient space.

A smooth manifold is a differentiable manifold with all transition maps being C∞ differentiable.
For each point p on the manifold M, there is a linear space TpM of tangent vectors which are
derivations. A derivation is a linear map that sends a differentiable function on M into R and
satisfies the Leibniz property. For example, if Dv is the derivation associate with the tangent
vector v at p, then Dv(fg) = (Dvf) ⋅ g(p) + f(p) ⋅ Dv(g) for any f, g ∈ A(M), where A(M) is
a collection of real-valued differentiable functions on M. For submanifolds of a Euclidean space
Rd0 for some d0 > 0, tangent vectors are often perceived as vectors in Rd0 that are tangent to the
submanifold surface. If one interprets a Euclidean tangent vector as a directional derivative along
the vector direction, then Euclidean tangent vectors coincide with our definition of tangent vectors
on a general manifold. The linear space TpM is called the tangent space at p. The disjoint union of
tangent spaces at each point constitutes the tangent bundle, which is also equipped with a smooth
manifold structure induced byM. The tangent bundle ofM is conventionally denoted by TM. A
(smooth) vector field V is a map fromM to TM such that V (p) ∈ TpM for each p ∈M. It is also
called a smooth section of TM. Noting that a tangent vector is a tensor of type (0,1), a vector field
can be viewed as a kind of tensor field, which assigns a tensor to each point onM. A vector field
along a curve γ ∶ I →M onM is a map V from an interval I ⊂ R to TM such that V (t) ∈ Tγ(t)M.
For a smooth function from a manifoldM and to another manifold N , the differential dϕp of f at
p ∈M is a linear map from TpM to Tϕ(p)N , such that dϕp(v)(f) = Dv(f ○ ϕ) for all f ∈ A(M)

and v ∈ TpM.
An affine connection ∇ on M is a bilinear mapping that sends a pair of smooth vector fields

(U,V ) to another smooth vector field ∇UV and satisfies ∇fUV = f∇UV and the Leibniz rule in
the second argument, i.e., ∇U(fV ) = df(U)V + f∇UV for smooth real-valued functions f on M.
An interesting fact is that (∇UV )(p) is determined by U(p) and a neighborhood of V (p). A vector
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field V is parallel if ∇UV = 0 for all vector fields U . When a connection is interpreted as the
covariant derivative of a vector field with respect to another one, a parallel vector field is intuitively
a constant vector field in some sense, as vanishing derivative indicates constant. Similarly, a vector
field U along a curve γ is parallel if ∇γ̇(t)U = 0 for all t ∈ I, where γ̇(t) denotes the differential of
γ at t. Given a tangent vector u at γ(0), there exists a unique vector field U along γ such that
∇γ̇(t)U = 0 and U(γ(0)) = u. In this case, U(γ(t)) is the parallel transport of u along γ from γ(0)
to γ(t). In particular, if ∇γ̇ γ̇ = 0, then γ is called a geodesic of the connection ∇. Also, for any
u ∈ Tγ(0)M, there exists a unique geodesic γ such that ∇γ̇ γ̇ = 0 and γ̇(0) = u. Then the exponential
map at p = γ(0), denoted by Expp, is defined by Expp(u) = γ(1).

A Riemannian manifold is a smooth manifold with a metric tensor ⟨⋅, ⋅⟩, such that for each
p ∈M, the tensor ⟨⋅, ⋅⟩p defines an inner product on TpM × TpM. For Riemannian manifold, the
fundamental theorem of Riemannian geometry says that there is a unique connection that is 1)
compatible with the metric tensor, i.e, for every pair of vector fields U and V , and every vector
v ∈ TpM, v(⟨U,V ⟩) = ⟨∇vU,V ⟩ + ⟨U,∇vV ⟩; 2) torsion-free, i.e., for any vector fields U and V ,
∇UV − ∇V U = [U,V ], where [U,V ] denotes the Lie bracket of a pair of vector fields (U,V ), and
is defined by [U,V ](f) = U(V (f)) − V (U(f)) for all f ∈ A(M) (by definition, [U,V ] is also a
vector field). This connection is called Levi-Civita connection, which is uniquely determined by
the Riemannian metric tensor. The Riemannian curvature tensor R is a map that sends a triple of
smooth vector fields (U,V,W ) to another vector field R(U,V )W = ∇U∇VW −∇V∇UW −∇[U,V ]W .
Then the sectional curvature is defined for a 2-plane spanned by two linearly independent tangent
vector at the same point p, given by

K(u, v) =
⟨R(u, v)v, u⟩p

⟨u,u⟩p⟨v, v⟩p − ⟨u, v⟩2
p

∈ R.

The metric tensor also induces a distance function dM onM that turns a connected Riemannian
manifoldM into a metric space. The function dM is defined in the following way. For a continuously
differentiable curve γ ∶ [a, b] → M, the length of γ is given by L(γ) = ∫

b
a

√
⟨γ̇(t), γ̇(t)⟩dt. Then

dM(p, q) is the infimum of L(γ) over all continuously differentiable curves joining p and q. For
a connected and complete Riemannian, given two points on the manifold, there is a minimizing
geodesic connecting these two points.

APPENDIX B: PROOFS OF MAIN THEOREMS

Proof of Theorem 1. We first show that T (µ) is a Hilbert space. It is sufficient to prove
that the inner product space T (µ) is complete. Suppose {Vn} is a Cauchy sequence in T (µ). We
will later show that there exists a subsequence {Vnk} such that

(14)
∞

∑
k=1

∣Vnk+1(t) − Vnk(t)∣ <∞, υ-a.s.

Since Tµ(t)M is complete, the limit V (t) = limk→∞ Vnk(t) is υ-a.s. well defined and in Tµ(t)M. Fix
any ε > 0 and choose N such that n,m ≥M implies ∥Vn − Vm∥µ ≤ ε. Fatou’s lemma applying to the
function ∣V (t)−Vm(t)∣ implies that if m ≥ N , then ∥V −Vm∥2

µ ≤ lim inf
k→∞

∥Vnk −Vm∥2
µ ≤ ε

2. This shows
that V −Vm ∈ T (µ). Since V = (V −Vm)+Vm, we see that V ∈ T (µ). The arbitrariness of ε implies
that limm→∞ ∥V −Vm∥µ = 0. Because ∥V −Vn∥µ ≤ ∥V −Vm∥µ + ∥Vm −Vn∥µ ≤ 2ε, we conclude that Vn
converges to V in T (µ).



IRFDA 23

It remains to show (14). To do so, we choose {nk} so that ∥Vnk − Vnk+1∥µ ≤ 2−k. This is possible
since Vn is a Cauchy sequence. Let U ∈ T (µ). By Cauchy-Schwarz inequality, ∫T ∣U(t)∣ ⋅ ∣Vnk(t) −
Vnk+1(t)∣dυ(t) ≤ ∥U∥µ∥Vnk −Vnk+1∥µ ≤ 2−k∥U∥µ. Thus, ∑k ∫T ∣U(t)∣ ⋅ ∣Vnk(t)−Vnk+1(t)∣dυ(t) ≤ ∥U∥µ <

∞. Then (14) follows, because otherwise, if the series diverges on a set A with υ(A) > 0, then a
choice of U such that ∣U(t)∣ > 0 for t ∈ A contradicts the above inequality.

Now let E be a measurable orthonormal frame. For every element U ∈ T (µ), the coordinate
representation of U with respect to E is denoted by UE. One can see that UE is an element
in the Hilbert space L2(T ,Rd) of square integrable Rd-valued measurable functions with norm
∥f∥L2 = {∫T ∣f(t)∣2dυ(t)}1/2 for f ∈ L2(T ,Rd). If we define the map Υ ∶ T (µ) → L2(T ,Rd) by
Υ(U) = UE, we can immediately see that Υ is a linear map. It is also surjective, because for any
f ∈ L2(T ,Rd), the vector field U along µ given by Uf(t) = f(t)E(µ(t)) for t ∈ T is an element in
T (µ), since ∥Uf∥µ = ∥f∥L2 . It can be also verified that Υ preserves the inner product. Therefore,
it is a Hilbertian isomorphism. Since L2(T ,Rd) is separable, the isomorphism between L2(T ,Rd)
and T (µ) implies that T (µ) is also separable.

Proof of Proposition 2. The regularity conditions on f , h and γ ensure that Γ and Φ are
measurable. Part 1, 2 and 6 can be deduced from the fact that Pf,h is a unitary operator between
two finite-dimensional real Hilbert spaces and its inverse is Ph,f . To reduce notational burden, we
shall suppress the subscripts f, h from Γf,h and Φf,h below. For Part 3,

(ΦA)(ΓU) = Γ(AΓ∗ΓU)) = Γ(AU).

To prove Part 4, assume V ∈ T (g). Then, noting that Γ(Γ∗V ) = V and Γ∗(ΓU) = U , we have

(ΦA)((ΦA−1
)V ) = (ΦA)(Γ(A

−1Γ∗V )) = Γ(AΓ∗(Γ(A
−1Γ∗V ))) = Γ(AA

−1Γ∗V ) = Γ(Γ∗V ) = V,

and

(ΦA−1
)(ΦAV ) = (ΦA−1

)(Γ(AΓ∗V )) = Γ(A
−1Γ∗(Γ(AΓ∗V ))) = Γ(A

−1
AΓ∗V ) = Γ(Γ∗V ) = V.

Part 5 is seen by the following calculation: for V ∈ T (g),

(Φf,g∑ ckϕk ⊗ ϕk)V = Γ(∑ ck⟪ϕk,Γ∗V ⟫fϕk) =∑ ck⟪φk,Γ∗V ⟫fΓϕk
=∑ ck⟪Γϕk, V ⟫gΓϕk = (∑ ckΓϕk ⊗ Γϕk)V.

Proof of Proposition 4. The case κ ≥ 0 is already given by Dai and Müller (2017) with
C = 1. Suppose κ < 0. The second statement follows from the first one if we let O = µ(t), P =X(t)
and Q =XK(t) for any fixed t and note that C is independent of t.

For the first statement, the inequality is clearly true if P = O, Q = O or P = Q. Now suppose
O, P and Q are distinct points onM. The minimizing geodesic curves between these points form
a geodesic triangle on M. By Toponogov’s theorem (the hinge version), dM(P,Q) ≤ dMκ(P

′,Q′),
where Mκ is the model space with constant sectional curvature κ. For κ < 0, it is taken as the
hyperboloid with curvature κ. Let a = dM(O,P ), b = dM(O,Q) and c = dM(P,Q). The interior
angle of geodesics connecting O to P and O to Q is denoted by γ. Denote δ =

√
−κ, the law of

cosine on Mκ gives

cosh(δc) ={cosh(δa) cosh(δb) − sinh(δa) sinh(δb)} + {sinh(δa) sinh(δb)(1 − cosγ)} ≡ I1 + I2.
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By definition that cosh(x) = (ex + e−x)/2 and sinh(x) = (ex − e−x)/2, I1 = (eδa−δb + eδb−δa)/2. By
Taylor expansion ex = ∑xk/k!, we have

(15) I1 =
∞

∑
k=0

(δa − δb)2k

(2k)!
≤ eδ

2(a−b)2
≤ eδ

2h2
,

where h = ∣LogOP −LogOQ∣ with ∣ ⋅ ∣ denotes the norm of tangent vectors. The last inequality is due
to the fact that a = ∣LogOP ∣, b = ∣LogOQ∣.

For the second term I2, we first have sinh(δa) sinh(δb) ≤ δ2abeδ
2a2+δ2b2 . Also, the Euclidean law

of cosine implies that h2 = a2 + b2 − 2ab cosγ and 2ab(1 − cosγ) = h2 − (a − b)2 ≤ h2. Therefore,

I2 ≤ δ
2h2eδ

2a2+δ2b2
/2 ≤ δ2h2eδ

2h2+2δ2ab cosγ
/2 ≤ δ2h2eδ

2h2
e2D2δ2

/2,

where D is the diameter of K. Combining with (15),

I1 + I2 ≤ e
δ2h2

+ δ2h2eδ
2h2
e2D2δ2

/2 ≤ eδ
2h2

(1 +Aδ2h2
)/2 ≤ eδ

2h2+Aδ2h2
= e(1+A)δ2h2

= eBh
2
,

where A = e2D2δ2 and B = (1 +A)δ2 constants uniform for t. Therefore

δc = cosh−1
(I1 + I2) = log(I1 + I2 +

√
(I1 + I2)2 − 1) ≤ log(eBh

2
+

√

e2Bh2
− 1).

It can be shown that
√
e2Bx − 1 ≤ eBx

√
2Bx. Thus,

δc ≤ log(eBh
2
(1 +

√
2Bh)) ≤ log(eBh

2+
√

2Bh
) ≤ Bh2

+
√

2Bh ≤ 2BDh +
√

2Bh =
√
Cδh,

where C = {(2BD +
√

2B)/δ}2, or in other words, dM(P,Q) ≤
√
C ∣LogOP − LogOQ∣.

Proof of Proposition 5. Part 1 follows from a simple calculation. To lighten notations, let
fTE denote fT (⋅)E(µ(⋅)) for a Rd valued function defined on T . Suppose φE,k is the coordinate of
φk under E. Because

(CEφE,k)
TE = E⟨ZE, φE,k⟩ZEE = E⟪LogµX,φk⟫µLogµX = λkφk = λkφ

T
E,kE,

one concludes that CEφE,k = λkφE,k and hence φE,k is an eigenfunction of CE corresponding to the
eigenvalue λk. Other results in Part 2 and 3 have been derived in Section 3. The continuity of X
and E, in conjunction with E∥LogµX∥2

µ <∞, implies that ZE is a mean square continuous random
process and the joint measurability of X passes to ZE. Then ZE can be regarded a random element
of the Hilbert space L2(T ,B(T ), υ) that is isomorphic to T (µ). Also, the isomorphism maps ZE
to X for each ω in the sample space. Then, Part 4 follows from Theorem 7.4.3 of Hsing and Eubank
(2015).

Proof of Theorem 6. The strong consistency stated in Part 2 is an immediate consequence
of Lemma 12. For Part 1, to prove continuity of µ, fix t ∈ T . Let K ⊃ U be compact. By B.3,
c ∶= supp∈K sups∈T Ed2

M(µ(t),X(s)) <∞. Thus,

∣F (µ(t), s) − F (µ(s), s)∣ ≤ ∣F (µ(t), t) − F (µ(s), s)∣ + ∣F (µ(t), s) − F (µ(t), t)∣

≤ sup
p∈K

∣F (p, t) − F (p, s)∣ + 2cEdM(X(s),X(t)) ≤ 4cEdM(X(s),X(t)).
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The continuity assumption of sample paths implies EdM(X(s),X(t)) → 0 as s → t. Then by
condition B.5, dM(µ(t), µ(s)) → 0 as s → t, and the the continuity of µ follows. The uniform
continuity follows from the compactness of T . Given Lemma 11 and 12, the a.s. continuity of µ̂ can
be derived in a similar way. The first statement of Part 4 is a corollary of Part 3, while the second
statement follows from the first one and the compactness of T . It remains to show Part 3 in order
to conclude the proof, as follows.

Let Vt,i(p) = LogpXi(t) and γt,p be the minimizing geodesic from µ(t) to p ∈M at unit time.
The first-order Taylor series expansion at µ(t) yields

Pµ̂(t),µ(t)

n

∑
i=1
Vt,i(µ̂(t)) =

n

∑
i=1
Vt,i(µ(t)) +

n

∑
i=1

∇γ′
t,µ̂(t)(0)

Vt,i(µ(t)) +∆t(µ̂(t))γ
′
t,µ̂(t)(0)

=
n

∑
i=1
Vt,i(µ(t)) −

n

∑
i=1
Ht(µ(t))γ

′
t,µ̂(t)(0) +∆t(µ̂(t))γ

′
t,µ̂(t)(0),(16)

where an expression for ∆t is provided in the proof of Lemma 10.
Since ∑ni=1 Vt,i(µ̂(t)) = ∑

n
i=1 Logµ̂(t)Xi(t) = 0, we deduce from (16) that

(17) 1
n

n

∑
i=1

Logµ(t)Xi − (
1
n

n

∑
i=1
Ht,i(µ(t)) −

1
n

∆t(µ̂(t)))Logµ(t)µ̂(t) = 0.

By LLN, 1
n ∑

n
i=1Ht,i(µ(t)) → EHt(µ(t)) in probability, while EHt(µ(t)) is invertible for all t by

condition B.6. In light of Lemma 10, this result suggests that with probability tending to one, for
all t ∈ T , 1

n ∑
n
i=1Ht,i(µ(t)) −

1
n∆t(µ̂(t)) is invertible, and also

(
1
n

n

∑
i=1
Ht,i(µ(t)) −

1
n

∆t(µ̂(t)))

−1
= {EHt(µ(t))}

−1
+ oP (1),

and according to (17),

Logµ(t)µ̂(t) = {EHt(µ(t))}
−1

(
1
n

n

∑
i=1

Logµ(t)Xi(t)) + oP (1),

where the oP (1) terms do not depend on t. Given this, we can now conclude the proof of Part 3
by applying a central limit theorem in Hilbert spaces (Aldous, 1976) to establish that the process

1√
n ∑

n
i=1{EHt(µ(t))}

−1Logµ(t)Xi(t) converges to a Gaussian measure on tensor Hilbert space T (µ)

with covariance operator C(⋅) = E(⟪V, ⋅⟫µV ) for a random element V (t) = {EHt(µ(t))}
−1Logµ(t)X(t)

in the tensor Hilbert space T (µ).

Proof of Theorem 7. Note that

ΦĈ − C =n−1
∑(ΓLogµ̂Xi)⊗ (ΓLogµ̂Xi) − C

=n−1
∑(LogµXi)⊗ (LogµXi) − C

+ n−1
∑(ΓLogµ̂Xi − LogµXi)⊗ (LogµXi)

+ n−1
∑(LogµXi)⊗ (ΓLogµ̂Xi − LogµXi)

+ n−1
∑(ΓLogµ̂Xi − LogµXi)⊗ (ΓLogµ̂Xi − LogµXi)

≡A1 +A2 +A3 +A4.
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For A2, it is seen that

∣∣∣A2∣∣∣
2
HS ≤ const. 1

n2

n

∑
i=1

n

∑
j=1

(∥LogµXi∥
2
µ+∥LogµXj∥

2
µ)(∥ΓLogµ̂Xi−LogµXi∥

2
µ+∥ΓLogµ̂Xj −LogµXj∥

2
µ).

With smoothness of d2
M, continuity of µ and compactness of T , one can show that supt∈T ∥Ht(µ(t))∥ <

∞. By the uniform consistency of µ̂, with the same Taylor series expansion in (16) and the technique
in the proof of Lemma 10, it can be established that n−1

∑
n
i=1 ∥ΓLogµ̂Xi − LogµXi∥

2
µ∥LogµXi∥

2
µ ≤

const.(1+oP (1)) supt∈T d2
M(µ̂(t), µ(t)). Also note that by LLN, n−1

∑
n
j=1 ∥LogµXj∥

2
µ = OP (1). Then,

with Part 4 of Theorem 6,

∣∣∣A2∣∣∣
2
HS ≤ const.{4 + oP (1) +OP (1)} sup

t∈T
d2
M(µ̂(t), µ(t)) = OP (1/n).

Similar calculation shows that ∣∣∣A3∣∣∣
2
HS = OP (1/n) and ∣∣∣A4∣∣∣

2
HS = OP (1/n2). Now, by Dauxois,

Pousse and Romain (1982), ∥n−1
∑(LogµXi) ⊗ (LogµXi) − C∥

2
HS = OP (1/n). Thus, ∥ΦĈ − C∥2

HS =

OP (1/n). According to Part 1 & 5 of Proposition 2, λ̂k are also eigenvalues of ΦĈ. The results for λ̂k
and (J, δj) follow from Bosq (2000). Those for (Ĵ , δ̂j) are due to supk≥1 ∣λ̂k −λk∣ ≤ ∣∣∣Ĉ ⊖Φ C∣∣∣HS .

Proof of Theorem 8. In this proof, both oP (⋅) and OP (⋅) are understood to be uniform for
the class F . Let β̌ = Expµ∑Kk=1 b̂kΓφ̂k. Then

d2
M(β̂, β) ≤ 2d2

M(β̂, β̌) + 2d2
M(β̌, β).

The first term is of order Op(1/n) uniform for the class F , according to a technique similar to the
one in the proof of Lemma 10, as well as Theorem 6 (note that the results in Theorem 6 are uniform
for the class F). Then the convergence rate is established if one can show that

d2
M(β̌, β) = OP (n

−
2%−1

2%+2α) ,

which follows from

∥
K

∑
k=1

b̂kΓφ̂k −
∞

∑
k=1

bkφk∥
2
µ = OP (n

−
2%−1

2%+2α)(18)

and Proposition 4. It remains to show (18).
We first observe that because bk ≤ Ck−β,

∥
K

∑
k=1

b̂kΓφ̂k −
∞

∑
k=1

bkφk∥
2
µ ≤ 2∥

K

∑
k=1

b̂kΓφ̂k −
K

∑
k=1

bkφk∥
2
µ +O(K−2%+1

).(19)

Define

A1 =
K

∑
k=1

(b̂k − bk)φk, A2 =
K

∑
k=1

bk(Γφ̂k − φk), A3 =
K

∑
k=1

(b̂k − bk)(Γφ̂k − φk).

Then

∥
K

∑
k=1

b̂kΓφ̂k −
K

∑
k=1

bkφk∥
2
µ ≤ 2∥A1∥

2
µ + 2∥A2∥

2
µ + 2∥A3∥

2
µ.
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It is clear that the term A3 is asymptotically dominated by A1 and A2. Note that the compactness
of X in condition C.2 implies E∥LogµX∥4

µ <∞. Then, by Theorem 7, for A2, we have the bound

∥A2∥
2
µ ≤ 2

K

∑
k=1

b2k∥Γφ̂k − φk∥2
µ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

OP ( 1
nK

−2%+2α+3) if α > % − 3/2,
OP ( 1

n logK) if α = % − 3/2,
OP ( 1

n
) if α<%-3/2.

It is easy to verify that, because K ≍ n1/(2α+2%), ∥A2∥
2
µ is asymptotically dominated by K−2%+1.

Thus,
∥A2∥

2
µ = OP (n

−
2%−1

2%+2α) .

Now we focus on the term A1. Note that âk = ⟪χ̂, φ̂k⟫µ̂ = ⟪Γχ̂,Γφ̂k⟫µ. Then

∥A1∥
2
µ =

K

∑
k=1

(b̂k − bk)
2
=

K

∑
k=1

(λ̂−1
k ⟪Γχ̂,Γφ̂k⟫µ − bk)

2
.

With Theorem 6 and CLT, it can be shown that ⟪Γχ̂,Γφ̂k⟫µ = λkbk + OP (
√

1/n) . Note that
supk ∣λ̂k − λk∣2 = OP (1/n) which implies that λ̂k > λk −OP (1/n) uniformly for all k. In conjunction
with the choice of K ≍ n1/(2α+2%), one can conclude that

∥A1∥
2
µ =

K

∑
k=1

(
λk − λ̂k

λ̂k
bk)

2

+OP (
1
n
)
K

∑
k=1

λ̂−2
k ≤ OP (

1
n
)
K

∑
k=1

λ−2
k b

2
k +OP (

1
n
)
K

∑
k=1

λ−2
k

= OP (
1
n
)
K

∑
k=1

λ−2
k = OP (

K2α+1

n
) = OP (n

−
2%−1

2%+2α) .

Thus,

∥
K

∑
k=1

b̂kΓφ̂k −
K

∑
k=1

bkφk∥
2
µ = OP (n

−
2%−1

2%+2α) .

Finally, (18) follows from the above equation, the equation (19) and K−2%+1 = O (n
−

2%−1
2%+2α).

Proof of Theorem 9. In this proof, both oP (⋅) and OP (⋅) are understood to be uniform for
the class G. First, d2

M(β̂, β) ≤ 2d2
M(β̂,ExpµΓ(Ĉ+χ̂)) + 2d2

M(ExpµΓ(Ĉ+χ̂), β). The first term is of
order Op(1/n) uniform for the class G, according to a technique similar to the one in the proof of
Lemma 10, as well as Theorem 6 (note that the results in Theorem 6 are uniform for the class G).
For the second term, using Proposition 2, one can show that ΦĈ+ = (ΦĈ + ρΦIµ̂)−1 = (ΦĈ + ρIµ)−1,
where Iµ̂ and Iµ denote the identity operators on T (µ̂) and T (µ), respectively. It remains to show
d2
M(ExpµΓ(Ĉ+χ̂), β) = OP (n

−(2%−α)/(2%+α)).
Define C+ρ = (C + ρIµ)

−1, χn = n−1
∑
n
i=1(Yi − Ȳ )LogµXi, and

An1 = C
+
ρχn + C

+
ρ (χ̂ − χn) ≡ An11 +An12,

An2 = (ΦĈ+ − C+ρ )χn + (ΦĈ+ − C+ρ )(χ̂n − χn) ≡ An21 +An22.
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It is easy to see that the dominant term is An11 and An21 for An1 and An2, respectively. With ρ =
n−α/(2β+α), it has been shown in Hall and Horowitz (2007) that E∥An1−Logµβ∥2

µ = O(n−(2%−1)/(2%+α)).
Denote ∆ = ΦĈ − C+ρ . Then

An21 = (ΦĈ+ − C+ρ )χn = −(Iµ + C+ρ∆)
−1
C
+
ρ∆C+ρχn

= −(Iµ + C
+
ρ∆)

−1
C
+
ρ∆Logµβ − (Iµ + C

+
n∆)

−1
C
+
ρ∆(C

+
ρχn − Logµβ)

≡ An211 +An212.

By Theorem 7, ∣∣∣∆∣∣∣µ = OP (1/n). Also, one can see that ∣∣∣(Iµ + C
+
ρ∆)−1∣∣∣

µ
= OP (1), with the as-

sumption that ρ−1/n = o(1). Also, ∣∣∣(Iµ + C+ρ∆)−1C+ρ∆∣∣∣
op
= OP (ρ

−2/n). Using the similar technique
in Hall and Horowitz (2005), we can show that ∥C+ρχn − Logµβ∥2

µ = OP (n
−(2%−1)/(2%+α)), and hence

conclude that ∥An212∥
2
µ = OP (n

−(2%−1)/(2%+α)). For An211,

∥An211∥
2
µ = ∥(Iµ + C

+
n∆)

−1
C
+
n∆Logµβ∥2

µ ≤ ∣∣∣(Iµ + C
+
n∆)

−1∣∣∣
2
op
∣∣∣C

+
n∆∣∣∣

2
op∥Logµβ∥2

µ = OP (n
−(2%−α)/(2%+α)

).

Combining all results above, we deduce that ∥Γ(Ĉ+χ̂) − Logµβ∥2
µ = OP (n

−(2%−α)/(2%+α)) and thus

d2
M(ExpµΓ(Ĉ

+χ̂), β) = OP (n
−(2%−α)/(2%+α)

),

according to condition C.2 and Proposition 4.

APPENDIX C: ANCILLARY LEMMAS

Lemma 10. supt∈T n−1∥∆t(µ̂(t))∥ = oP (1), where ∆t is as in (16).

Proof. With the continuity of µ and compactness of T , the existence of local smooth orthnormal
frames (e.g., Proposition 11.17 of Lee (2002)) suggests that we can find a finite open cover T1, . . . ,Tm
for T such that there exists a smooth orthonormal frame bj,1, . . . , bj,d for the jth piece {µ(t) ∶ t ∈
cl(Tj)} of µ, where cl(A) denotes topological closure of a set A. For fixed t ∈ Tj , by mean value
theorem, it can be shown that

(20) ∆t(µ̂(t))U =
d

∑
r=1

n

∑
i=1

(P
γt,µ̂(t)(θ

r,j
t ),µ(t)

∇UW
r,j
t,i (γt,µ̂(t)(θ

r,j
t )) −∇UW

r,j
t,i (µ(t)))

for θr,jt ∈ [0,1] and W r,j
t,i = ⟨Vt,i, e

r,j
t ⟩er,jt , where e1,j

t , . . . , ed,jt is the orthonormal frame extended by
parallel transport of bj,1(µ(t)), . . . , bj,d(µ(t)) along minimizing geodesic.

Take ε = εn ↓ 0 as n → ∞. For each j, by the same argument of Lemma 3 of Kendall and Le
(2011), together with continuity of µ and the continuity of the frame bj,1, . . . , bj,d, we can choose a
continuous positive ρjt such that, µ̂(t) ∈ B(µ(t), ρjt) and for p ∈ B(µ(t), ρjt) where B(q, ρ) denotes
the ball onM centered at q with radius ρ,

∥Pp,µ(t)∇W
r,j
t,i (p) −∇W

r,j
t,i (µ(t))∥ ≤ (1 + 2ερjt) sup

q∈B(µ(t),ρjt)

∥Pq,µ(t)∇Vt,i(q) −∇Vt,i(µ(t))∥

+ 2ε(∥Vt,i(µ(t))∥ + ρjt∥∇Vt,i(µ(t))∥).



IRFDA 29

In the above, p plays a role of γt,µ̂(t)(θ
r,j
t ) in (20). Let ρj = max{ρt ∶ t ∈ cl(Tj)} and ρmax = maxj ρj .

We then have

sup
t∈T

∥∆t(µ̂(t))∥ ≤ max
j

sup
t∈Tj

∥∆t(µ̂(t))∥

=
n

∑
i=1

max
j

sup
t∈Tj

∥P
γt,µ̂(t)(θ

r,j
t ),µ(t)

∇UW
t,j
r,i (γt,µ̂(t)(θ

r,j
t )) −∇UW

t,j
r,i (µ(t))∥

≤ (1 + 2ερmax)m
n

∑
i=1

sup
t∈T

sup
q∈B(µ(t),ρmax)

∥Pq,µ(t)∇Vt,i(q) −∇Vt,i(µ(t))∥(21)

+ 2ε
n

∑
i=1

sup
t∈T

∥Vt,i(µ(t))∥ + 2ερmax
n

∑
i=1

sup
t∈T

∥∇Vt,i(µ(t))∥.(22)

For (21), the Lipschitz condition of B.7 and smoothness of dM imply that

lim
ρ↓0

E sup
q∈B(µ(t),ρ)

∥Pq,µ(t)∇Vt,i(q) −∇Vt,i(µ(t))∥ = lim
ρ↓0

E sup
q∈B(µ(t),ρ)

∥Pq,µ(t)Ht(q) −Ht(µ(t))∥ = 0.

As supt∈T dM(µ̂(t), µ(t)) = oa.s.(1), ρmax could be chosen so that ρmax ↓ 0 as n → ∞. Thus, with
probability tending to one, by Markov inequality, we deduce that

(23) (1 + 2ερmax)m
1
n

n

∑
i=1

sup
t∈Tt

sup
q∈B(µ(t),ρmax)

∥Pq,µ(t)∇Vt,i(q) −∇Vt,i(µ(t))∥ = oP (1).

For the first term in (22), LLN shows that

1
n

n

∑
i=1

sup
t∈T

∥Vt,i(µ(t))∥
P
→ E sup

t∈T
∥Vt,i(µ(t))∥ = E sup

t∈T
dM(X(t), µ(t)) <∞,

or

(24) 1
n

n

∑
i=1

sup
t∈T

∥Vt,i(µ(t))∥ = OP (1).

For the second term in (22), the compactness of T , the Lipschitz condition of B.7 and smoothness
of dM also imply that E supt∈T ∥∇Vt,i(µ(t))∥ = E supt∈T ∥Ht(µ(t))∥ <∞. Consequently, by LLN,

(25) 1
n

n

∑
i=1

sup
t∈T

∥∇Vt,i(µ(t))∥ = OP (1).

Combining (23), (24) and (25), with ε = εn ↓ 0, one concludes that supt∈T n−1∥∆t(p)∥ = oP (1).

Lemma 11. Suppose conditions A.1 and B.1-B.3 hold. For any compact subset K ⊂M, one has

sup
p∈K

sup
t∈T

∣Fn(p, t) − F (p, t)∣ = oa.s.(1).

Proof. By applying the uniform SLLN to n−1
∑
n
i=1 dM(Xi(t), p0), for a given p0 ∈ K,

sup
p∈K

sup
t∈T

1
n

n

∑
i=1
dM(Xi(t), p) ≤ sup

t∈T

1
n

n

∑
i=1
dM(Xi(t), p0) + sup

p∈K
dM(p0, p)

≤ sup
t∈T

EdM(X(t), p0) + diam(K) + oa.s.(1).
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Therefore, there exists a set Ω1 ⊂ Ω such that Pr(Ω1) = 1, N1(ω) <∞ and for all n ≥ N1(ω),

sup
p∈K

sup
t∈T

1
n

n

∑
i=1
dM(Xi(t), p) ≤ sup

t∈T
EdM(X(t), p0) + diam(K) + 1 ∶= c1 <∞,

since supt∈T EdM(X(t), p0) <∞ by condition B.3. Fix ε > 0. By the inequality ∣d2
M(x, p)−d2

M(x, q)∣ ≤
{dM(x, p) + dM(x, q)}dM(p, q), for all n ≥ N1(ω) and ω ∈ Ω1,

sup
p,q∈K∶dM(p,q)<δ1

sup
t∈T

∣Fn,ω(p, t) − Fn,ω(q, t)∣ ≤ 2c1δ1 = ε/3

with δ1 ∶= ε/(6c1). Now, let δ2 > 0 be chosen such that supt∈T ∣F (p, t) − F (q, t)∣ < ε/3 if p, q ∈ K and
dM(p, q) < δ2. Suppose {p1, . . . , pr} ⊂ K is a δ-net in K with δ ∶= min{δ1, δ2}. Applying uniform
SLLN again, there exists a set Ω2 such that Pr(Ω2) = 1, N2(ω) <∞ for all ω ∈ Ω2, and

max
j=1,...,r

sup
t∈T

∣Fn,ω(pj , t) − F (pj , t)∣ < ε/3

for all n ≥ N2(ω) with ω ∈ Ω2. Then, for all ω ∈ Ω1 ∩Ω2, for all n ≥ max{N1(ω),N2(ω)}, we have

sup
p∈K

sup
t∈T

∣Fn,ω(p, t) − F (p, t)∣

≤ sup
p∈K

sup
t∈T

∣Fn,ω(p) − Fn,ω(up)∣ + sup
p∈K

sup
t∈T

∣Fn,ω(up, t) − F (up, t)∣ + sup
p∈K

sup
t∈T

∣F (up, t) − F (p, t)∣

< ε/3 + ε/3 + ε/3 = ε,

and this concludes the proof.

Lemma 12. Assume conditions A.1 and B.1-B.5 hold. Given any ε > 0, there exists Ω′ ⊂ Ω such
that Pr(Ω′) = 1 and for all ω ∈ Ω′, N(ω) <∞ and for all n ≥ N(ω), supt∈T dM(µ̂ω(t), µ(t)) < ε.

Proof. Let c(t) = F (µ(t), t) = min{F (p, t) ∶ p ∈ M} and N (t) ∶= {p ∶ dM(p,µ(t)) ≥ ε}. It is
sufficient to show that there exists δ > 0 and N(ω) <∞ for all ω ∈ Ω′, such that for all n ≥ N(ω),

sup
t∈T

{Fn,ω(µ(t), t) − c(t)} ≤ δ/2 and inf
t∈T

{ inf
p∈N (t)

Fn,ω(p, t) − c(t)} ≥ δ.

This is because the above two inequalities suggest that for all t ∈ T , inf{Fn,ω(p, t) ∶ p ∈M} is not
attained at p with dM(p,µ(t)) ≥ ε, and hence supt∈T dM(µ̂ω(t), µ(t)) < ε.

Let U = {µ(t) ∶ t ∈ T }. We first show that there exists a compact set A ⊃ U and N1(ω) <∞ for
some Ω1 ⊂ Ω such that Pr(Ω1) = 1, and both F (p, t) and Fn,ω(p, t) are greater than c(t) + 1 for all
p ∈M/A , t ∈ T and n ≥ N1(ω). This is trivially true whenM is compact, by taking A =M. Now
assumeM is noncompact. By the inequality dM(x, q) ≥ ∣dM(q, y) − dM(y, x)∣, one has

Ed2
M(X(t), q) ≥ E{d2

M(q, µ(t)) + d2
M(X(t), µ(t)) − 2dM(q, µ(t))dM(X(t), µ(t))},

and by Cauchy-Schwarz inequality,

F (q, t) ≥ d2
M(q, µ(t)) + F (µ(t), t) − 2dM(q, µ(t)){F (µ(t), t)}1/2.

Similarly,

Fn,ω(q, t) ≥ d
2
M(q, µ(t)) + Fn,ω(µ(t), t) − 2dM(q, µ(t)){Fn,ω(µ(t), t)}

1/2.
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Now, we take q at a sufficiently large distance ∆ from U such that F (q, t) > c(t)+1 onM/A for all
t, where A ∶= {q ∶ dM(q,U) ≤ ∆} (Heine-Borel property yields compactness of A, since it is bounded
and closed). Since Fn,ω(µ(t), t) converges to F (µ(t), t) uniformly on T a.s. by Lemma 11, we can
find a set Ω1 ⊂ Ω such that Pr(Ω1) = 1 and N1(ω) <∞ for ω ∈ Ω1, and Fn,ω(q, t) > c(t)+ 1 onM/A

for all t and n ≥ N1(ω).
Finally, let Aε(t) ∶= {p ∈ A ∶ dM(p,µ(t)) ≥ ε} and cε(t) ∶= min{F (p, t) ∶ p ∈ Aε}. Then Aε(t) is

compact and by condition B.5, inft{cε(t) − c(t)} > 2δ > 0 for some constant δ. By Lemma 11, one
can find a set Ω2 ⊂ Ω with Pr(Ω2) = 1 and N2(ω) < ∞ for ω ∈ Ω2, such that for all n ≥ N2(ω), (i)
supt{Fn,ω(µ(t), t) − c(t)} ≤ δ/2 and (ii) inft infp∈Aε(t){Fn,ω(p, t) − c(t)} > δ. Since supt{Fn,ω(p, t) −
c(t)} > 1 onM/A for all n ≥ N1(ω) with ω ∈ Ω1, we conclude that inft{Fn,ω(p, t)−c(t)} > min{δ,1}
for all p ∈ Aε ∪ (M/A) if n ≥ max{N1(ω),N2(ω)} for ω ∈ Ω1 ∩Ω2. The proof is completed by noting
that Ω1 ∩Ω2 can serve the Ω′ we are looking for.
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