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Abstract

Leamer and Chamberlain (1976) showed that the ridge regression estimate is a

weighted sum of ordinary least squares estimates based on subsets of predictors. In

this paper, we define (a) the notion of “level of expression” of predictors in ridge

regression, and (b) the notion of a “spectrum” of the ridge regression estimate and

extend these notions to other linear shrinkage estimates.

1 Introduction

We consider estimation in the linear regression model

Yi = β0 + xT
i β + εi (i = 1, · · · , n) (1)

where β is a vector of p unknown parameters.

Ridge regression (Hoerl and Kennard, 1970) is often used in the case where the regression

design has a high degree of multicollinearity that inflates the variance of ordinary least

squares (OLS) estimation. The idea behind ridge regresson is to shrink OLS estimates

towards 0, which increases their absolute bias while simultaneously reducing their variance.

The shrinkage is controlled by a tuning parameter; the goal is to find a value of the tuning

parameter that minimizes or nearly minimizes the mean square error (MSE). See Hoerl

(2020) for an historical perspective on ridge regression.

Leamer and Chamberlain (1976) show that the ridge regression estimate can be expressed

as a weighted average of OLS estimates of all (2p) sub-models; the weights depend only on

the design matrix and can be manipulated in a number of ways to quantify the importance

of predictors as well as to define the weights for different model sizes. The key to all these

results comes from the work of Jacobi (1841) who showed that least squares estimates can

be expressed as a weighted average of so-called elemental estimates.
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The form of the ridge regression estimate allows us possible to think of it as a sort of

model or ensemble averaging method. Model averaging methods are often used in Bayesian

inference whereby several models each having unknown parameters are combined in a hier-

archical model with prior distributions on the parameters for each model as well as a prior

distribution on the models themselves; see George and McCulloch (1993) and Raftery et

al. (1997) for details. A related idea is ensemble averaging in machine learning whereby

predictions from several models are combined (usually via some sort of averaging) to form

a composite prediction, which hopefully will have superior statistical properties. Examples

include bagging (Breiman, 1996), stacking (Wolpert, 1992), and random forests (Breiman,

2001).

The paper is organized as follows: In sections 2 and 3, we show how the model averaging

result of Leamer and Chamberlain can be used to define probabilities of inclusion (“levels

of expression”) for the predictors as well as to give a decomposition of the “degrees of

freedom” for ridge regression estimate. This decomposition is extended to more general

linear estimates in section 4 and applications to twicing and boosting are considered in

section 5. Some additional miscellaneous topics are considered in section 6.

2 Ridge regression as model averaging

In ridge regression, the standard practice is to normalize the predictors to have mean 0 and

equal variances. The centering allows us to estimate the intercept parameter β0 in (1) by

ȳ, the average of y1, · · · , yn; thus by subtracting ȳ from y1, · · · , yn, we can remove β0 from

the model. In addition, we typically scale the predictors {xi : i = 1, · · · , n} are so that the

diagonal elements of the matrix X TX are all 1 where X is the n× p matrix whose i-th row

is xT
i . Thus X TX is the correlation matrix of the p predictors. (While this standardization

is useful in practice, the results given below do not depend on it.) If the rank of X is less

than p (for example, if p is larger than n) then X TX is not invertible.

The ridge regression estimate β̂(λ) is then defined as the minimizer of

n∑

i=1

(yi − xT
i β)

2 + λβTβ

where λ ≥ 0 is a tuning parameter that controls the shrinkage of the OLS estimates. In

matrix form, we have

β̂(λ) = (X TX + λI)−1X Ty (2)

where y = (y1 · · · yn)T . In the case where X TX is singular, we can consider the limit of β̂(λ)

as λ → 0 and the resulting estimate is the OLS estimate with minimum L2 norm; Hastie

et al. (2019) refer to this as “ridgeless” least squares regression. We can also allow λ to be

negative (provided that (X TX +λI)−1 exists) and we will briefly consider this non-standard

case later.
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Subsequently, it will be convenient to define β̂(λ) in terms of the augmented design

matrix

Xλ =


 X
λ1/2I


 ,

where β̂(λ) can be written as

β̂(λ) = (XT
λXλ)

−1XT
λ y

∗ = (X TX + λI)−1XT
λ y

∗

where y∗ = (y1 · · · yn 0 · · · 0)T . We can also define the projection matrix

Hλ = Xλ(X TX + λI)−1XT
λ =


 X (X TX + λI)−1X T λ1/2X (X TX + λI)−1

λ1/2(X TX + λI)−1X T λ(X TX + λI)−1


 (3)

The ridge regression estimate β̂(λ) can be written as a weighted average of elemental

estimates based on the rows of the matrix Xλ. Specifically, define s = {i1 < · · · < ip} to be

a subset of {1, · · · , n, n+1, · · · , n+ p} and Xλ(s) to be the sub-matrix of Xλ whose rows lie

in s and y∗(s) to be the sub-vector of y∗ whose indices lie in s. We can then define

β̂(λ; s) = X−1
λ (s)y∗(s)

if the inverse exists. Note that when the subset s contains elements n + j1, · · · , n + jk then

the j1, · · · , jk components of β̂(λ; s) will be exactly 0; in this case, the estimate β̂(λ; s) is

effectively a subset estimate based on p− k predictors.

From Jacobi (1841) (see also Subrahmanyan (1972) and Mayo and Gray (1997)), we can

write

β̂(λ) =
∑

s

|Xλ(s)|2∑
u |Xλ(u)|2

β̂(λ; s) =
∑

s

|Hλ(s)|β̂(λ; s) =
∑

s

Pλ(s)β̂(λ; s) (4)

where | · | denotes determinant and Hλ(s) is the sub-matrix of Hλ defined in (3) with row

and column indices in s. Note that Pλ(s) = |Hλ(s)| is a probability measure on subsets of

size p from the set {1, · · · , n, n+ 1, · · · , n+ p} and so

β̂(λ) = Eλ[β̂(λ;S)]

where S ∼ Pλ. The following result is proved in Knight (2019).

Proposition 1. Suppose that S ∼ Pλ (as defined in (4) and Hλ(s) is a sub-matrix of Hλ in

(3).

(a) For s = {i1, · · · , ik} where k ≤ p,

P (s ⊂ S) = |Hλ(s)|.

(b) For an arbitrary set of indices s, P (s ∩ S = ∅) = |I −Hλ(s)|.
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The following result was originally proved in Leamer and Chamberlain (1976). For com-

pleteness, its proof is provided in the Appendix.

Proposition 2. Define β̂j to be the OLS estimate of β based on predictors in j = {j1, · · · , jk}
(where 0 ≤ k ≤ p). Then for β̂(λ) defined in (2)

β̂(λ) =
∑

all j

aλ(j)β̂j

where

aλ(j) =
|X TX |

|X TX + λI| = |I − λ(X TX + λI)−1| if j = {1, · · · , p}

aλ(j) =
λp

|X TX + λI| if j = ∅

aλ(j) =
λp−k|X (j)TX (j)|
|X TX + λI| if card(j) = k

where X (j) is the sub-matrix of X with column indices in j.

2.1 Level of expression

Proposition 2 effectively says that for a given model size and fixed λ, higher weights aλ(j) are

given to models with a lower degree of multicollinearity as measured by |X (j)TX (j)|. (Given

that multicollinearity was the original raison d’être of ridge regression, this is not surprising.)

This suggests that a given predictor will have a higher weight if it is less correlated with the

other predictors. This idea can be formalized as follows: We define the level of expression

(LoE)1 of predictor j to be

LoEλ(j) =
∑

j:j∈j

aλ(j) = P (n+ j ∩ S = ∅)

where S ∼ Pλ. Using Proposition 1, it follows that

LoEλ(j) = 1− λ[(X TX + λI)−1]jj

where the subscript jj denotes the j diagonal element of the matrix. If LoEλ(j) = 1 then

the parameter estimate for predictor j is the least squares estimate of this parameter while

if LoEλ(j) = 0 then the parameter estimate is exactly 0.

In some sense, LoEλ(j) might be thought of as a measure of “lack of shrinkage” of

the parameter estimate β̂j(λ) for predictor j relatively to its least squares estimate β̂j(0)

(assuming that X has full rank); for example when X TX = I (or a multiple of I), we have

the simple relationship

β̂j(λ) = LoEλ(j)× β̂j(0).

1Here we are making a crude analogy with the notion of gene expression in genetics; LoEλ(j) is a measure

of the degree to which predictor j is “switched on” relative to least squares estimation.
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More generally, LoE can be thought of as a measure of the insensitivity of β̂j(λ) to the penalty

term in λβ2
j . Perhaps most importantly, LoE is not, per se, a measure of the importance

of a predictor as it relates to the response; indeed, the response may depend strongly on a

predictor whose LoE for a given λ is small.

We can also extend the definition to define the LoE of a subset of predictors with indices

j = {j1, · · · , jk} (again using Proposition 1) as follows:

LoEλ(j) = P [(n+ j1, · · · , n+ jk) ∩ S = ∅] =
∣∣∣∣I − λ

[
(X TX + λI)−1

]
j

∣∣∣∣

where
[
(X TX + λI)−1

]
j
is the k × k sub-matrix of (X TX + λI)−1 with row and column

indices in j.

Some insight into the notion of LoE can be obtained by looking at approximations of

LoEλ(j) for small and large values of λ. When λ is small and X TX is invertible then

λ(X TX + λI)−1 = λ(X TX )−1 − λ2(X TX T )−2 + · · ·

which suggests the approximation

LoEλ(j) ≈ 1− λ[(X TX )−1]jj.

If X TX is a correlation matrix then the diagonal elements of (X TX )−1 are variance infla-

tion factors (VIFs) as defined in Marquardt (1970). In Example 1 below, we will consider

approximating LoEλ(j) for small λ in the case where X TX is not invertible.

Conversely, for large λ, an approximation for LoEλ(j) can be obtained from the expansion

λ(X TX + λI)−1 ≈ I − 1

λ
X TX +

1

λ
(X TX )2.

Thus if X TX is a correlation matrix

LoEλ(j) ≈ 1

λ
− 1

λ2
[(X TX )2]jj

=
1

λ
− 1

λ2

p∑

k=1

ρ2jk

where ρjk = [X TX ]jk is the correlation between predictors j and k. This latter approximation

does not require X TX to be invertible.

Proposition 2 holds even if the rank of X is less than p, for example, if p > n. If

rank(X ) = r < p then for any j with card(j) ≥ r + 1, we have aλ(j) = 0. Thus β̂(λ) is

determined by OLS estimates based on subsets of r or fewer predictors. Moreover, unlike

the full rank case where the LoE of each predictor tends tends to 1 as λ → 0, we obtain

a much more interesting limiting behaviour for LoEλ(j) in the ridgeless case (Hastie et al.,

2019) for r < p as shown in the following example.
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Example 1. If rank(X ) = r < p then as λ → 0, aλ(j) → 0 when card(j) < r while if

card(j) = r, we have

aλ(j) =
λp−r|X (j)TX (j)|
|X TX + λI| ;

the denominator can be written as

|X TX + λI| = λp−r
r∏

j=1

(λ+ µj)

µ1 ≥ · · · ≥ µr are the positive eigenvalues of X TX . From this, as λ→ 0

aλ(j) →
|X (j)TX (j)|
µ1 × · · · × µr

= a0(j)

for subsets j of size r. Denoting β̂(0) as the ridgeless estimate, we have

β̂(0) =
∑

card(j)=r

a0(j)β̂j).

As before, we can define the LoE of predictor j in the ridgeless estimate:

LoE0(j) =
∑

j:j∈j

a0(j).

LoE0(j) can be determined from the decomposition X TX = Γ+D+Γ
T
+ where Γ+ is a p × r

matrix whose columns are the orthonormal eigenvectors corresponding to positive eigenvalues

(contained in the r × r diagonal matrix D+): As λ→ 0,

I − λ(X TX + λI)−1 → Γ+Γ
T
+

since the eigenvalues of I − λ(X TX + λI)−1 tend to 1 or 0 depending on whether the

corresponding eigenvalue of X TX is positive or 0. Thus if u1, · · · ,up are the rows of Γ+ then

LoE0(j) = lim
λ→0

1− λ[(X TX + λI)−1]jj

= ‖uj‖2

In terms of principal components (PCs), LoE0(j) is simply the sum of squared correlations

between predictor j and the r PCs with positive eigenvalues. (Geometrically, if φ is the

angle between the j coordinate vector and the null space of X then LoE0(j) = sin2(φ).)

The matrix Γ+Γ
T
+ can also be used to evaluate LoE0(j) for a collection of predictors. For

example, for j = {j1, j2}, we have

LoE0(j) = ‖uj1‖2‖uj2‖2 − (uT
j1
uj2)

2.

In the case where X TX is invertible, we noted the relationship between LoE and VIF

when λ is close to 0. In the ridgeless case, we also have a small λ approximation:

LoEλ(j) ≈ ‖uj‖2 − λujD
−1
+ uT

j = ‖uj‖2 − λ
r∑

h=1

µ−1
h u2jh
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This representation suggests a two-dimensional analogue of the VIF in the case where X is

non-full rank. If X is normalized so that X TX is a correlation matrix then we can define

the VIF for predictor j as follows:

VIF0(j) =

(
‖uj‖2,

r∑

h=1

µ−1
h u2jh

)
.

The first term of VIF0(j) is simply LoE0(j) while the second term is a variance ratio com-

paring the variance of the ridgeless estimator of βj for X TX = Γ+D+Γ
T
+ to the variance of

an estimator of βj assuming orthogonality of predictors. In the full rank case,

VIF0(j) = (1,VIF(j))

where VIF(j) is the standard definition of VIF for predictor j. In the rank deficient case

(r < p), the second component of VIF0(j) can be less than 1, which is a consequence of

shrinkage.

How do we interpret the values of {LoE0(j)} and {VIF0(j)}? As mentioned above,

LoE0(j) = sin2(φ) where φ is the angle between the coordinate vector ej and the null space

of X TX . So roughly speaking, the more that predictor j is correlated with the other p− 1

predictors, the smaller LoE0(j) will be. Moreover, from the definition of {LoE0(j)}, we have
p∑

j=1

LoE0(j) = r

and so if r/p is small, we will (inevitably) have LoE0(j) close to 0 for some j. We also have

the lower bound

LoE0(j) ≥
[X TX ]jj
µ1

;

this follows from the Cauchy-Schwarz inequality, noting that if [X TX ]jj = vTD+v then

[X TX ]jj = vTD+v

≤ (vTD2
+v)

1/2‖v‖
≤ µ1‖v‖2.

The lower bound can be attained: If X TX is a correlation matrix and uj = (1/
√
µ1, 0, · · · , 0)

then LoE0(j) = 1/µ1. This scenario implies that predictor j is weakly correlated with the

first PC and uncorrelated with the remaining r− 1 PCs with positive eigenvalues. Likewise,

we have the following bound for the two components of VIF0(j):

{
r∑

h=1

µ−1
h u2jh

}1/2

≥ ‖uj‖2,

where the bound is attained (as before) if uj = (1/
√
µ1, 0, · · · , 0).
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In practice, we would like to identify predictors whose LoE is large or small relative to

some reference distribution for {LoE0(j)}; for example, we may want to retain only those

predictors with LoE0(j) greater than some threshold. Suppose that X TX is a correlation

matrix so that LoE0(j) ≥ µ−1
1 for all j and suppose that Γ is a uniformly distributed (random)

orthogonal matrix; the marginal distribution of each row (or of each column) of Γ can be

represented by the random vector Z/‖Z‖2 where Z = (Z1, · · · , Zp) ∼ Np(0, I) and the

random vector (
Z2

1

‖Z‖2 , · · · ,
Z2

p

‖Z‖2
)

has a Dirichlet distribution with concentration parameter (1/2, · · · , 1/2). We know that

LoE0(j) ≥ µ−1
1 so that the distribution of (Z2

1 + · · · + Z2
r )/‖Z‖2 is concentrated on the

interval [µ−1
1 , 1]. If we condition on Z2

1/‖Z‖2 = µ−1
1 then the conditional distribution of

(Z2
1 + · · · + Z2

r )/‖Z‖2 is concentrated on the interval [µ−1
1 , 1] and this distribution can be

represented as (1− µ−1
1 )W + µ−1

1 where W has a Beta((r − 1)/2, (p− r)/2) distribution.

If we pretend that {LoE0(j)} are independent random variables with this distribution

(thereby ignoring the correlation between them) then we might think of using extreme quan-

tiles of the Beta distribution (appropriately normalized) as upper and lower thresholds for

‖LoE0(j)}; for example, if qτ and q1−τ are quantiles of the Beta((r−1)/2, (p−r)/2) distribu-
tion (where τ is close to 0) then we can use (1−µ−1

1 )qτ+µ
−1
1 and (1−µ−1

1 )q1−τ +µ
−1
1 as lower

and upper thresholds.. If r and p are reasonably large and α = (r − 1)/(p− 1) is bounded

away from 0 and 1 then the distribution of (1 − µ−1
1 )W + µ−1

1 can be approximated by a

Normal distribution with mean (1− µ−1
1 )α+ µ−1

1 and variance 2(1− µ−1
1 )2α(1− α)/(p+ 1),

which yields the upper and lower thresholds:

(1− µ−1
1 )α + µ−1

1 ± 2(1− µ−1
1 )

√
α(1− α) ln(p)/(p+ 1).

These thresholds allow us to identify predictors whose LoEs are either larger or smaller than

what one might expect given the simple uniform model on orthogonal matrices.

The relationship between the two components of VIF0(j) for j = 1, · · · , p is more complex

and will not be explored in depth here. Typically, there will be a positive correlation between

the two components, with the correlation increasing as r/p decreases. A simple (somewhat

naive) “reference” correlation can be obtained from the ‘Dirichlet model described above:

Corr

(
‖uj‖2,

r∑

h=1

µ−1
h u2jh

)
≈
(
1− r

p

)1/2 {
1

r

r∑

h=1

(
µ−2
h

ν2
− r

p

)}−1/2

where ν = (µ−1
1 + · · · + µ−1

r )/r. As r/p → 1, this correlation tends to 0 while the limit as

r/p→ 0 is [(µ−2
1 /ν2 + · · ·+ µ−2

r /ν2)/r]−1/2, which is less than 1 unless µ1 = · · · = µr = p/r.

When is LoE0(j) = 1? Suppose that X has the form

X = (X1 X2B)
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so that

X TX =


 X T

1 X1 X T
1 X2B

BTX T
2 X1 BTX T

2 X2B




where X1 and X2 are, respectively, n× r1 and n× r2 matrices whose r = r1+ r2 columns are

linearly independent and B is a r2 × (p− r1) matrix whose rank is at least r2. In this case,

LoE0(j) = 1 for j = 1, · · · , r1. This follows since |X (j)TX (j)| (and hence a0(j)) is positive

only if {1, · · · , r1} ⊂ j. This also follows from our definition: If v is an eigenvector of X TX
with eigenvalue 0 then the first r1 elements of v are 0; therefore, the squared norms of the

rows u1, · · · ,ur1 of Γ+ must equal 1.

The result of Proposition 2 also holds if we replace the ridge penalty λ
∑p

j=1 β
2
j by

∑p
j=1 λjβ

2
j = βTΛβ for λ1, · · · , λp ≥ 0 where we replace |X TX + λI| by |X TX + Λ| and

λp−k by
∏

h 6∈j λh. Likewise, if the penalty is βTΣβ for some symmetric positive definite ma-

trix Σ = LTL, we can replace X in Proposition 2 by XL−1 with λ = 1. A judicious choice

of L will give the j column of XL−1 equal to a multiple of the j column of X ; this is useful

for defining LoE in this general case.

Defining LoE(j) when the penalty term has the general form βTΣβ requires some thought

particularly when βTΣβ is not additively separable. If Σ is diagonal with diagonal elements

σ11, · · · , σpp then the extension is straightforward:

LoEΣ(j) = 1− σjj[(X TX + Σ)−1]jj

which follows directly from Proposition 1.

In the case where Σ is positive definite, we have Σ = LTL where L is non-unique; to

define LoEΣ(j), we need to find L = Lj (essentially a reparametrization) such that the j

component of θ = Ljβ is a multiple of βj :

βTΣβ =
∑

h 6=j

(ℓThβ)
2 + (ℓTj β)

2 =
∑

h 6=j

θ2h + ℓ2jjβ
2
j

where ℓ1, · · · , ℓp are linearly independent vectors with ℓj = ℓjjej , a multiple of the j co-

ordinate vector ej so that (ℓTj β)
2 = ℓ2jjβ

2
j . The existence of Lj follows from a Cholesky

factorization of Σ with a reordering of rows and columns so that Σ = LT
j Lj where the j row

of Lj is the j coordinate vector ej multiplied by ℓjj. From this, it follows that

LoEΣ(j) = 1− ℓ2jj[(X TX + Σ)−1]jj

where we apply Proposition 1 using the projection matrix

Hj =


 X (X TX + Σ)−1X T X (X TX + Σ)−1LT

j

Lj(X TX + Σ)−1X T Lj(X TX + Σ)−1LT
j


 .

Applications of this are given in Examples 2 and 3 below.
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In order to compute LoEΣ(j), we do not need to compute the matrix Lj , only ℓ2jj. A

simple approach to determining ℓ2jj uses the fact that if Σ = LTL then for any orthogonal

p×p matrix O, we have Σ = (OL)T (OL). Thus for a given L, we simply need to find O = Oj

so that the j row of OjL is a multiple of ej; in fact, we need only determine the j row of Oj,

which can be determined by solving the equation

LTaj = ej

with ℓ2jj = 1/‖aj‖2. (The j row of Oj is a
T
j /‖aj‖ with the remaining rows of Oj determined

via orthogonalization.) Note that ℓ2jj does not depend on the choice of L; if we replace L by

OL for some orthogonal matrix O then ℓ2jj remains unchanged.

(Using similar arguments, we can define LoEΣ(j) for a subset of predictors j by

LoEΣ(j) =

∣∣∣∣I −
[
Lj(X TX + Σ)−1LT

j

]
j

∣∣∣∣

where again we use a Cholesky factorization of Σ, reordering rows and columns to obtain Lj

such that LT
j Lj = Σ.)

If Σ is singular and non-negative definite (with X TX +Σ non-singular) then the approach

used when Σ is positive definite is not necessarily applicable. However, the basic idea for

defining LoEΣ(j) described above still applies with an additional wrinkle.

Suppose that the rank of Σ is r < p; then Σ = LTL where L is r×p and L is determined

up to r× r orthogonal transformation O ((OL)T (OL) = LTL). If there exists an orthogonal

matrix Oj such that the j row of OjL is a multiple of the coordinate vector ej (that is, ej

lies in the column space of LT ) then as before

LoEΣ(j) = 1− ℓ2jj[(X TX + Σ)−1]jj

where ℓ2jj = 1/‖aj‖2 with LTaj = ej . If no such orthogonal matrix exists (that is, LTaj = ej

does not have a solution) then LoEΣ(j) = 1; in this case, if

βTΣβ =
∑

h 6=j

(ℓThβ)
2 + ℓ2jjβ

2
j

then ℓ2jj = 0. For example, if βTΣβ = (1Tβ)2 (where 1 is a vector of 1s) then LoEΣ(j) = 1

for all j; this follows from Proposition 1 as the constraint 1Tβ = 0 does not guarantee any

element of β to be exactly 0. However, if we reparametrize so that θ = Aβ where A is

non-singular and θ1 = 1Tβ then LoE for the new first predictor (the first column of XA−1

will be less than 1 (with the remaining LoEs equal to 1).

The following example applies the theory developed above to boosted ridge regression.

Example 2. Consider “boosting” ridge regression by the following iterative proces: If

β̂
(k−1)

(λ) is our estimate of β at step k − 1 of boosting then the estimate at step k is given
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by

β̂
(k)
(λ) = β̂

(k−1)
(λ) + (X TX + λI)−1X T

{
y − X β̂

(k−1)
(λ)

}

=
k∑

h=1

λh−1
(
X TX + λI

)−hX Ty

where β̂
(0)
(λ) = 0. It follows that β̂

(k)
(λ) minimizes

n∑

i=1

(yi − xT
i β)

2 + βTΣkβ

where

Σk = λ

{
k∑

h=1

λh
(
X TX + λI

)−h
}−1

− X TX .

For k ≥ 2, Σk is a diagonal matrix if, and only if, X TX is a diagonal matrix.

To evaluate the LoE for a given predictor, define r ≤ p to be the rank of X and write

X TX = ΓDΓT = Γ+D+Γ
T
+ where D and D+ are diagonal matrices whose elements are,

respectively, the eigenvalues and positive eigenvalues (µ1, · · · , µr > 0) of X TX and Γ =

(Γ+ Γ0) whose columns are orthonormal eigenvectors of X TX . If (uj1, · · · , ujp) is the j row

of Γ then

LoEΣk
(j) = 1− ℓ2jj(λ, k)





r∑

h=1

µ−1
h


1−

(
λ

λ+ µh

)k

 u2jh +

k

λ

p∑

h=r+1

u2jh





where

ℓ2jj(λ, k) =





r∑

h=1

µ−1
h

[
(1 + µh/λ)

k − 1
]
u2jh +

k

λ

p∑

h=r+1

u2jh





−1

.

When both k and λ are large so that k/λ = τ , we can approximate LoEΣk
(j) as follows:

LoEΣk
(j) ≈ 1−

∑r
h=1 µ

−1
h [1− exp(−τµh)] u

2
jh + τ

∑p
h=r+1 u

2
jh∑r

h=1 µ
−1
h [exp(τµh)− 1]u2jh + τ

∑p
h=r+1 u

2
jh

.

As τ → ∞, LoEΣk
(j) → 1 unless

∑p
h=r+1 u

2
jh = 1, in which case LoEΣk

(j) = 0.

The idea of ridgeless regression (for r < p) in Example 1 can be extended to “ridgeless

boosting” whereby we take λ→ 0 for some fixed k ≥ 2. For λ close to 0, we have

ℓ2jj(λ, k) =
λ

k
+ o(λ).

Thus as λ→ 0,

LoEΣk
(j) → 1−





p∑

h=r+1

u2jh





2

=
r∑

h=1

u2jh,

11



which is the same as for ridgeless regression (k = 1) as shown in Example 1. This suggests

that ridgeless regression and ridgeless boosting produce the same estimates; this is (per-

haps) not surprising and is straightforward to show mathematically. For a given λ, β̂
(k)
(λ)

minimizes

Z
(k)
λ (β) =

1

λk

{
n∑

i=1

(yi − xT
i β)

2 − η2
}
+

1

λk
βTΣkβ

where η2 is the minimum value of
∑
(yi − xT

i β)
2; we also have

Σk =
λ

k
Γ0Γ

T
0 + λkΓ+D

−(k−1)
+ ΓT

+ + o(λk).

Now Z
(1)
λ converges pointwise to Z(1) where

Z(1)(β) =





βTβ if X TXβ = X Ty

+∞ otherwise

while for k ≥ 2, Z
(k)
λ converges pointwise to Z(k) where

Z(k)(β) =





βTΓ+D
−(k−1)
+ ΓT

+β if X TXβ = X Ty and ΓT
0 β = 0

+∞ otherwise.

The pointwise convergence can be turned into epi-convergence (Attouch and Wets, 1981),

which (together with convexity) guarantees convergence of the minimizers as λ → 0. Al-

though the limiting functions {Z(k)(β)} are different, their minimizers are the same:

β̂
(k)
(λ) → β̂(0) = Γ+D

−1
+ ΓT

+X Ty.

For k ≥ 2, this follows from the constraint ΓT
0 β = 0 while for k = 1, it follows from the

fact that the minimizer of βTβ over all OLS estimates must satisfy βTa = 0 for all a in the

null space of X TX ; hence the constraint ΓT
0 β = 0 holds automatically. What distinguishes

{β̂(k)
(λ)} for different k is the path the estimates take to β̂(0): As λ→ 0, we have

λ−k(β̂
(k)
(λ)− β̂(0)) → −Γ+D

−(k+1)
+ ΓT

+X Ty.

While this would suggest a faster convergence rate (as λ → 0) for larger k, this faster

convergence would also be mitigated somewhat if X TX has small but positive eigenvalues.

The following example shows how we might apply the notion of LoE for principal com-

ponent (PC) and approximate PC regression.

Example 3. PC regression is a commonly used method for dimension reduction. The idea

is to use the eigen-decomposition of X TX = ΓDΓT to define a collection of d uncorrelated

predictors X∗ = XΓ∗ where Γ∗ is a p × d sub-matrix of Γ; each of these d predictors is a

function of the original set of predictors. For convenience, we will assume that Γ∗ contains

12



the first d columns of Γ and the eigenvalues µ1, · · · , µp of X TX satisfy µ1, · · · , µd > 0. For

PC regression µ1, · · · , µd are the d largest eigenvalues although the following discussion will

not depend on this.

The PC estimate is given by

θ̂∗ = (X T
∗ X∗)

−1X T
∗ y

and the “implied” estimate of β is β̂∗ = Γ∗θ̂∗. We can define β̂∗ as the limit of a sequence

of generalized ridge regression estimates. Specifically, define β̂η to minimize

n∑

i=1

(yi − xT
i β)

2 + βTΣηβ

where

Ση = ΓVηΓ
T

with Vη a diagonal matrix whose first d elements are η1, · · · , ηd and last p − d elements

are 1/ηd+1, · · · , 1/ηp. As η1, · · · , ηp → 0, β̂η → β̂∗. This particular formulation of the

PC estimate β̂∗ is more than a simple mathematical device. For example, if p is very

large, computing an eigen-decomposition of X TX may be computationally expensive and so

approximating β̂∗ by some sort of β̂η may be useful; an example of this approach is given in

section 6.2.

As in Example 2, the structure of the objective function greatly facilitates the computa-

tion of the LoE for each (η1, · · · , ηp) since X TX and Ση have the same eigen-structure:

X TX + Ση = Γ(D + Vη)Γ
T

so that

[(X TX + Ση)
−1]jj =

d∑

h=1

(µh + ηh)
−1u2jh +

p∑

h=d+1

(µh + η−1
h )−1u2jh

where (uj1, · · · , ujp) is the j row of Γ. Likewise, we can define ℓ2jj = 1/‖aj‖2 where ΓV 1/2
η aj =

ej so that aj = V −1/2
η ΓTej and

ℓ2jj =





d∑

h=1

η−1
h u2jh +

p∑

h=d+1

ηhu
2
jh





−1

.

Thus for η1, · · · , ηp > 0, we have

LoEη(j) = 1−
∑d

h=1(µh + ηh)
−1u2jh +

∑p
h=d+1(µh + η−1

h )−1u2jh∑d
h=1 η

−1
h u2jh +

∑p
h=d+1 ηhu

2
jh

= 1−
d∑

h=1

ηh(µh + ηh)
−1Qη(h)−

p∑

h=d+1

η−1
h (µh + η−1

h )−1Qη(h)

13



where Qη(h) is a probability measure on {1, · · · , p} whose probability mass (as η1, · · · , ηp →
0) becomes concentrated on {1, · · · , d} if

∑d
h=1 u

2
jh > 0 and concentrated on {d+ 1, · · · , p} if

∑d
h=1 u

2
jh = 0. Defining LoE∗(j) is the limit of LoEη(j) as η1, · · · , ηp → 0, we have

LoE∗(j) =





1 if
∑d

h=1 u
2
jh > 0

0 if
∑d

h=1 u
2
jh = 0.

This result is somewhat underwhelming but, upon reflection, not at all surprising — the PC

estimate is a least squares estimate and will depend on predictor j provided that at least

one of the PCs depends on predictor j. Some additional insight main be gained by looking

at LoEη(j) for values of η1, · · · , ηp close to 0. For example, if η1 = · · · = ηp = η0 then

LoEη(j) ≈ 1− η0

{
d∑

h=1

u2jh

}−1 { d∑

h=1

µ−1
h u2jh

}
when

∑d
h=1 u

2
jh > 0

and

LoEη(j) ≈ η0

p∑

h=d+1

µh when
∑d

h=1 u
2
jh = 0.

The former case is the more interesting; For a given predictor j, LoEη(j) is closest to 1

for small η0 if this predictor is correlated with the PC having the largest eigenvalue and

uncorrelated with the remaining d−1 PCs in the model, even if this correlation is very weak.

In essence, by virtue of being correlated (however slightly) with the first PC, this predictor

is able to piggyback on the importance of the first PC in approximate PC regression.

3 Decomposing degrees of freedom

The notion of degrees of freedom or effective degrees of freedom as a measure of model

complexity follows from the work of Stein (1981) and Efron (1986). Given a response vector

(of length n) Y with mean vector is µ and covariance matrix σ2I, suppose that Ŷ is an

estimator of µ, the so-called fitted values. Efron shows that the degrees of freedom associated

with Ŷ is

df(Ŷ ) =
1

σ2

n∑

i=1

Cov(Ŷi, Yi).

In the case where Ŷ = AY , we have df(Ŷ ) = tr(A); for ridge regression,

df(Ŷ ) =
p∑

j=1

µj

µj + λ

where µ1, · · · , µp are the eigenvalues of X TX . However, using df(Ŷ ) as a measure of model

size is somewhat problematic; for example, Janson et al. (2015) give a critique of the notion

of effective degrees of freedom when Ŷ is a non-linear function of Y .
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In ridge regression, Proposition 2 illustrates that if df(Ŷ ) = r < p then Ŷ will be a convex

combination of 0 through r parameter models. For example, if X TX = I and j = {j1, · · · , jk}
then

aλ(j) =
(

1

1 + λ

)k
(

λ

1 + λ

)p−k

and so
∑

card(j)=k

aλ(j) =

(
p

k

)(
1

1 + λ

)k
(

λ

1 + λ

)p−k

for k = 0, · · · , p. The following result (which is a refinement of Proposition 2) generalizes

this special case and shows that df(Ŷ ) can be expressed as the expected value of a random

variable N whose distribution provides additional insight into the composition of Ŷ .

Proposition 3. For {aλ(j)} given in Proposition 2, define

π(k) =
∑

card(j)=k

aλ(j) for k = 0, · · · , p.

Then

π(k) = P (V1 + · · ·+ Vp = k)

where V1, · · · , Vp are independent 0/1 random variables with P (Vi = 1) = µi/(µi + λ) and

µ1, · · · , µp are the eigenvalues of X TX .

Proof. Define

ϕ(t) =
p∏

i=1

{
λ

µi + λ
+ t

µi

µi + λ

}
= E

(
tV1+···+Vp

)

to be the probability generating function of V1 + · · ·+ Vp; we need to show that

p∑

k=0

tkπ(k) = ϕ(t).

To do so, we simply need to match the coefficients of tk for k = 0, · · · , p; for k = 0 and k = p,

this holds by inspection. Noting that |X (j)TX (j)| are principal minors of X TX , we have for

k = 1, · · · , p− 1

∑

card(j)=k

|X (j)TX (j)| = coefficient of λp−k in |X TX + λI|

=
∑

j1<···<jk

(µj1µj2 × · · · × µjk)

and so

tkπ(k) = tk
λp−k

(µ1 + λ)× · · · × (µp + λ)

∑

j1<···<jk

(µj1 × · · · × µjk).
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The conclusion follows by noting that the coefficient of tk in ϕ(t) is

λp−k

(µ1 + λ)× · · · × (µp + λ)

∑

j1<···<jk

(µj1 × · · · × µjk).

Given the eigenvalues µ1, · · · , µp of X TX , the distribution of N = V1 + · · · + Vp can

computed using a discrete Fourier transform (DFT). The DFT of {π(k)} is

π̂(s) =
p∑

k=0

π(k) exp

(
−2πι

ks

p + 1

)

=
p∏

j=1

{
λ

µj + λ
+

µj

µj + λ
exp

(
−2πι

s

p+ 1

)}
for s = 0, · · · , p

(where ι =
√−1) and so applying the inverse DFT

π(k) =
1

p+ 1

p∑

s=0

π̂(s) exp

(
2πι

ks

p+ 1

)
.

Note that π(k) is necessarily real-valued although numerically π(k) as evaluated above will

typically contain a small imaginary component due to round-off error; this is resolved by

taking the real part of the inverse DFT.

For ridge regression, the vector of fitted values is ŷ = Aλy where Aλ = X (X TX +

λI)−1X T . The distribution of N over the integers 0, · · · , p depends on the non-zero eigenval-

ues of Aλ and as such, could be viewed as a sort of spectrum of the ridge regression estimate

β̂(λ) (dependent on the spectrum of Aλ). In the next section, we will show that this simple

observation generalizes if we replace Aλ in the definition of ŷ by a matrix with real-valued

eigenvalues lying in the interval [0, 1]. This spectrum (distribution of N) might be viewed as

analogous to the notion of timbre (or tone colour) in music whereby the frequency spectrum

(as well as other characteristics) of a given note varies across different musical instruments

(Samson et al., 1997).

In a very crude sense, the distribution of N reflects the bias-variance tradeoff in ridge

regression. Specifically, if E(N) is close to p then the bias in β̂(λ) is typically smaller while

the variance of β̂(λ) should decrease as Var(N) increases as a consequence of greater model

averaging. In general, the distribution of N should provide more information about ŷ than

is provided by E(N) alone. The following example illustrates how ridge regression does the

“right thing” by averaging a broader range of models when the design has a high degree of

multicollinearity.

Example 4. As mentioned earlier, variance inflation factors (VIFs) are used to assess

the effects of multicollinearity on the variance of an OLS estimator of a parameter – they

measure the inflation of the variance of the estimator relative to the variance in the case
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where the predictors are uncorrelated. In the case where X TX is a correlation matrix (and

non-singular) then the VIFs are simply the diagonal elements of (X TX )−1.

Suppose that X TX is a correlation matrix with eigenvalues µ1, · · · , µp where µ1, · · · , µr

are positive. Then

E(N) = E(Nλ) =
p∑

j=1

µj

µj + λ

Var(N) = Var(Nλ) =
p∑

j=1

µj

µj + λ
−

p∑

j=1

µ2
j

(µj + λ)2
.

Differentiating with respect to λ, we have

d

dλ
E(Nλ) = −

p∑

j=1

µj

(µj + λ)2

→ −
r∑

j=1

µ−1
j as λ→ 0

d

dλ
Var(Nλ) = 2

p∑

j=1

µ2
j

(µj + λ)3
−

p∑

j=1

µj

(µj + λ)2

→
r∑

j=1

µ−1
j as λ→ 0.

When X TX is non-singular then µ−1
1 + · · ·+µ−1

p = tr((X TX )−1); thus for λ close to 0, E(Nλ)

is decreased by factor proportional to the sum of the VIFs for the p predictors while Var(Nλ)

is increased by the same factor.

The form of the derivatives above suggests that Nλ has a Poisson-like distribution for

small values of λ. Indeed if we assume that r (the number of positive eigenvalues) tends to

infinity and λ tends to 0 so that

λ
r∑

j=1

µ−1
j → κ > 0 and max

1≤j≤r

λ

µj
→ 0

then r−Nλ
d−→ Poisson(κ). A similar result holds for large λ: If r and λ tend to infinity so

that
r∑

j=1

µj

µj + λ
→ κ > 0 and max

1≤j≤r

µj

µj + λ
→ 0

then Nλ
d−→ Poisson(κ).

The results of Propositions 2 and 3 can be extended to negative values of λ provided that

X TX + λI is non-singular; we lose the probabilistic interpretation of β̂(λ) as the expected

value Eλ[β̂S] for some random subset S ∼ Pλ but mathematically, we still have

β̂λ =
∑

s

|Hλ(s)|β̂s
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where now the off-diagonal blocks of Hλ in (3) are imaginary (although for any s, |Hλ(s)| is
real-valued). Alternatively, we can redefine Hλ as follows:

Hλ =


 X (X TX + λI)−1X T λX (X TX + λI)−1

(X TX + λI)−1X T λ(X TX + λI)−1


 .

Hλ is no longer a projection matrix (as it is not symmetric) but is still idempotent and we

can use the results of Berman (1988) to prove that

β̂(λ) =
∑

s

|Hλ(s)|β̂s

where now |Hλ(s)| need not lie in the interval [0, 1] but

∑

s

|Hλ(s)| = 1.

It can be shown that Propositions 2 and 3 still hold where now {aλ(j)} and {π(k)} can take

both negative values and values greater than 1 for certain subsets j and model sizes k, with

both {aλ(j)} and {π(k)} summing to 1.

In addition, we can also define the LoE of a predictor using the formula given in Proposi-

tion 1; depending on the value of λ < 0, the LoE of a given predictor could be greater than 1

or negative. However, if µ1 ≥ · · · ≥ µr > 0 are the positive eigenvalues of X TX and λ > −µr

then LoEλ(j) ≥ 0 for all j; this follows from the fact that the matrix I − λ(X TX + λI)−1 is

non-negative definite under this condition on λ. Moreover, the “small λ” approximation for

LoEλ(j) given in Example 1 also holds for negative values of λ.

The following example outlines how we might apply the result of Proposition 3 in the

case where λ < 0.

Example 5. Kobak et al. (2020) demonstrate that under certain conditions, the optimal

value of λ (in terms of MSE) could be negative. For example, suppose that for large r =

rank(X ), we take λ < 0 such that

r∑

j=1

λ

µj
= −γ < 0

(where µ1, · · · , µr are the positive eigenvalues of X TX ) and

max
1≤j≤r

∣∣∣∣∣
λ

µj

∣∣∣∣∣ ≈ 0.

(In other words, λ is negative but very close to 0; for example, λ = O(1/r) as r → ∞.) Then

π(k) ≈ exp(γ)
(−γ)r−k

(r − k)!
.

18



For large r, as γ → 0, we have π(r) = 1 + γ + o(γ) and π(r − 1) = −γ + o(γ) with

π(r − 2), π(r − 3), · · · being o(γ). This limiting case suggests that ridge regression with

λ < 0 can potentially act as a jackknife-like bias reduction method (Quenouille, 1949, 1956;

Schucany et al., 1971). In particular, suppose that we want to estimate some real-valued

parameter θ (for example θ = E(Y |x), a prediction of the response Y for some predictor

value x) and define θ̂λ to be the ridge estimate for some λ < 0 where

λ = −γ




r∑

j=1

µ−1
j





−1

for some small γ > 0. In this “small γ” scenario,

θ̂λ ≈ (1 + γ)θ̂(r)− γ θ̂(r − 1).

where θ̂(r) is the least squares estimator of θ for an r dimensional model and θ̂(r − 1) is

a weighted average of least squares estimators of θ from r − 1 dimensional models. Define

b(r) and b(r − 1) to be the respective biases of θ̂(r) and θ̂(r − 1) and assume that either

0 < b(r) < b(r − 1) or 0 > b(r) > b(r − 1). Then the bias of θ̂λ is (approximately)

E(θ̂λ)− θ ≈ b(r) + γ[b(r)− b(r − 1)]

where for γ sufficiently small

|b(r) + γ[b(r)− b(r − 1)]| < |b(r)|.

Similarly, we can approximate the MSE of θ̂λ:

MSE(θ̂γ) ≈ (1 + γ)2Var[θ̂(r)] + γ2Var[θ̂(r − 1)]− 2γ(1 + γ)Cov[θ̂(r), θ̂(r − 1)]

+ {b(r) + γ[b(r)− b(r − 1)]}2 .

The derivative of the right hand side is negative at γ = 0, in which case the right hand is

minimized at γ > 0 (that is, λ < 0), if

b(r)[b(r − 1)− b(r)] > Var[θ̂(r)]− Cov[θ̂(r), θ̂(r − 1)].

Typically, Var[θ̂(r)]−Cov[θ̂(r), θ̂(r− 1)] will be quite small but will increase as the variance

of the noise increases. The bias terms b(r) and b(r−1) depend on the model error associated

with r and r − 1 dimensional models — if |b(r)| is sufficiently large and b(r − 1)− b(r) has

the same sign as b(r) then taking λ < 0 will be optimal in terms of MSE.

The results of this paper focus on linear estimation where ŷ = Ay for some fixed A.

However, extensions to non-linear estimation are possible, for example, by looking a local

linear approximations like ŷ = A(y)y. The following example shows how the result of

Proposition 3 might be applied to the LASSO (Tibshirani, 1996).
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Example 6. The LASSO estimate β̂(λ) minimizes

n∑

i=1

(yi − xT
i β)

2 + λ‖β‖1

where ‖β‖1 is the L1-norm of β. As with ridge regression, we typically centre and scale the

predictors so that X TX is the correlation matrix of the predictors.

Unlike ridge regression, the LASSO is not a linear estimation method although for each

λ, we can write the estimate in a pseudo-linear form as follows:

β̂(λ) = D1/2(λ)

(
[XD1/2(λ)]T [XD1/2(λ)] +

λ

2
I

)−1

D1/2(λ)X Ty

where D(λ) is a p×p diagonal matrix whose elements are the absolute values of the elements

of β̂(λ). Thus if the j-th component of β̂(λ) equals 0 then the j-th column of XD1/2(λ) will

be a vector of zeroes and the rank of XD1/2(λ) will be reduced (relative to the rank of X )

by the number of 0 components in β̂(λ). We can then apply Proposition 3 using the matrix

D1/2(λ)X TXD1/2(λ) in place of X TX to determine the distribution of N (conditional on

β̂(λ)) for a given λ.
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Figure 1: LASSO plot: Plot of the 8 estimates as a function of ‖β̂(λ)‖1/‖β̂(0)‖1.

As an illustration, we consider the prostate cancer data described in Tibshirani (1996),

where the relationship between the logarithm of prostate specific antigen (PSA) and 8 pre-

dictors (prognostic variables). Figure 1 is a plot of the elements of β̂(λ) versus the “relative
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n 0 1 2 3 4 5 6 7 8

LASSO 0.000 0.000 0.000 0.000 0.006 0.053 0.233 0.446 0.262

Ridge 0.000 0.000 0.000 0.001 0.011 0.065 0.224 0.404 0.294

Table 1: Distribution of N for LASSO and ridge regression when E(N) = 6.9.

n 0 1 2 3 4 5 6 7 8

LASSO 0.003 0.054 0.237 0.400 0.255 0.051 0.000 0.000 0.000

Ridge 0.014 0.096 0.243 0.309 0.221 0.092 0.022 0.003 0.000

Table 2: Distribution of N for LASSO and ridge regression when E(N) = 3.0.

sum” s(λ) = ‖β̂(λ)‖1/‖β̂(0)‖1. We consider s(λ) = 0.9 and s(λ) = 0.6; for s(λ) = 0.9,

all elements of β̂(λ) are non-zero and E(N) = 6.9 while for s(λ) = 0.6, five are non-zero

and E(N) = 3.0. Tables 1 and 2 show the distribution of N for the LASSO and ridge

regression assuming E(N) = 6.9 and E(N) = 3.0, respectively. For E(N) = 6.9, the two

distributions are similar while for E(N) = 3.0, the difference is more pronounced; in the

latter case, the distribution of N for ridge regression is more dispersed while the distribution

of N (conditional on β̂(λ)) for the LASSO is necessarily concentrated on the integers 0, 1,

· · · , 5.

4 Smoothing matrices

Proposition 2 is remarkable in that it gives a decomposition of the ridge regression estimate

in terms of OLS estimates for all possible 2p subset models; Proposition 3 provides a means

for obtaining a spectrum of the ridge regression estimate over subset models of size less

than or equal to p. As noted above, Proposition 3 can also be expressed in terms of the

matrix Aλ = X (X TX + λ)−1X T , which maps the vector of responses y to the vector of

fitted values ŷ = Aλy. Proposition 2 implies that Aλ is a weighted average of projection

matrices corresponding the 2p subset OLS estimates while Proposition 3 effectively defines a

probability distribution π(k) on Grassmannians {Gr(k, n) : k = 0, 1, · · · , p} where Gr(k, n)

is the space parameterizing all k dimensional subspaces of Rn; Gr(k, n) is homeomorphic to

the space of n× n projection matrices with trace k. Writing

Aλ =
∑

H

p(H)H with
∑

H

p(H) = 1
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(where the sums above are over all projection matrices for the subset models) then

π(k) =
∑

H:tr(H)=k

p(H).

In this section, we will show that the results for ridge regression extend naturally to a more

general class of matrices as described below.

Suppose that A is an n× n symmetric matrix with eigenvalues µ1, · · · , µn ∈ [0, 1]; given

a vector of responses y, we define fitted values by ŷ = Ay. Such matrices are often used in

non-parametric regression estimation to fit smooth functions to data and so we will refer to

such matrices as smoothing matrices. More generally, we can relax the symmetry assumption

by assuming that the singular values of A lie in [0, 1]; if A = UΣV T where U and V are

orthogonal matrices and Σ is the diagonal matrix of singular values then defining y∗ =

UV Ty (or y = V UTy∗) so that ŷ = UΣUTy∗. Note that if we assume the classical model

y ∼ N (µ, σ2I) then y∗ ∼ N (µ∗ = UV Tµ, σ2I). Alternatively, we can symmetrize A, for

example, by A∗ = I − [(I − A)T (I − A)]1/2 as in Cohen (1966) or by A∗ = (A + AT )/2. We

may also be able to approximate A by a symmetric matrix as in Milanfar (2013). With this

in mind, we will assume henceforth that A is symmetric.

First of all, for a general smoothing matrix A, there is not necessarily a unique repre-

sentation A =
∑

H p(H)H . Choi and Wu (1990) show that a smoothing matrix A can be

expressed as A = w1H1 + · · ·+wmHm for positive w1, · · · , wm summing to 1 and projection

matrices H1, · · · , Hm; moreover, they show that m ≤ ⌊log2(n)⌋+2 where the upper bound on

m is sharp. Our goal (in the spirit of Proposition 2) is to find a maximal representation for

A in terms of projection matrices. For example, if A = (H1+ · · ·+Hm)/m where H1, · · · , Hm

are all (say) one-dimensional projection matrices then it may be tempting to say that π(k)

(as defined in Proposition 3) will have π(1) = 1 with π(k) = 0 for k 6= 1; however as we will

show subsequently, π(k) will be determined by the eigenvalues of A. (Moreover in the case

where A = w1H1 + · · ·+ wmHm, the condition that w1 + · · ·+ wm = 1 is not necessary; we

merely need the eigenvalues of A to lie between 0 and 1.)

It is simple to show that Proposition 3 holds for smoothing matrices. Suppose that A has

r non-zero eigenvalues µ1, · · · , µr (with µr+1 = · · · = µn = 0). Then A = Γ+D+Γ)+
T where

D+ is an r × r diagonal matrix consisting of the non-zero eigenvalues µ1, · · · , µr and the

columns of Γ+ are the orthonormal eigenvectors corresponding to the non-zero eigenvalues.

Thus we can write

ŷ = Ay = Γ+β̂

with β̂ = D+Γ
T
+y. Then β̂ minimizes the generalized ridge regression objective function

‖y − Γ+β‖2 +
r∑

j=1

1− µj

µj
β2
j = ‖y − Γ+β‖2 + βT (D−1

+ − I)β.

Thus the results of Propositions 2 and 3 can be extended mutatis mutandis to symmetric
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smoothing matrices. Writing

β̂ =
∑

all j

a(j)β̂(j),

we have

a(j) =




∏

h 6∈j

(1− µh)








∏

h∈j

µh



 .

Thus

π(k) =
∑

card(j)=k

a(j)

= P (N = V1 + · · ·+ Vr = k)

where as before V1, · · · , Vr are independent random variables with P (Vi = 1) = µi and

P (Vi = 0) = 1 − µi. From this, it follows that if π(k) = 1 for some k then A must be a

projection matrix (with rank k) since N = k with probability 1 if, and only if, k of V1, · · · , Vr
equal 1 and r − k equal 0 with probability 1.

4.1 Ensemble estimation

Ensemble estimation combines simple (low dimensional) models with a goal of reducing

prediction error. Its effectiveness in practice can be explained roughly by the premise that

any bias in prediction from low dimensional models is offset by a reduction in variance due

to averaging. For example, if ŷh = Ahy for (h = 1, · · · , m) are predictions from m models

then we can define

ŷ0 =

(
m∑

h=1

whAh

)
y = A0y

for some weights w1, · · · , wm. It is also worth noting that ensemble estimation may be

computationally advantageous if the computational cost of the low dimensional models is

relatively small compared to that of higher dimensional models.

Given that ridge regression can be considered as an emsemble estimation method, a

natural question to ask is to what extent we can approximate an ensemble method by a

simple ridge regression with tuning parameter λ; in other words, is

m∑

h=1

whAh ≈ X (X TX + λI)−1X T

for some λ? (For example, if the approximation is sufficiently good, we could use the value

of λ to approximate the LoEs of each predictor.) While this question is beyond the scope

of this paper, Example 7 below suggests that such an approximate equivalence may not

be far-fetched. Moreover, recent work by LeJeune et al. (2019) suggests that the connec-

tion between this type of ensemble estimation and ridge regression may have a more solid

theoretical foundation.
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A simple (somewhat trivial) example where there is an exact equivalence between en-

semble estimation and ridge regression occurs when X TX = I where we take

Ah =
1

1 + λ0
XhX T

h

h = 1, · · · , m =
(
p
k

)
subsets of k < p predictors; in other words, we are doing ridge regression

with parameter λ0 for each subset of predictors. Then

1

m

m∑

h=1

Ah = X (X TX + λI)−1X T

where

λ =
p

k
(1 + λ0)− 1.

More generally, we might expect this type of ensemble estimation to be a good approximation

to ridge regression (or vice versa) when the p predictors are weakly correlated, for example,

if the variability of the non-zero eigenvalues of the predictor correlation matrix is small.
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Figure 2: Eigenvalues of A for the ensemble method in Example 7 versus eigenvalues for ridge

regression.

Example 7. We take p = 100 and n = 50, and define X so that its columns have a fairly

complex correlation structure with pairwise correlations ranging from −0.46 to 0.81. The

values of LoE0(j) (for j = 1, · · · , 100) as defined in Example 1 range from 0.19 to 0.65; the
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Figure 3: Distribution of N for the ensemble method in Example 7.

ad hoc bounds for LoE0(j) given in Example 1 based on uniformly distributed orthogonal

matrices are 0.33 and 0.72 with LoE0(j) less than lower bound for two predictors. We then

compute ŷ by taking an average of 20 OLS estimates, each of which is based on a random

selection of 10 (of 100) predictors; the matrix A is an average of m = 20 (randomly sampled)

projection matrices whose traces are equal to 10. As a point of comparison, we also consider

a ridge regression estimate with λ = 6.77 chosen so that E(Nλ) = 10. Figure 2 shows a plot

of the 49 non-zero eigenvalues for the two methods while Figure 3 gives the distribution of

N for the ensemble method. The distributions of eigenvalues are “close” with the ensemble

method having more eigenvalues close to 0 and to 1 than ridge regression. Thus the variance

of N for the ensemble method is somewhat smaller than it is for ridge regression (6.74 versus

7.16).

What happens if we increase the number m of estimates used to compute the ensemble

estimate? As indicated in Table 3, the variance of N increases with m although it is still

smaller than the variance for ridge regression. Table 3 also gives the L2-norm of the differ-

ence between the matrices Ar = X (X TX + λI)X T (ridge regression) and Ae = m−1∑m
ℓ=1Hℓ

(ensemble estimation) for different values of m; it shows that as we increase m, Ae is ap-

proximated better by Ar.
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m 20 50 100 500 1000

Var(N) 6.74 6.92 7.04 7.09 7.11

‖Ar −Ae‖2 0.209 0.155 0.095 0.054 0.048

Table 3: Var(N) and ‖Ar −Ae‖2 for ensemble estimation as a function of m. For reference,

‖Ar‖2 = 0.662.

4.2 Approximating the distribution of N

So far, we have implicitly assumed that the number of predictors p was sufficiently small that

the eigenvalues of X TX could be computed exactly with little difficulty. In the more general

setting (where often A is not explicitly computed), computing the eigenvalues of A can be

more difficult, in which case we would need to resort to approximations (Normal or Poisson)

or Monte Carlo evaluation of the spectrum of A. Typically, we will know that number of

eigenvalues equal to 1; for example, if A is used in non-parametric function estimation, we

may know that A will preserve low degree polynomials up to degree k, in which case we will

have k + 1 eigenvalues equal to 1 and so N = k + 1 + Vk+2 + · · ·+ Vr.

Hutchinson’s method (Hutchinson, 1990; Skilling, 1989) can be used to estimate both

tr(A) and tr(A2), which can be used to derive simple approximations of the distribution of

N , based on either the Normal or Poisson distribution. If U is a random vector with mean

0 and covariance matrix I then tr(A) = E[UTAU ] and so we can estimate tr(A) and tr(A2)

by

t̂r(A) =
1

m

m∑

j=1

UT
j AU j

t̂r(A2) =
1

m

m∑

j=1

UT
j A

2U j

where U 1, · · · ,Um are independent random vectors with mean 0 and covariance matrix I;

the variance of the estimates are minimized if the components of {U j} are independent

Rademacher random variables taking values ±1 each with probability 1.

Example 8. Consider ŷ = Ay where

A−1 =




1 + 6λ −4λ λ 0 0 · · · 0 λ −4λ

−4λ 1 + 6λ −4λ λ 0 · · · 0 0 λ

λ −4λ 1 + 6λ −4λ λ · · · 0 0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

−4λ λ 0 0 0 · · · λ −4λ 1 + 6λ
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Figure 4: Exact distribution of N (black bars) in Example 8 for λ = 1600 and n = 200 compared

to a Normal approximation (red) with mean and variance determined by Hutchinson’s method.

This particular method may be appropriate if yi = g(i/n) + εi where g is a smooth function

with g(0) = g(1). The matrix A−1 is circulant and has eigenvalues

µ−1
i = 1 + 6λ− 8λ cos

(
2π

i

n

)
+ 2λ cos

(
4π

i

n

)
for i = 1, · · · , n.

Figure 4 shows that exact distribution of N (for λ = 1600 and n = 200) and a Normal

approximation with the mean and variance of N computed using Hutchinson’s method using

m = 50 replications; the approximation, while not perfect, gives us a good sense of the

distribution of N .

5 Twicing and boosting

Twicing was introduced by Tukey (1977) as a means of refining the estimate ŷ1 = Ay by

applying A to the residuals y − ŷ1 = (I −A)y and adding the result to ŷ1:

ŷ2 = ŷ1 + A(I −A)y = (2A− A2)y.

This procedure can be applied iteratively giving

ŷk = [I − (I − A)k]y = Aky
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for k = 1, 2, · · ·. The eigenvalues of Ak are 1− (1− µi)
k (i = 1, · · · , n) and it follows that as

k → ∞, Ak converges to a projection matrix to the spaced spanned by the eigenvectors of

A with eigenvalues µi 6= 0.

Related to twicing is the notion of boosting (Freund and Shapire, 1995), which is used

in machine learning as a means of combining “weak learners” for prediction or classification,

while reducing the possibility of overfitting. Bühlmann and Yu (2003) consider some the

statistical aspects of boosting.
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Figure 5: Eigenvalues of X TX in Example 9.

Example 9. In the case of ridge regression, A = Aλ = X (X TX + λI)−1X T and assume

that µ1, · · · , µp are the eigenvalues of X TX so that the eigenvalues of Ak,λ = I − (I − Aλ)
k

are 1− [λ/(µj + λ)]k for j = 1, · · · , p.
Now suppose that both λ and k tend to infinity so that k/λ → τ > 0; the eigenvalues

of Ak,λ tend to 1 − exp(−τµj) for j = 1, · · · , p. We can then compare the distributions of

N for ridge regression and “boosted” ridge regression assuming that the degrees of freedom

E(N) = some specified r; in other words, we choose λ and τ so that

p∑

j=1

µj

µj + λ
= r =

p∑

j=1

{1− exp(−τµj)} .

To illustrate, we take µ1, · · · , µn to be the 1/101, 2/101, · · · , 100/101 quantiles of a Gamma

distribution with shape parameter 0.1, normalized to sum to 100; these are shown in Figure
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Figure 6: Plot of boosted eigenvalues versus eigenvalues for ridge regression.

5. Taking E(N) = 40, we get τ = 14.37 and λ = 0.03659. (For example, if we take k = 100

then at each step, we would take the “base” value of λ = 100/14.37 = 6.96 with degrees

of freedom
∑

j µj/(6.96 + µj) = 7.49; if k = 1000, the degrees of freedom at each step is

1.29.) Figure 6 gives plot of {1 − exp(−τµj} versus {µj/(µj + λ)}; boosting increases the

contribution of the larger eigenvalues while shrinking the contribution of the smaller eigeval-

ues – in essence, this might be thought of as a sort of “soft” principal component (PC)

regression where the contributions of smaller PCs are downweighted rather than eliminated.

Figure 7 shows the distributions of N for ridge regression and boosted ridge regression. Note

that boosting reduces the variability of N ; Var(N) = 5.92 for ridge regression compared to

Var(N) = 4.03 for boosted ridge regression.

6 Miscellanea

6.1 Continuous-time gradient descent

Example 9 suggests a connection between boosted ridge regression with large λ and gradient

descent for OLS. When λ is large then

(X TX + λI)−1 =
1

λ
I − 1

λ2
X TX + · · ·
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Figure 7: Distribution of N for ridge regression (blue) and boosted ridge regression (red).

so that

β̂k+1 = β̂k −
1

λ
(X TX β̂k − X Ty) + o(λ−1),

which, neglecting the o(λ−1) term, is a gradient descent iteration for OLS.

By letting λ → ∞, we can interpret the boosting process as approximating gradient

descent for OLS in continuous-time resulting in β̂(t) satisfying the differential equation (or

gradient flow)
d

dt
β̂(t) = −X TX β̂(t) + X Ty

(Skouras et al., 1994; Ali et al., 2018) whose solution given an initial estimate β̂(0) is

β̂(t) = β̂(0) + g(X TX ; t)X T (y −Xβ̂(0))

where (writing X TX = ΓDΓT ) g(X TX ; t) = Γg(D; t)ΓT with g acting on the eigenvalues

(diagonals of D) as follows:

g(µ; t) =





0 if µ = 0

(1− exp(−tµ))/µ if µ > 0.

As t→ ∞, it is easy to see that β̂(t) converges to an OLS estimate.

Now assume that p is large and define N(t) to the random variable in Proposition 3

corresponding to β̂(t). For simplicity, we will assume that β̂(0) = 0 and so for a given t,
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the fitted values ŷ(t) = A(t)y where A(t) = X g(X TX ; t)X T ; as t → ∞, A(t) converges

to a projection matrix with trace r = rank(X ) and the non-zero eigenvalues of A(t) are

1− exp(−tµj) for j = 1, · · · , r where µ1, · · · , µr are the non-zero eigenvalues of X TX .

We will consider two asymptotic scenarios for the non-zero eigenvalues of A(t), taking r,

the number of non-zero eigenvalues of X TX , to infinity. The first scenario assumes that the

distribution of the eigenvalues is well-behaved in the sense that

r∑

j=1

exp(−tµj)(1− exp(−tµj)) → ∞ (5)

as r → ∞; (5) holds if the empirical distribution of the eigenvalues converges to a probability

distribution ν on the positive real line. The second scenario assumes that the distribution

of the eigenvalues is heavy-tailed in the sense that for some sequence of constants {ar}, we
have

r∑

j=1

I(a−1
r µj ∈ ·) v−→ M(·) with

∫
µM(dµ) <∞ (6)

for some point measure M on (0,∞) where “
v−→” denotes vague convergence of measures;

see Kallenberg (1983) and Resnick(2013) for details regarding vague convergence. The lim-

iting point measure M can be represented by a finite or countably infinite set of positive

points v1, v2, · · ·. This latter scenario might be relevant in cases where µ1, · · · , µr are widely

dispersed so that (say) µ1, · · · , µd are very large (possibly tending to infinity, in which case

ar → ∞) with the remaining eigenvalues being significantly smaller.

Under (5), N(t) will be approximately Normal with mean
∑r

j=1(1 − exp(−tµj)) and

variance
∑r

j=1 exp(−tµj)(1− exp(−tµj)) while under (6), N(t/ar) converges in distribution

(as r → ∞) to a random variable

N0(t) =
∞∑

j=1

Yj(t)

where {Yj(t)} are random variables taking values 0 and 1 with P (Yj(t) = 1) = 1−exp(−vjt).

6.2 Approximating PC regression

In recent years, there has been some interest in iterative methods for approximating PC

regression whereby we replace the (n × p) design matrix X by XΓλ where Γλ is an p × r

matrix whose columns are the orthogonal eigenvectors corresponding to the r eigenvalues of

X TX exceeding some threshold λ. In practice, such approximations essentially boil down

to finding polynomial approximations to the projection matrix Hλ onto the column space of

XΓλ; specifically, we want to find a polynomial ψm and an n× n matrix Aλ so that

ψm(Aλ) =
m∑

k=1

αkA
k
λ ≈ Hλ.
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Ridge regression provides a starting point for these approximations. If µ1, · · · , µp are the

eigenvalues of X TX then µh/(µh + λ) > 1/2 if µh > λ. We can then find a sequence of

polynomials {ψm(x)} such that

ψm

(
µ

µ+ λ

)
→




1 if µ > λ

0 if µ < λ

as m→ ∞. Then m sufficiently large,

ψm

(
X (X TX + λI)−1X T

)
y (7)

can be used as an approximation for PC regression. See, for example, Frosting et al. (2016),

Allen-Zhu and Li (2017), and Farnham et al. (2019) for implementations of this idea. The

estimateof β, β̂m can be written as

β̂m = (X TX + ΓWmΓ
T )−1XTy

where Wm is a diagonal matrix with elements

wh = µh

{
ψ−1
m

(
µh

µh + λ

)
− 1

}
if µh > 0

with wh = λ if µh = 0. Note that when µh > 0, wh → 0 if µh > λ and wh → ∞ if µh < λ

(as m→ ∞) as in Example 3.

Bernstein polynomials (Bernstein, 1912) provide one possible approach to constructing

{ψm} in the approximation (7). If g(x) is a continuous function on [0, 1], we can approximate

it using the values {g(j/m) : j = 0, · · · , m} as follows:

g̃m(x) =
m∑

j=0

g(j/m)

(
m

j

)
xj(1− x)m−j

where {
(
m
j

)
xj(1−x)m−j} are the Bernstein polynomials. If g is continuous then g̃m converges

uniformly on [0, 1] to g as m → ∞. In our context, we want ψm(x) to approximate ψ(x),

which is 0 or 1 depending on whether x < 1/2 or x > 1/2. Taking m to be even (for

convenience), we can define

ψm(x) =
m∑

j=m/2

(
m

j

)
xj(1− x)m−j

=
m∑

j=m/2

m∑

k=j

(
m

k

)(
k

j

)
(−1)k−jxk

=
m∑

k=m/2

k∑

j=m/2

(
m

k

)(
k

j

)
(−1)k−jxk.
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When m is reasonably large, ψm(x) can be approximated in terms of the standard Normal

distribution Φ as follows:

ψm(x) ≈ Φ



√
m(x− 1/2)√
x(1− x)


 .

Uniform convergence will not hold over [0, 1] although it will hold outside of a neighbourhood

of x = 1/2. Moreover (and importantly so), the eigenvalues of ψm(X (X TX + λI)−1X T ) will

fall in the interval [0, 1] for all m . Using the eigenvalues in Example 9 and taking λ = 0.0457

we obtain E(N) = 39.8 and Var(N) = 1.08 for m = 40 and E(N) = 39.6 and Var(N) = 0.68

for m = 100.

The downside of the Bernstein polynomial approach described in the previous paragraph

is its leisurely convergence rate; the example given there suggests that we would need to

take m to be fairly large in order to approximate PC regression well. However, its spirit

may be retained even if m is relatively small. It is worth remembering that PC regression

is essentially an ad hoc procedure based on a bet that most of the predictive or explanatory

power of the predictors in X will reside in the linear combinations (PCs) of predictors having

largest variances or alternatively, that the predictive power of low variance PCs is minimal.

Thus any procedure that amplifies the PCs with larger variances while attenuating the

PCs with smaller variances essentially achieves the same goal as PC regression. (“Betting

on sparsity”, as coined in Hastie et al. (2001), is a similar principle that assumes that a

response will be well-predicted by a small fraction of available predictors.) This view is

somewhat controversial (Cox, 1968; Cook, 2007) although Artemiou and Li (2009) provide

a theoretical framework to justify PC regression.

Appendix: Proof of Proposition 2.

Define j = {j1, · · · , jk} to be a subset of {1, · · · , p} and

vj = n + jc = {n+ j : j /∈ {j1, · · · , jk}} .

If S ∩ {n + 1, · · · , n + p} = vj then the elemental estimate depends on the predictors in j

with the parameter estimates for the predictors not in j set to 0.

Now define the event

Aj = {S ∩ {n + 1, · · · , n+ p} = vj}

where aλ(j) = P (Aj). If s ∩ {n + 1, · · · , n + p} = vj, X(s) can be written as an upper

triangular block matrix where the lower diagonal is λ times the (p − k) × (p − k) identity

matrix, which implies that |X(s)|2 = λp−k|Xj(s\vj)|2 where Xj(s\vj) is the k×k sub-matrix
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of X whose rows are in s \vj (which is a subset of {1, · · · , n}) and whose column indices are

in j.

Thus we have

P (S = s|Aj) =
|X(s)|2

∑
u |X(u)|2

=
λp−k|Xj(s \ vj)|2∑
u λ

p−k|Xj(u \ vj)|2

=
|Xj(s \ vj)|2∑
u |Xj(u \ vj)|2

(with P (S = s|Aj) = 0 otherwise) From this, it follows (Jacobi, 1841) that Eλ[β̂S|Aj] is

simply the least squares estimate of β based on the predictors whose indices lie in the set j

and so

β̂(λ) = Eλ[β̂S]

=
∑

j

P (Aj)Eλ[β̂S|Aj]

=
∑

j

aλ(j)β̂j.

The form of aλ(j) now follows from Proposition 1. If vj is non-empty we have

aλ(j) = P (Aj)

= P (S ∩ {n+ 1, · · · , n+ p} = vj)

= |X TX + λI|−1λp−k
∑

s

|Xj(s \ v)|2

=
λp−k|X (j)TX (j)|
|X TX + λI|

where card(j) = k. If j = ∅ then aλ(j) = λp|X TX + λI|−1 from Proposition 1. Note that for

j = {1, · · · , p}, we have

aλ(j) =
|X TX |

|X TX + λI|
=

∣∣∣X TX (X TX + λI)−1
∣∣∣

= |I − λ(X TX + λI)−1|.

References

Ali, A., Kolter, J.Z., Tibshirani, R.J.: A continuous-time view of early stopping for least

squares. arXiv: 1810.10082 (2018)

34



Allen-Zhu, Z., Li, Y.: Faster principal component regression and stable matrix Chebyshev

approximation. In: Proceedings of the 34th International Conference on Machine Learn-

ing. 70, 107–115 (2017)

Artemiou, A., Li, B.: On principal components and regression: a statistical explanation of

a natural phenomenon. Statistica Sinica. 19, 1557–1565 (2009)

Attouch, H., Wets, R.J.B.: Approximation and convergence in nonlinear optimization. Non-

linear Programming. 4 (1981)

Berman, M.: A theorem of Jacobi and its generalization. Biometrika, 75, 779–783 (1988)
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