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Conversion of ordinal attitudinal scales: an
inferential Bayesian approach

Abstract: The need for scale conversion may arise whenever an attitude of

individuals is measured by independent entrepreneurs each using an ordi-

nal scale of its own with possibly different numbers of (arbitrary) ordinal

categories. Such situations are quite common in the marketing realm. The

conversion of a score of an individual measured on one scale into an estimated

score of a similar scale with a different range is the concern of this paper. An

inferential Bayesian approach is adopted to analyze the situation where we

believe the scale with fewer categories can be obtained by collapsing the finer

scale. This leads to inferences concerning rules for the conversion of scales.

Further, we propose a method for testing the validity of such a model. The

use of the proposed methodology is exemplified on real data from surveys

concerning performance evaluation and satisfaction.

Keywords: ordinal scales, collapsing scales, scale conversions, Bayesian infer-

ence.
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1 Introduction

The need for scale conversion may arise whenever an attitude of individuals

is measured by independent entrepreneurs each using an ordinal scale of

his/her own with possibly different number of (arbitrary) ordinal categories.

In the marketing realm, it is not uncommon to encounter situations where

satisfaction of customers is measured independently by several competing

marketing research companies. Each company has its own satisfaction scale

and they all use (non-identical) independent samples of customers from the

same population.

Although scales may differ by the number of ordinal categories used,

they may all share the same structure, where the lowest category refers to

“very dissatisfied”and the last category refers to “most satisfied”. Another,

not uncommon situation arises when a company that used to measure the

satisfaction of its own customers in the past by a R-category scale, is now

employing a scale of only K < R categories for a variety of reasons (this has

been the case with several universities measuring student satisfaction from

courses attended).

The problem of how many ordinal categories an attitudinal scale should

have is an old one. See for instance (Miller 1956), and the classical paper

(Green and Rao 1970). Although some compelling scientific arguments are

mentioned in the literature as to some optimal aspects of ordinal scales, there

is no universal consensus as to the number of categories to use. As a result,
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situations as described above occur quite frequently.

It might be of interest to be able to answer the question: “can we sys-

tematically convert a score of an individual measured on a given scale into

an estimated score on a similar-in-nature scale but with a different number

of categories?”. An attempt to answer this question is the concern of this

paper.

The methodology proposed in this paper assumes the following:

(a) All the underlying scales measure the same kind of attitude (satisfaction,

say). We do NOT propose to convert a “satisfaction”score measured

by one scale to an “agreement”score measured by another scale.

(b) All the underlying scales are ordinal-categorical scales (and not interval

or ratio scales). Ordinality of categories reflects the ordinal nature of

an attitude as a concept (“more”, “most”, better”, “best”, etc.).

(c) All samples measured on these scales come from the same population

and no individual is sampled more than once.

Suppose then that we have two scales, labelled I and II, that are pre-

sumably measuring the same phenomenon. Scale I classifies responses into

R ordered values and scale II classifies responses into K ordered values and

suppose that R > K.

Let X ∈ {1, . . . , R} and Y ∈ {1, . . . , K} denote the values taken by a

randomly selected population element on scale I and scale II respectively.
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Let pi = P (X = i), for i = 1, . . . , R, and qj = P (Y = j), for j = 1, . . . , K,

denote the distributions of these variables over the population in question. Of

course, these distributions are unknown and we suppose that data have been

collected from sampling studies to make inferences about these distributions.

Let (f1, . . . , fR), with
∑R

i=1 fi = NR, denote the counts from the sampling

study involving scale I and (g1, . . . , gK), with
∑K

j=1 gj = NK , denote the

counts from the sampling study involving scale II.

Our problem is concerned with determining how we should combine the

results from the two studies. We take the point-of-view that our aim should

be collapsing, in some fashion, scale I into scale II and then combining our

inferences. In the typical application it is not at all clear how this collapsing

should take place. We would like this collapsing to depend on the data and

proceed according to sound inferential principles rather than follow some ad

hoc procedure.

In Section 2 we formulate a Bayesian model for the collapsing. We find

it most convenient to place this discussion in a Bayesian context and include

discussion on appropriate priors for this problem. Also in Section 2 we discuss

a computational approach for implementing a Bayesian analysis and consider

some simulated data. In Section 3 we discuss the basic Bayesian inferences

that follow from the model. In Section 4 we show how inferences about

the true collapsing lead to rules for converting one scale to another and an

assessment of the uncertainty associated with such rules. In Section 5 we

consider methods for checking the model specified in Section 2. In Section 6
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we apply these results to a problem of some practical importance and draw

some conclusions in Section 7.

2 The Model, the Prior, and the Posterior

Given that we have observed (f1, . . . , fR) and (g1, . . . , gK), the likelihood for

the unknown p and q is given by

L(p, q | f, g) =
R∏
i=1

pfii

K∏
j=1

q
gj
j , (1)

where p ∈ SR, q ∈ SK and SN denotes the (N − 1)-dimensional simplex. Let

πR denote a prior on p. Typically, we will take this prior to be a uniform prior,

i.e., DirichletR(1, . . . , 1), to reflect noninformativity, but we will consider a

general DirichletR(a1, . . . , aR).

Now suppose that p is given. Of course, we do not know these values

but now we will effectively put a prior on the set of all possible collapsings

assuming that we know p. In other words we will specify the prior hierarchi-

cally by specifying a prior for the collapsings given the value of p, and then

place a marginal prior on p as we have already specified.

First we develop a model for the collapsing. Let (P1, . . . ,PK) denote

an ordered partition of {1, . . . , R} into K disjoint subsets with ∪Ki=1Pi =

{1, . . . , R} such that Pi 6= φ for all i and, if 1 ≤ i < j ≤ K, then Pi =

{s, s + 1 . . . , t},Pj = {u, u + 1 . . . , v} with 1 ≤ s ≤ t < u ≤ v ≤ R. The set
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Pi consists of those categories on scale I that are collapsed to form category

i on scale II. Note that we have restricted to those collapsings for which no

null sets are allowed in the partition, because we know that we can observe

observations in each category of scale II. Therefore, proceeding as if the

categories in scale II arise from a collapsing of scale I, the likelihood (1) is

no longer correct, rather the likelihood for (p, (P1, . . . ,PK)) is given by

L(p, (P1, . . . ,PK) | f, g) =
R∏
i=1

pfii

K∏
j=1

∑
l∈Pj

pl

gj

. (2)

The likelihood expresses the information in the data concerning the possible

collapsings and the value of p.

If we denote the conditional prior on the set of all ordered partitions given

p by π((P1, . . . ,PK) | p), then the marginal prior on (P1, . . . ,PK) is

π(P1, . . . ,PK) =

∫
SR

π(P1, . . . ,PK | p)πR(p) dp. (3)

As we will see, we need to compute this quantity to implement some of our

inferences. Of course, we will also need to compute the posterior probability

of (P1, . . . ,PK), namely,

λ(P1, . . . ,PK | f, g) ∝∫
SR

R∏
i=1

pfii

K∏
j=1

∑
l∈Pj

pl

gj

π(P1, . . . ,PK | p)πR(p) dp. (4)
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Clearly the specification of π(P1, . . . ,PK | p) is a key step in the analysis.

Note that the number of such partitions (P1, . . . ,PK) equals the number of

solutions (i1, . . . , iK) of i1 + · · · + iK = R in positive integers. Therefore,

there are
(
R−1
K−1
)
such partitions. Typically, for the applications we have in

mind, this number will not be too large.

One possible specification for π(P1, . . . ,PK | p) is the uniform prior. The

uniform prior puts weight 1/
(
R−1
K−1
)
on each possible partition and so (3) equals

this quantity no matter what prior is placed on p. With this choice, and πR

equal to the DirichletR(a1, . . . , aR) density, we have that (4) is proportional

to ∫
SR

R∏
i=1

pfi+ai−1i

K∏
j=1

∑
l∈Pj

pl

gj

dp.

Now, letting uj =
∑

l∈Pj pl, and using

u ∼ DirichletK

(∑
l∈P1

(fl + al), . . . ,
∑
l∈PK

(fl + al)

)

when p ∼ DirichletR(f1 + a1, . . . , fR + aR), we see that (4) is proportional to

Γ
(∑R

i=1 fi +
∑R

i=1 ai

)
K∏
j=1

Γ
(∑

l∈Pj(fl + al)
)
∫
SK

K∏
j=1

u
gj+

∑
l∈Pj

(fl+al)−1
j du

=

K∏
j=1

Γ
(
gj +

∑
l∈Pj(fl + al)

)
Γ
(∑

l∈Pj(fl + al)
) .
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So to obtain the posterior we need to sum this quantity over all partitions

to evaluate the normalizing constant for the posterior probability function.

The same argument establishes closed-form expressions for (3) and (4)

for a more general family of priors.

Theorem 1. Suppose that the prior on (p, (P1, . . . ,PK)) is specified by

π(P1, . . . ,PK | p) ∝
K∏
j=1

∑
l∈Pj

pl

bj

, (5)

for bj > −1, j = 1, . . . , K, and p ∼ DirichletR(a1, . . . , aR). Then we have

that

π(P1, . . . ,PK) ∝
K∏
j=1

Γ
(
bj +

∑
l∈Pj al

)
Γ
(∑

l∈Pj al

) (6)

and

λ(P1, . . . ,PK | f, g) ∝
K∏
j=1

Γ
(
bj + gj +

∑
l∈Pj(fl + al)

)
Γ
(∑

l∈Pj(fl + al)
) . (7)

Note that the uniform prior on (P1, . . . ,PK) corresponds to b1 = · · · = bK =

0. If a1 = · · · = aR = 1, i.e., we place a uniform prior on p, and b1 > 0

while b2 = · · · = bK = 0, then partitions that have more elements in P1

will receive more prior weight than partitions with fewer elements in P1.

Similar interpretations can be made for other choices of the bj, although

they are diffi cult to describe precisely. It would seem, however, if we want to

emphasize partitions that place more elements in certain cells of the partition

then we should choose the corresponding bj relatively large. We will refer
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to the prior given in (5) by the K-tuple [b1, . . . , bK ] hereafter, whenever the

prior on p is uniform. So, for example, [0, . . . , 0] corresponds to the uniform

prior on the set of partitions and the uniform prior on SR.

The following example illustrates an approach to tabulating the posterior.

Example 1. Tabulating the prior and the posterior

To specify a partition we need only prescribe an ordered K-tuple of in-

tegers (n1, . . . , nK) such that 1 ≤ n1 < n2 < · · · < nK = R, and there are

are
(
R−1
K−1
)
such K-tuples. Denote this set of K-tuples by TR,K . For example,

if R = 5 and K = 3, then
(
4
2

)
= 6 and (n1, n2, n3) = (2, 4, 5) specifies the

partition (P1,P2,P3) = ({1, 2}, {3, 4}, {5}). We can systematically tabulate

any prior and posterior via (6) and (7) by running through the K-tuples

(n1, . . . , R) starting with (1, 2, . . . , K − 1, R), letting nK−1 range from K − 1

to R − 1, then change nK−2 to K − 1 and letting nK−1 range from K up to

R− 1, etc.

In Table 1 we have tabulated several priors. Note that the left column

lists the elements of T5,3, while the first row specifies several priors. From

this we can see that the larger the value of bi > 0 is, the more prior weight is

being placed on partitions that have more elements in Pi, while the closer bi

is to −1 the more prior weight is being placed on partitions that place fewer

elements in Pi.

[Table 1 about here]
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Suppose we observe (f1, f2, f3, f4, f5) = (4, 3, 6, 3, 7) and (g1, g2, g3) =

(7, 9, 7). Note that (g1, g2, g3) corresponds exactly to partition (2, 4, 5). In

Table 2 we have tabulated the posterior probabilities for the priors in Table

1. Notice that the correct partition (2, 4, 5) is the posterior mode for each

analysis except that using the prior [10, 0, 0]. This prior puts too much weight

on P1 having most of the collapsing and so (3, 4, 5) results as the mode.

Still for a relatively small amount of data the methodology is clearly on

the right track in identifying suitable collapsings. Also worth noting is that

the most incorrect collapsing given by (1, 2, 5) is always given low posterior

probability. The benefit of having appropriate strong prior information is

clearly demonstrated by the prior [10, 10, 0].

[Table 2 about here]

3 Inferences for Collapsings

One possibility for inferences is to use those based on the highest posterior

density (hpd) principle (see Box and Tiao 1973 for a discussion of various

Bayesian inference terms). For this we record a γ-credible region of the form

Bγ(f, g) = {(P1, . . . ,PK) : λ(P1, . . . ,PK | f, g) > kγ(f, g)}

where kγ(f, g) is the largest value such that Λ(Bγ(f, g) | f, g) ≥ γ where

Λ(· | f, g) denotes posterior measure. The size of such regions, say for γ = .95,
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then tells us something about the accuracy of our inferences. This gives a

nested sequence of subsets, indexed by γ, with the smallest set containing

only the posterior mode.

In general, inferences based on the highest posterior density principle suf-

fer from a lack of invariance. For example, if we wanted to make inference

about the continuous parameters p, or q as derived from p (see Section 4),

then a γ-hpd region does not transform appropriately under 1-1, smooth

transformations. A class of inferences that are invariant under such transfor-

mations is given by the relative surprise principle (see Evans, Guttman and

Swartz 2006 and Evans and Shakhatreh 2008 for discussion of relative sur-

prise inferences). A γ-relative surprise credible region for the true partition

is of the form

Cγ(f, g) =

{
(P1, . . . ,PK) :

λ(P1, . . . ,PK | f, g)

π(P1, . . . ,PK)
> kγ(f, g)

}

and kγ(f, g) is the largest value such that Λ(Cγ(f, g) | f, g) ≥ γ. We see that

the relative belief ratio (see Evans and Shakhatreh 2008) for (P1, . . . ,PK),

given by

RB(P1, . . . ,PK) =
λ(P1, . . . ,PK | f, g)

π(P1, . . . ,PK)
,

is a measure of how belief in the validity of the partition (P1, . . . ,PK) has

changed from a priori to a posteriori. Note that a relative belief ratio is

similar to a Bayes factor, which is the ratio of the posterior odds to the prior

odds, and both are measuring the change in belief from a priori to a poste-
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riori. The relative belief ratio measures change in belief on the probability

scale while the Bayes factor measures change in belief on the odds scale.

Accordingly, Cγ(f, g) contains all partitions whose relative belief ratios

are above some cut-off. This principle also gives a nested sequence of subsets,

indexed by γ, with the smallest set containing only the least relative surprise

estimate (LRSE) (Evans, Guttman and Swartz 2006), i.e., the value that

maximizes the relative belief ratio for (P1, . . . ,PK). Note that the LRSE

partition is the same as maximum a posteriori (MAP) partition, i.e., the

mode of the posterior, whenever the prior π(P1, . . . ,PK) is uniform, but

otherwise these estimates can be different as demonstrated in Example 2.

In the cited references various optimality properties have been proved

for relative surprise inferences in the class of all Bayesian inferences. Note,

in particular, that because relative surprise inferences are based on relative

belief ratios, we can expect these inferences to be less dependent on the prior

than say hpd-inferences, as we are dividing the posterior by the prior. In fact

it can be proven that the relative belief ratio is independent of the choice of

the marginal prior π(P1, . . . ,PK).

Consider now inferences for Example 1.

Example 2. Estimating the true partition in Example 1

In Table 3 we have given the relative belief ratios RB(P1, . . . ,PK), for the

problem discussed in Example 1. These are obtained by dividing the entries

in Table 2 by the corresponding entries in Table 1. Notice that the LRSE is

given by the correct partition (2, 4, 5) in every case, while the mode failed for
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the prior [10, 0, 0]. This is characteristic of relative surprise inferences as the

prior has less influence in these inferences than in other Bayesian inferences.

[Table 3 about here]

From the posterior probabilities in Table 2 and the relative belief ratios

in Table 3, we can construct Cγ(f, g). For example, when the prior is [0, 0, 0],

then

C.95(f, g) = {(1, 3, 5), (1, 4, 5), (2, 3, 5), (2, 4, 5), (3, 4, 5)}, (8)

i.e., every partition but (1, 2, 5) is included and k.95(f, g) = 0.150. This is

not very informative, but then we do not have a lot of data. Actually, from

Table 2, the posterior content of C.95(f, g) is 0.993 in this case.

Suppose we wished to assess the hypothesis that a certain partition was

true say,

H0 : (P1, . . . ,PK) = (P∗1 , . . . ,P∗K),

i.e., we want to assess whether or not the actual collapsing is given by

(P∗1 , . . . ,P∗K), as prescribed by some theory. This can be assessed by com-

puting

γ∗ = inf{γ : (P∗1 , . . . ,P∗K) ∈ Cγ(f, g)}

and concluding that we have evidence against H0 when γ∗ is near 1. Equiv-

alently we can compute the relative surprise P-value given by

Λ

(
λ(P1, . . . ,PK | f, g)

π(P1, . . . ,PK)
≤ λ(P∗1 , . . . ,P∗K | f, g)

π(P∗1 , . . . ,P∗K)

∣∣∣∣ f, g) ,
13



i.e., the posterior probability of obtaining a relative belief ratio no larger

than that obtained for the hypothesized value. Small values for the P-value

provide evidence against the null hypothesis.

Example 3. Testing a partition in Example 1

Suppose we want to test the null hypothesis H0 that the true partition is

(2, 4, 5) when the prior is [0, 0, 0]. Then it is clear that the P-value is 1 and

we have no evidence against H0. If we tested the null hypothesis H0 that

the true partition is (1, 2, 5) when the prior is [0, 0, 0], then the P-value is

1− 0.993 = 0.007 and we have substantial evidence against H0.

4 Conversion of Scales

A problem of major interest is how we should convert one scale to another

when we believe that one scale is a collapsing of the other. In one direction

it seems quite clear how to do this.

Once we have selected an estimate of the collapsing, then this immediately

provides a conversion rule from the finer to the coarser scale, i.e., from scale

I to scale II. To assess the uncertainty in this rule we can look at the rules

that would arise from each of the partitions in a γ-credible region for the

collapsing. We illustrate this in the following example.

Example 3. Converting from the finer to the coarser scale in Example 1.

In Example 2 we showed that the LRSE partition is always (2, 4, 5) for all

the priors specified in Example 1. The conversion rule from scale I to scale II,
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using the LRSE partition, is as shown in Table 4. For example, individuals

assigned a score of 1 or 2 on scale I are assigned a score of 1 on scale II.

[Table 4 about here]

To assess the uncertainty entailed in this conversion rule we now present,

in Table 5, the full set of conversion rules obtained via the .95-relative surprise

region (8) given in Example 2, when using the prior [0, 0, 0]. Of course, values

1 and 5 on scale I must always convert to 1 and 3 on scale II. From the table we

see that there is little variation in converting 3 on scale I but more variation

for both 2 and 4, for example, four of the five partitions in the .95-credible

region convert 3 to a 2.

[Table 5 about here]

A conversion rule for expanding scale II to scale I is more problematic.

To see this, suppose we have selected a rule to convert from the finer to the

coarser scale. Then, if we wanted to convert from the coarser to the finer scale

we have multiple possible assignments for any categories that correspond to

a proper collapsing on the finer scale. A number of rules are possible and

we consider two rules, one deterministic, called the maximal rule, while the

other corresponds to a random assignment, called the random rule. These

rules are based on having chosen a specific collapsing as represented by the

partition (P1, . . . ,PK).
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For the maximal rule we look at estimates p̂i of the pi, corresponding to

a collapsed category, and choose, for the conversion of a value on the coarser

scale, the value in the finer scale that maximizes p̂i. For the random rule we

use the the estimates p̂i to construct the conditional distributions for each

partition element and then randomly allocate a value on scale II to a value

on scale I using the appropriate conditional distribution. The random rule

seems somewhat more realistic as not every observation on a given category

on scale II corresponding to a collapsing, would be assigned the same category

on scale I.

Logically, it makes sense to base the estimates p̂i on the conditional poste-

rior of p given that the particular collapsing in question holds. Fixing the par-

tition (P1, . . . ,PK), the likelihood for p is given by (2) as a function of p. Now

suppose that we have placed a DirichletR(a1, . . . , aR) prior on p to start. The

conditional prior distribution of q is then DirichletK(
∑

l∈P1 al, . . . ,
∑

l∈PK al)

and, from (2), the conditional posterior distribution of q is DirichletK(g1 +∑
l∈P1(fl + al), . . . , gK +

∑
l∈PK (fl + al)). Given q, the conditional prior of

(pli/qi, . . . , pui/qi), corresponding to Pi = (li, li+1, . . . , ui), is Dirichletui−li+1(

ali , . . . , aui) and the conditional posterior is Dirichletui−li+1(fli +ali , . . . , fui +

aui). So the conditional LRSE of pl/qi, for l satisfying li ≤ l ≤ ui, is given by

fl/(fli + · · · + fui) which we note does not involve the prior. The maximal

rule then converts i on scale II to the value l satisfying li ≤ l ≤ ui which

maximizes fl/(fli + · · ·+ fui). The random rule converts i on scale II to the

value l on scale I, satisfying li ≤ l ≤ ui, with probability fl/(fli + · · ·+ fui).
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We illustrate this in the following example.

Example 4. Converting from the coarser to the finer scale in Example 1.

In Table 6 we give the results of converting scale II to scale I, using the

maximal rule, for each of the partitions in (8). This again gives us a sense of

the uncertainties involved in this conversion.

[Table 6 about here]

We note that Table 5 is based on the .95-credible region (8) that we

obtained for the collapsing, and so can be interpreted as a .95-credible region

for the true conversion from scale I to scale II. This is not the case, however,

for Table 6 as these are obtained by a somewhat ad hoc, albeit intuitively

reasonable rule. There is an element of nonidentifiability in converting from

scale II to scale I.

In Table 7 we record the conditional distributions corresponding to the

random rule for the LRSE partition in Example 1. We can see from this

that the choice between 1 and 2 on scale I for a 1 on scale II is somewhat

uncertain.

[Table 7 about here]

5 Model Checking

A question of some interest is whether or not the model for collapsings that

we have developed in Section 2 makes sense in light of the observed data
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(f1, . . . , fR) and (g1, . . . , gK). This is effectively model checking and should

be carried out before we proceed to make inferences about an appropriate

collapsing.

One approach to model checking is based on the minimal suffi cient sta-

tistic for the sampling model given by (2). Once this statistic is determined

we use the conditional distribution of a discrepancy statistic given the value

of the minimal suffi cient statistic to assess the model via a P-value. Unfortu-

nately, in this problem it is very diffi cult to determine the minimal suffi cient

statistic let alone determine the conditional distribution.

An alternative approach might be to select a discrepancy statistic, such

as Pearson’s chi-squared test statistic to compare the observed gi with the

estimated expected values based on the observed f, for a particular partition

(P1, . . . ,PK) and do this for every possible partition. This, however, entails

the use of
(
R−1
K−1
)
dependent chi-squared tests and it is not at all clear how to

combine these to compute an appropriate P-value.

We adopt an alternative strategy for model checking here. Suppose we

are satisfied that samples have been correctly obtained from the relevant pop-

ulation so we feel confident that the underlying multinomial model leading

to likelihood (1) is correct. Now suppose that we had no information that

would suggest that scale II is a collapsing of scale I. In such a case it makes

sense to put independent priors on p and q and then use the posterior to

make inferences about these quantities. Suppose we use the same prior on

p as prescribed in Section 2, namely, p ∼ DirichletR(a1, . . . , aR) independent
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of q ∼ DirichletK(1, . . . , 1). Although other choices are possible for the prior

on q, a noninformative prior would seem to make sense when we are testing

a model.

Now consider the null hypothesis

H0 : q is a collapsing of p,

and we will consider H0 as a subset of SR × SK . Notice that, provided we

place a continuous prior on SR × SK , then H0 is a subset having prior prob-

ability equal to 0. The consequence of this is that we can think of the

DirichletR(a1, . . . , aR)×DirichletK(1, . . . , 1) prior as being effectively on Hc
0

while the prior on H0 is as described in Section 2. The prior on H0 only

comes into play if we agree that H0 makes sense and, to assess this, we use

the prior on the complement Hc
0. This shows that there is no conflict in our

prior assessments as the prior on p is the same.

To assess H0 we proceed as described in Evans, Gilula, and Guttman

(1993) and Evans, Gilula, Guttman and Swartz (1997). For an arbitrary

point (p, q) ∈ SR×SK let dH0(p, q) be a measure of the distance (p, q) is from

H0. For example, we will use

dH0(p, q) = min
(P1,...,PK)

K∑
i=1

(
qi −

∑
l∈Pi

pl

)2
, (9)

i.e., least squares distance, although other choices are possible. Now we
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measure the concentrations of the prior distribution and the posterior distri-

butions of (p, q) aboutH0 by the prior and posterior distributions of dH0(p, q),

respectively. Naturally, ifH0 is true then we should see that the posterior dis-

tribution of dH0(p, q) concentrates much more closely about 0 than the prior

distribution of dH0(p, q). To assess this formally let πdH0 and πdH0 (· | f, g) be

the prior and posterior densities of dH0(p, q). Then to assess H0 we compute

the relative surprise P-value

Π

(
πdH0 (dH0(p, q) | f, g)

πdH0 (dH0(p, q))
≤
πdH0 (0 | f, g)

πdH0 (0)

∣∣∣∣∣ f, g
)

(10)

where Π ( · | f, g) is now the posterior of (p, q) based on the

DirichletR(a1, . . . , aR)× DirichletK(1, . . . , 1)

prior. The relative belief ratio of H0 is given by πdH0 (0 | f, g)/πdH0 (0) and

this measures how the data have changed beliefs in H0. An alternative to H0

is given by a nonzero value of dH0 and so we see that (10) is the posterior

probability that an alternative to H0 does not have a relative belief ratio

greater than that of H0. As such, when (10) is small there are alternatives

that have a larger relative belief ratio thanH0 with high posterior probability

and we can view this as evidence against H0. Note that Π ( · | f, g) is the

DirichletR(a1 + f1, . . . , aR + fR)× DirichletK(1 + g1, . . . , 1 + gR)
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distribution.

It is straightforward to sample from both the posterior and prior dis-

tributions of (p, q) and from such Monte Carlo samples we can construct

estimates of πdH0 and πdH0 (· | f, g) and estimate (10). The only diffi culty lies

in evaluating (9) for each sample and we simply do this by brute force. Pro-

vided
(
R−1
K−1
)
is not large, this is feasible. We illustrate this procedure in the

following example.

Example 5. Testing the model in Example 1.

In Figure 1 we have plotted the prior and posterior densities of dH0(p, q)

when p ∼DirichletR(1, . . . , 1) and q ∼DirichletK(1, . . . , 1) based uponMonte

Carlo samples from the prior and posterior of N = 105. Note that the prior

and posterior densities are very similar reflecting the fact that we have a

very small amount of data in this example. Irrespective of that, it is the

difference between these distributions that is of importance as represented

by the relative belief ratio πdH0 (dH0(p, q) | f, g)/πdH0 (dH0(p, q)) as graphed in

Figure 2. From both plots it would appear that the posterior is concentrating

closer to H0 than the prior. The relative belief ratio peaks at 0 and is

πdH0 (0 | f, g)/πdH0 (0) = 2.794. Therefore, P-value (10) equals 1.00 and we

have no evidence against H0. Therefore, we have no evidence against the

hypothesis that scale I has been collapsed into scale II and can now proceed

to inference about the specific collapsing, as we have already discussed.

[Figure 1 about here]
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[Figure 2 about here]

6 Real Data Examples

We now consider some practical examples.

Example 6. Satisfaction with cars survey.

This example concerns a pan-European survey on driver satisfaction with

their cars. The survey was done in 2001 by TNS, a well-known European

marketing analytics company. Data were given to Zvi Gilula on condition

that if used for publication, no disclosure of the make of the underlying cars

is permitted. The survey was carried out on 10 different compact cars made

in Europe and Japan and was done independently in 5 countries (Italy, Ger-

many, Spain, UK, and France). The same 10- category scale was originally

used and then was adapted for each country to allow ranking of cars by their

distribution of satisfaction following the methodology reported by Yakir and

Gilula (1999).

In France, a 5-category scale was used while in Germany a 3-category scale

was used. The following satisfaction data were obtained based on samples of

627 in France and 501 in Germany on a car that is not made in any of these

countries.

[Table 8 about here]

[Table 9 about here]
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In Figure 3 we have plotted the prior and posterior densities for the squared

distance used in model checking. In this case the P-value is effectively 0

and we have strong evidence against collapsing. This suggests that French

and German respondents have fundamentally different attitudes (possibly

cultural) towards this make of car.

[Figure 3 about here]

Example 7. Student evaluation data.

Students’instructor evaluation at the Hebrew University has been done

for years on a 20-category scale. In the year 2000, the provost established a

professional committee to re-examine the entire evaluation methodology and

come up with recommendations for improvement. One major recommenda-

tion was to replace the original scale by an 11-category scale. An experiment

was carried out by one of us (Gilula) on second year BA students in psychol-

ogy taking a course in "research methods". The class had about 140 students

and 105 of them filled the regular 20-category form. A sample of anonymous

43 of them later filled in the 11-category form. Although the two underlying

samples are not fully independent, we used our proposed methodology for

illustrative purposes. The data appears in the following tables.

[Table 10 about here]

[Table 11 about here]

23



There are
(
19
10

)
= 92, 378 possible collapsings. With this number the com-

putation time for the model checking is considerable but the computations

for inference about the true collapsing are still very fast. In Figure 4 we

have plotted the prior and posterior densities for the squared distance used

in model checking. We see that the posterior has concentrated much more

closely about 0 than the prior. In fact the P-value here is 0.967 so there is

clearly no evidence against the model.

[Figure 4 about here]

We then proceeded to make inference about which of the possible collaps-

ings was appropriate. Experience with these surveys lead to the hypothesis

that an appropriate collapsing was given by (4, 5, 7, 8, 10, 11, 13, 15, 17, 19, 20).

In Figure 5 we have plotted the relative belief ratios for each of the collapsings

where they are labelled sequentially according to the ordering we discussed

in Example 1. The hypothesized collapsing corresponded to #86388, with

relative belief ratio equal to 45.477, while the LRSE corresponds to collaps-

ing #81260, with relative belief ratio equal to 47.987. So the hypothesized

collapsing is well supported and in fact the P-value equaled .991 when we

tested the null hypothesis that this is the true collapsing. The LRSE collaps-

ing is given by (3, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20) which we see is similar to the

hypothesized collapsing. Note that because we are using uniform priors, the

LRSE is also the posterior mode.
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[Figure 5 about here]

7 Conclusions

We have formalized the problem of collapsing one categorical ordinal scale

into another as an inference problem. Inferences then proceed by placing a

prior on the parameter for the finer scale and a prior on the set of collapsings

and applying Bayesian methodology. We have developed a test to assess

whether or not a collapsing makes sense for a given data set. Furthermore,

we have discussed how one can convert one scale into another and assess the

uncertainty in such a conversion. The authors will be happy to provide the

R code that was used to implement the calculations.
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partition( )\prior[ ] [0, 0, 0] [10, 0, 0] [10, 10, 0] [1, 1, 1] [−.5, 0, 0]
(1, 2, 5) .167 .011 .004 .143 .229
(1, 3, 5) .167 .011 .040 .190 .229
(1, 4, 5) .167 .011 .239 .143 .229
(2, 3, 5) .167 .121 .040 .190 .114
(2, 4, 5) .167 .121 .438 .190 .114
(3, 4, 5) .167 .725 .239 .143 .086

Table 1: Several priors on partitions in Example 1.
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partition( )\prior[ ] [0, 0, 0] [10, 0, 0] [10, 10, 0] [1, 1, 1] [−.5, 0, 0]
(1, 2, 5) .007 .001 .000 .006 .007
(1, 3, 5) .189 .018 .037 .185 .208
(1, 4, 5) .181 .017 .162 .167 .199
(2, 3, 5) .200 .176 .059 .208 .189
(2, 4, 5) .398 .351 .714 .409 .376
(3, 4, 5) .025 .437 .028 .024 .020

Table 2: Posterior probabilities on partitions for priors in Example 1.
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partition( )\prior[ ] [0, 0, 0] [10, 0, 0] [10, 10, 0] [1, 1, 1] [−.5, 0, 0]
(1, 2, 5) 0.042 0.091 0.000 0.042 0.031
(1, 3, 5) 1.132 1.636 0.925 0.974 0.908
(1, 4, 5) 1.084 1.546 0.678 1.168 0.869
(2, 3, 5) 1.198 1.455 1.475 1.095 1.658
(2, 4, 5) 2.383 2.901 1.630 2.153 3.298
(3, 4, 5) 0.150 0.603 0.117 0.168 0.233

Table 3: Relative belief ratios for partitions in Example 1.
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scale I scale II
1 1
2 1
3 2
4 2
5 3

Table 4: Conversion of scale I to scale II in Example 1 using LRSE collapsing.
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scale I scale II scale II scale II scale II(LRSE) scale II
1 1 1 1 1 1
2 2 2 1 1 1
3 2 2 2 2 1
4 3 2 3 2 2
5 3 3 3 3 3

Table 5: A .95 credible region (based on the partitions in (8)) for conversion
of scale I to scale II in Example 1 when using the uniform prior.
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scale II scale I scale I scale I scale I (LRSE) scale I
1 1 1 1 1 3
2 3 3 3 3 4
3 5 5 5 5 5

Table 6: Possible conversions of scale II to scale I in Example 1 when using
the uniform prior and based on partitions in the .95-relative surprise region.
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scale II \ scale I 1 2 3 4 5
1 4/7 3/7 0 0 0
2 0 0 2/3 1/3 0
3 0 0 0 0 1

Table 7: Conversion probabilities for converting scale II to scale I in Example
1 based on the LRSE partition.
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1 2 3 4 5
19 19 107 225 257

Table 8: Car satisfaction data for scale I.
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1 2 3
5 381 115

Table 9: Car satisfaction data for scale II.

36



1 2 3 4 5 6 7 8 9 10
3 3 0 0 3 0 3 0 3 0
11 12 13 14 15 16 17 18 19 20
3 0 6 6 6 0 12 6 12 39

Table 10: Student evaluation data for scale I.
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1 2 3 4 5 6 7 8 9 10 11
2 1 1 0 1 1 3 6 5 7 16

Table 11: Student evaluation data for scale II.
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Figure 1. The prior (- -) and the posterior (—) densities of dH0 in Example 5.

39



0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

squared distance

re
la

tiv
e 

be
lie

f

Figure 2. The relative belief ratios of dH0 in Example 5.

40



0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

20

squared distance

de
ns

ity

Figure 3. The prior (- -) and the posterior (—) densities of dH0 in Example 6.
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Figure 4. The prior (- -) and the posterior (—) densities of dH0 in Example 7.
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Figure 5: The relative belief ratios of the collapsings in Example 7.
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