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Bayesian Factor Analysis via Concentration

Cao∗, Y., Evans∗, M. and Guttman†, I.

Abstract : We consider factor analysis when we assume the distribution form is known up

to its mean and variance. A prior is placed on the mean and variance and then inference is

made as to whether or not any latent factors exist. Inference is carried out by comparing the

concentrations of the prior and posterior about various subsets of the parameter space that

are specified by hypothesizing factor structures. An importance sampling algorithm is de-

veloped to handle the case where the prior on the correlation matrix is uniform, independent

of the prior on the location and scale parameters.

Key words and phrases: factor analysis, Bayesian inference, concentration, importance sam-

pling.

1 Introduction

Suppose that y ∈ Rp has unknown mean µ ∈ Rp and variance Σ ∈ Rp×p. A factor model

corresponds to saying that Σ possesses a particular structure, namely,

Σ = ΓqΓ
′
q + Ψ (1)

where 0 ≤ q ≤ p, Γq ∈ Rp×q of rank q and Ψ is diagonal with nonnegative entries. The

structure (1) arises from the existence of latent factors f ∈ Rq, having distribution with

∗Department of Statistics, University of Toronto
†Department of Mathematics and Statistics, SUNY at Buffalo
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mean 0 and variance I, and unique variables e ∈ Rp, uncorrelated with f and having mean

0 and variance Ψ, such that y = µ + Γqf + e. Note that when q = p, then we can take

Γq = Σ1/2 (the symmetric square root of Σ) and Ψ = 0 and so (1) is always correct for some

q. When q = 0, then Γq = 0 and the response variables are independent. The point of a

factor analysis is to identify the smallest q such that (1) holds and and further choose Γq to

help in providing interpretations for the latent factors.

For any orthogonal matrix Q ∈ Rq×q, we have that when (1) holds, then Σ = ΓqΓ
′
q +Ψ =

(ΓqQ)(ΓqQ)′ + Ψ and so Γq is not unique. We partially avoid the nonuniqueness by noting

that Γq can be written uniquely as Γq = TQ where Q ∈ Rq×q is orthogonal and T ∈ Rp×q is

lower triangular with nonnegative diagonal elements. We require Γq to be lower triangular

with nonnegative diagonal elements hereafter, effectively taking Q = I, although we will

weaken this restriction slightly for the computations. After Γq is estimated, rotations can

be applied as is usual in factor analysis.

Likelihood methods are often used for factor analysis but these are well-known to suffer

from various computational challenges. In fact, without sometimes fairly arbitrary restric-

tions being placed on the estimates, it can happen that software does not produce sensible

answers (see, for example, Cao (2010)). So we consider the use of Bayesian methodology for

this problem.

One Bayesian approach to factor analysis proceeds as follows. Let π∗
q be the prior proba-

bility that the model with q common factors is correct for q = 0, . . . , p, and let πq be a prior

on (µ,Ψ,Γq). After observing a sample Y = (y1 · · ·yn), we have the posterior distributions

πq(· |Y) for inferences about (µ,Ψ,Γq), and the posterior probability π∗
q (Y) that the model

with q factors is correct. One common method of selecting q is based on the π∗
q (Y), e.g.,

choose the submodel with largest posterior probability. Alternatively we could choose the

model with the largest Bayes factor. When the prior model probabilities are uniform, then

these two criteria agree.
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There are several difficulties associated with this approach. First, we need to specify

p + 1 prior distributions and prior model probabilities. This requires that, for the model

with q factors, we have information about the relevant Γq, as specified in a q[p− (q − 1)/2]

dimensional distribution, and we need this for q = 0, . . . , p. This involves a demanding

amount of elicitation. To avoid this, we might place default priors on these quantities,

but such priors are typically improper. This leads to ambiguities concerning the proper

interpretation of posterior model probabilities and Bayes factors due to the dependence of

these quantities on arbitrary constants multiplying improper priors. Further, these factor

models are nested and, as such, considerations such as those discussed in Ghosh, Delampady

and Samanta (2006), Section 6.7, are relevant.

While various solutions to these problems have been proposed, we take a very simple

approach here that avoids these difficulties. We place a single prior on (µ,Σ) and assess a

submodel by comparing the concentration of the prior around the subset of the parameter

space specified by the submodel, with the concentration of the posterior about this subset.

Intuitively, if the posterior concentrates much more about this subset than the prior, then we

have evidence via the data, of the plausibility of the submodel. We discuss how to measure

concentration and how to compare the prior and posterior concentrations in Section 2. In

Section 3 we discuss a measure of concentration in factor analysis models. In Section 4 we

develop a computational approach using a prior for which elicitation is relatively straightfor-

ward, namely, we place a uniform prior on the correlation matrix. In Section 5 we consider

inferences and some applications involving simulated and real data.

Lee (2007) is an excellent, up-to-date discussion of current developments in Bayesian

factor analysis. Also, relevant material can be found in Bartholomew (1987), Press and

Shigemasu (1989), Lee and Press (1998), and Lopes and West (2004).
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2 Concentration and Hypothesis Assessment

Suppose that we have a probability measure P on a set X and we want to measure to what

extent P concentrates about C ⊂ X . This concentration cannot be measured simply by

P (C) as, for two sets with the same probability content the remaining probability may be

much more widely dispersed for one than the other. For the applications we consider, the

probability content of subsets C of interest are equal to 0 and so it is how the probability is

distributed on Cc that is relevant. In such a case the most obvious measure of concentration

is EP (d(x, C)) where d(x, C) = inf{d(x, y) : y ∈ C} for some distance measure d(x, y) on

X×X . This can be seen as a generalization of the concept of variance by taking C = {EP (X)}

and d(x, y) = ‖x− y‖2 , where ‖·‖ is the Euclidean norm. Clearly the more the distribution

of d(x, C) concentrates near 0 the more concentrated P is about C.

Now suppose that we have a statistical model {Pθ : θ ∈ Θ}, a prior Π on Θ and we

want to assess the hypothesis that the true value of θ ∈ H0 ⊂ Θ after observing the data x.

Perhaps the most natural method of assessing this hypothesis is to compute the posterior

probability Π(H0 | x) and regard this as evidence against H0 when it is small. A difficulty

with this approach is that, when Π(H0) is small, then a large amount of data may be needed

to make Π(H0 | x) large enough to be convincing. In fact, if Π assigns 0 probability to H0,

simply because it is a lower dimensional set of Θ, then Π(H0 | x) = 0 no matter what data

is obtained.

If we are making inference about a marginal parameter Ψ defined on Θ, then H0 =

Ψ−1{ψ0} for some specified value ψ0, and various approaches can be taken to deal with

the problem caused by Π(H0) = 0. When no Ψ naturally exists, as in the factor analysis

problem we are discussing, then we have to choose one and taking Ψ(θ) = d(θ,H0) seems

like a reasonable choice. Clearly, the degree to which Π (or Π(· | x)) concentrates about

H0, is a measure of our belief in H0 a priori (or a posteriori) and the prior (or posterior)
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concentration of the distribution of d(θ,H0) about 0 is measuring this.

Accordingly, we look at comparing the concentrations of the prior and the posterior

probability measures aboutH0. If the null hypothesis is true, i.e., the true value θ∗ ∈ H0, then

we expect that the data will lead to a greater concentration of the posterior distribution about

H0 than the prior distribution. In fact, under weak conditions, the posterior distribution

will concentrate on θ∗ as we increase the amount of data, and so the posterior distribution

of d(θ,H0) will converge to d(θ∗, H0) = 0 when θ∗ ∈ H0, and converge to a nonzero value

otherwise. So no matter how we choose d, for large amounts of data we can expect the

posterior distribution of d to indicate whether or not H0 holds.

To calibrate to what degree the posterior distribution of d(θ,H0) is concentrating about

0, we compare its posterior distribution to its prior distribution. So, it is necessary to decide

how we will compare the prior and posterior distributions of d. For this we look at the ratio

of the posterior density to the prior density of d at 0, namely, πd(0 | x)/πd(0) which measures

the change in belief in H0 from a priori to a posteriori. To calibrate this we compute the

P-value

Π

(
πd(d(θ,H0) | x)

πd(d(θ,H0))
≤
πd(0 | x)

πd(0)
| x

)
(2)

which is the posterior probability of an increase in belief, from a priori to a posteriori, in

the distance of the true value of θ from H0, that is no greater than that obtained when the

hypothesis is true. So when (2) is near 0 the increase in belief is much greater for values of

θ /∈ H0 and we interpret this as evidence that H0 is false. We note that if we were to change

d to e(d), where e is any 1-1, smooth transformation, then (2) does not change its value.

Further, Evans and Shakhatreh (2008), establish various optimality properties for inferences

based on (2) in the class of all Bayesian inferences.

Comparing the concentration of the prior and posterior measures about a hypothesis

of interest, as a method for assessing this hypothesis, has been previously discussed in the

literature. For example, Evans, Gilula and Guttman (1993) and Evans, Gilula, Guttman and
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Swartz (1997) used this idea in the context of contingency tables. In those papers, however,

the concentrations were compared simply via graphing the prior and posterior densities of

d. In this paper we use a more precise comparison via (2).

3 Concentration for Factor Analysis Models

Basically we are trying to identify the smallest number of factors that effectively explain

the correlations among the response variables. To reflect this we adopt a slightly different

parameterization. For this let Σ = ∆1/2Ξ∆1/2 where Ξ is the correlation matrix and ∆ =

diag(σ11, . . . , σpp). Then we can write ∆−1/2(y − µ) = Γqf + e where e and f are as before

but now Γq is lower triangular with nonnegative diagonal elements and
∑min(i,q)

k=1 γ2
ik +ψi = 1

for i = 1, . . . , p. We note that the ψi values are now determined by the values in Γq. This

leads to the equation

Ξ = ΓqΓ
′
q + Ψ (3)

and we set Hq
0 equal to the set of all p×p matrices of the form given by (3) where Γq is lower

triangular with nonnegative diagonal elements and
∑min(i,q)

k=1 γ2
ik + ψi = 1 for i = 1, . . . , p.

While our methods will address Hq
0 as given by (3) our approach can also be applied to Hq

0

as given by (1), but we believe (3) is more relevant for factor analysis.

We will now proceed to discuss how we will measure the concentration of the prior or

posterior about Hq
0 . For this we need a measure of the distance of an arbitrary correlation

matrix Ξ from Hq
0 . While there are many possible choices, it seems natural to base this on

the squared Frobenius distance which, for positive semidefinite matrices Σ(1),Σ(2), is given

by

d(Σ(1),Σ(2)) =

p∑

i=1

(
σ

(1)
ii − σ

(2)
ii

)2

+ 2
∑

i<j

(
σ

(1)
ij − σ

(2)
ij

)2

.

This simplifies for correlation matrices to d(Ξ(1),Ξ(2)) = 2
∑

i<j(ξ
(1)
ij − ξ

(2)
ij )2. So, for a given

correlation matrix Ξ we want to find d(Ξ, Hq
0) and for this we need to be able to solve
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the following optimization problem. For a given correlation matrix Ξ we need to find the

minimum, as a function of Γq, of

∑

i<j



ξij −
min(i,q)∑

k=1

γikγjk




2

(4)

where γii ≥ 0 for i = 1, . . . , q and
∑min(i,q)

k=1 γ2
ik ≤ 1 for i = 1, . . . , p. Note that (4) is invariant

under multiplying any column of Γq by −1 so instead we can consider minimizing (4) subject

to the simpler constraint that the i-th row of Γq lies in the unit ball Bmin(i,q)(0) centered at

the origin in Rmin(i,q). Therefore, to minimize (4) as a function of Γq, we have to find the

point in the Cartesian product of spheres Bmin(1,q)(0)×· · ·×Bmin(p,q)(0) where this minimum

is attained. Note that (4) is continuous on this compact set and so an absolute minimum is

attained.

When q = 0 then, since Γ0 = 0, the minimized value of (4) is
∑

i<j ξ
2
ij . For other values

of q, however, we cannot obtain a closed form expression and need to proceed iteratively.

Consider the case when q = 1, so we need to minimize
∑

i<j(ξij − γi1γj1)
2. First we start

with (γ11(0), . . . , γp1(0)) ∈ B1(0) × · · · ×B1(0) which is the p-fold Cartesian product of the

interval [−1, 1]. We can write

∑

i<j

(ξij − γi1(0)γj1(0))2 =

(
p∑

j=2

γ2
j1(0)

)
γ2

11(0) − 2

(
p∑

j=2

ξ1jγj1(0)

)
γ11(0) + c

where c is a constant as a function of γ11(0). If
∑p

j=2 γ
2
j1(0) 6= 0, then this quadratic in γ11(0)

is minimized by γ11(0) equal to

p∑

j=2

ξ1jγj1(0)/

p∑

j=2

γ2
j1(0). (5)

If (5) is not in [−1, 1], then the quadratic is minimized over this interval by setting γ11(0)

equal to −1, when (5) is less than −1, or setting γ11(0) equal to 1, when (5) is greater than

1. If
∑p

j=2 γ
2
j1(0) = 0, then

∑p
j=2 ξ1jγj1(0) = 0, and there is no dependence on γ11(0) so we

set γ11(1) = γ11(0). In any case we replace γ11(0) by the value γ11(1) that minimizes the
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quadratic over [−1, 1] or we don’t change its value. After updating γ11 we next proceed to

replace γ21(0) by the value γ21(1) that minimizes the quadratic in γ21(0) over [−1, 1] based

on the same argument. We continue cycling through the variables in this way. We call this

algorithm constrained univariate quadratic iteration.

We see immediately that at each step of the iteration the value of (4) never increases.

Since (4) is bounded below by 0, this implies that the iteration converges to a minimum

value. The convergence is typically very fast. This minimum value, as we will see, depends

on the starting value and so we are not guaranteed to obtain the absolute minimum from a

given starting value. Accordingly, we proceed as follows. We select m i.i.d. starting points

from the uniform distribution on B1(0)×· · ·×B1(0) and compute the m minima d1, . . . , dm

via this iterative procedure applied to each starting value. We then estimate d(Ξ, H1
0) by

d(1):m, i.e., the smallest order statistic. The values d1, . . . , dm comprise an i.i.d. sample

from a distribution with compact support in R1 and so we have that d(1):m converges in

probability to the minimum value in this support, which is the absolute minimum of (4).

Actually, computational experience indicates that there are typically a very small number

of minima for a given Ξ and often there is only 1. So this represents an efficient method for

computing d(Ξ, H1
0).

The same iterative procedure works for general q with generating the starting values

uniformly in Bmin(1,q)(0)×· · ·×Bmin(p,q)(0). The following result is proved in the Appendix.

Proposition 1. Constrained univariate quadratic iteration with Γq(0) ∈ Bmin(1,q)(0)×· · ·×

Bmin(p,q)(0), always gives a nonincreasing sequence of values of (4) and as such converges.

The convergence of Γq(k)Γ
′
q(k) + Ψ(k) is not necessary for the assessment of Hq

0 but in

our experience it is always the case that this occurs. In fact the Γq(k) sequence typically

converges to a point in Bmin(1,q)(0) × · · · × Bmin(p,q)(0) but this depends on Ξ and the

starting value Γq(0). Since Bmin(1,q)(0) × · · · × Bmin(p,q)(0) is compact this sequence always

has a convergent subsequence but at this point we have not been able to prove that there is
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only one limit point.

We now consider some examples of using constrained univariate quadratic iteration to

compute the distance.

Example 1. First we consider a correlation matrix of the form Ξ = Γ1Γ
′

1 + Ψ, i.e.,

the correlation matrix arises from a 1-factor model, and we want to compute d(Ξ, H1
0). The

minimization algorithm should converge to the actual distance 0. Suppose we take p = 6 and

Γ1 = (1, 1, 1, 1, 1, 1)′ so Ψ is a matrix of zeros. To assess the performance of the minimization

algorithm, we generated 103 starting values Γ1(0) uniformly in B1
1(0)×· · ·×B1

1(0) and applied

the algorithm to each case. For the stopping rule, we iterated until the squared distance

between two successive Γ1(i) was less than 10−5. In this case all the minimum distances

were equal to 0. The mean number of iterations required to attain the minimum was 2.884

and the maximum number required was 4. The convergence was very fast.

Now suppose the correlation matrix possesses a two factor structure, namely, Ξ = Γ2Γ
′

2+

Ψ and we want to compute d(Ξ, H2
0). The exact distance in this case is again 0. Suppose

p = 8 and

Γ2 =



 0.8 0 0.8 0.8 0 0 0.8 0.6

0 0.8 0 0 0.8 0.8 0 0.6





′

so Ψ is not the zero matrix in this case. We used 103 starting values generated uniformly

from a point in B1(0)×B2(0)×· · ·×B2(0) and stopped the iteration when the precision 10−5

was reached. For a two factor model, the iterative process takes longer with a mean number

of 20 and a maximum of 47 iterations but still it converges very quickly. The minimum

distance obtained was d(1):m = 8.678564 × 10−7 while the maximum distance was equal to

1.459. To 4 decimal places there were 999 instances of the distance equaling 0. So effectively

we found only 2 minima with the absolute minimum equaling 0.

In practice we do not need anything like 103 starting values to compute the absolute

minimum. It is the case, however, that as q increases the number of iterations required to
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achieve a given precision increases. We can offset this, however, with a generalization of

constrained univariate quadratic iteration where we proceed by iterating on the rows of Γq

rather than individual entries. This generalization is discussed in Cao (2010).

4 Prior and Posterior Computations

For the sampling model we will assume that the observed data Y ∈ Rn×p is a sample from

a Np(µ,Σ) distribution with (µ,Σ) completely unknown. A commonly used proper prior is

the conjugate prior given by

Σ−1 ∼Wp(k0,A0), µ |Σ ∼ Np(µ0, σ
2
0Σ) (6)

where Wp denotes the Wishart distribution on p × p matrices and µ, σ2
0, k0 and A0 are

hyperparameters. While computations with (6) are straightforward, specifying the hyper-

parameters is not. Suppose, however, we write Σ =∆1/2Ξ∆1/2 where ∆ = diag(δ1, . . . , δp),

and specify a prior as

Ξ ∼ Uniform(Cp),

δ−1
i ∼ Gamma (α0i, β0i) for i = 1, . . . , p,

µ |Σ ∼ Np(µ0, σ
2
0Σ), (7)

where Cp is the space of all p×p correlation matrices, and the (α0i, β0i) are hyperparameters.

We note that Cp is a compact set and so the Uniform(Cp) prior is proper. Knowledge about

the manifest variables yi leads to simple elicitation arguments for the µ0i, σ
2
0, and (α0i, β0i)

hyperparameters (see Cao (2010)). Further (7) avoids any need to elicit a prior for the

correlations and the prior is proper. The use of a uniform prior on Ξ has received some

discussion in, for example, Bernard, McCulloch, and Meng (2000), but it is not commonly

used.
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Perhaps the primary reason for the lack of use of the uniform prior on Ξ concerns the

computations. For our application we need to determine the distributions of d(Ξ, Hq
0) when

Ξ ∼ Uniform(Cp) for the prior and when Ξ follows the posterior distribution induced by

(7). For the prior there is an excellent algorithm due to Ghosh and Henderson (2003), called

the onion method, and so we can simulate from the prior distribution of d(Ξ, Hq
0) by first

generating Ξ ∼ Uniform(Cp), and then using constrained univariate quadratic iteration to

obtain d(Ξ, Hq
0).

It is much more difficult, however, to simulate exactly or even approximately from the

posterior distribution of d(Ξ, Hq
0). For example, it is not clear at all that there is a good

Gibbs sampling algorithm for this distribution as it is very complicated to work with. Of

course, our goal is not to simulate from this posterior but rather evaluate (2). We develop

an effective importance sampler for this purpose that in fact allows for priors more general

than (7). The following result is proved in the Appendix.

Proposition 2. Suppose that Y ∈ Rn×p is a sample from a Np(µ,Σ) distribution, µ |Σ ∼

Np(µ0, σ
2
0Σ) and let π1 denote a prior on ∆ and π2 a prior on Ξ with ∆ and Ξ a priori inde-

pendent. Then the posterior density of J =Σ−1 is proportional to a Wp(n− p+ 1, A−1(Y))

density times

k(J ) = π1(diag(J −1))π2((diag(J −1))−1/2J −1(diag(J −1))−1/2)|diag(J −1)|−(p−1)/2

where A(Y) = (n− 1)S + n(nσ2
0 + 1)−1(ȳ − µ0)(ȳ − µ0)

′

.

This shows that the posterior density of Σ−1 factors as a Wishart density times a function of

J −1 = Σ that does not involve the data Y. This function only depends on the prior π1 on

∆ and the prior π2 on Ξ. Depending on how we choose π1 and π2, this can lead to a simple

importance sampling algorithm for approximating integrals with respect to the posterior.

For our importance sampler we will use the Wp(A
−1(Y), n − p + 1) distribution. This is

typically the “hard” part of the density as it contains all the dependence on the data.
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The following result is proved in the Appendix.

Corollary 3. If π2 is the uniform prior on Ξ, and

(i) π1 is the product of inverse Gamma (α0i, β0i) densities, then

k(J ) =

p∏

i=1

σii
−α0i−(p+1)/2 exp{−β0i/σii},

(ii) π1 is the product of log-N(α0i, β0i) densities, then

k(J ) =

p∏

i=1

β−1
0i σ

−1−(p+1)/2
ii exp{−(log σii − α0i)

2/2β2
0i}.

Note that in both cases k(J ) is a fairly simple function of the σii.

In the following section we present examples of computing the prior and posterior densi-

ties of d(Ξ, Hq
0) for various q and applying these to the computation of (2). One numerical

problem that arises in the computation of (2) is the need to compute πd(0 | x)/πd(0). This

is difficult because, at least when calculating the densities with respect to length measure,

both terms in the ratio are close to 0. What we really want, however, is limǫց0 πd(ǫ | x)/πd(ǫ).

Accordingly, we approximate this limit by πd(dα | x)/πd(dα) where dα is the α-th prior quan-

tile of d(Ξ, Hq
0) since dα → 0 as α → 0. We choose α small, e.g., α = 0.01, and the Monte

Carlo sample size large enough so that an accurate estimate can be obtained for dα. This

procedure was found to work well in a wide variety of examples.

5 Inferences and Examples

For inferences for factor analysis we proceed as follows. First we assess the hypothesis H0
0 . If

we obtain evidence against H0
0 , via the evaluation of (2), then we proceed to assess H1

0 , via

the corresponding value of (2), etc. So proceeding iteratively in this fashion we stop at the

(q+1)-st step when we obtain evidence against Hq+1
0 and then proceed as if Hq

0 is true. This

approach seems natural as our goal is to fit the factor model with the minimum number of

factors required to explain the observed correlations.
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Suppose then that we have selected the factor model with q factors. This says that

the true correlation matrix satisfies (1) and we must estimate Ξ based on this restriction.

Naturally we want to choose our estimate to be in Hq
0 . Since this set is not convex, it doesn’t

make sense to use the conditional expectation given that Ξ ∈ Hq
0 , as we are not guaranteed

this value is in Hq
0 . The conditional posterior density of Ξ, given that d(Ξ, Hq

0) = 0, is not

available in closed form and this makes computing the conditional posterior mode virtually

impossible.

An alternative approach is to maximize the integrated likelihood conditional on Ξ ∈ Hq
0

and this can be be shown to be equivalent to maximizing the likelihood, after integrating out

µ and ∆, restricted to Ξ ∈ Hq
0 . Again this is a very difficult computation and we can expect

algorithmic difficulties similar to those that occur with likelihood methods. Our approach

here, however, leads to a natural approximation to this quantity.

For this let Ξ̂ denote the plug-in MLE of Ξ, i.e., the estimate obtained from the MLE of

Σ given by (n−1)n−1S. Now let Ξ̂q denote the point in Hq
0 that is closest to Ξ̂ and note that

this can be computed by our algorithm. We take Ξ̂q as our estimate of Ξ. Certainly, when

Hq
0 is true, then Ξ̂ converges to a point in Hq

0 and so Ξ̂q will also converge to the true value.

Furthermore, we can quantify the uncertainty in Ξ̂q by looking at the posterior distribution

of d(Ξ, Ξ̂q) and comparing this to its prior distribution to assess how much the data have

increased our belief in the estimate.

Corresponding to Ξ̂q there is a Γ̂q and so we could use this as an estimate of the factor

loadings. It should be noted, however, that there is in general no guarantee that there is

only one such lower triangular matrix of factor loadings that will satisfy Ξ̂q = Γ̂qΓ̂
′
q + Ψ̂,

where Ψ̂ is determined from Γ̂q as previously described. Of course we can also postmultiply

Γ̂q by a q × q orthogonal matrix to obtain more interpretable loadings.

We now consider implementing these inferences in several examples.

Example 2. Simulated Data
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We first consider simulating the data Y from a distribution with correlation matrix Ξ ∈H2
0

where Γ2 ∈ R8×2 is as given in Example 1. In this case the entries in the correlation matrix

above the main diagonal are as given in Table 1.

0.00 0.64 0.64 0.00 0.00 0.64 0.48

0.00 0.00 0.64 0.64 0.00 0.48

0.64 0.00 0.00 0.64 0.48

0.00 0.00 0.64 0.48

0.64 0.00 0.48

0.00 0.48

0.48

Table 1: The true correlation matrix (above diagonal) in Example 2.

The prior chosen was as given in (7) with (α0i, β0i) = (1, 1) for i = 1, . . . , p, µ0 = 0 and

σ2
0 = 1. We generated a sample of n = 200 values from the N8(0,Γ2Γ

′
2 + Ψ) distribution. In

Figure 1 we have plotted the prior and posterior densities for the q = 0, 1, 2 cases. We see

that the posterior becomes increasingly concentrated about 0 as q increases. The P-values

given by (2) equal 0 for q = 0, 1.7 × 10−5 for q = 1, and 1 for q = 2. So we have evidence

against H0
0 and H1

0 , and no evidence against H2
0 .
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Figure 1: The prior (—) and the posterior (– –) densities of the distance for q = 0, 1, and 2

in Example 2.

We obtained

Γ̂2 =



 0.804 0.046 0.784 0.755 0.068 0.064 0.774 0.717

0.000 0.797 0.076 0.067 0.783 0.785 −0.021 0.528





′

and from this we obtain Ξ̂2 as provided in Table 2. We see that our procedure has performed

quite well.

0.0370 0.630 0.607 0.054 0.052 0.622 0.576

0.097 0.088 0.627 0.628 0.019 0.454

0.597 0.112 0.110 0.605 0.602

0.103 0.101 0.583 0.576

0.618 0.036 0.462

0.033 0.460

0.544

Table 2: The estimated correlation matrix (above diagonal) in Example 2 when q = 2.

To assess the accuracy of the importance sampling, we estimated the coefficient of

variation of the importance sampling estimator of the normalizing constant for the pos-

terior. For a Monte Carlo sample of size N, the coefficient of variation is given by CV =

N−1(N
∑N

i=1w
2
∗i−1) where, for this case, w∗i = k(Ji)/

∑N
j=1 k(Ji). A value of

∑N
i=1w

2
∗i close

to 1/N indicates that the importance sampling is working while a value near 1 indicates a

failure. In this case, we used N = 105 for the posterior calculations and we obtained the

values in Table 3. The results indicate that the importance sampling is working very well

and this was found to be the case in a number of examples (see Cao (2010) for further

discussion).
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∑N
i=1w

2
∗i CV

q = 0 1.938 × 10−5 9.38 × 10−6

q = 1 1.776 × 10−5 7.76 × 10−6

q = 2 1.780 × 10−5 7.80 × 10−6

Table 3: Sums of squared normalized importance sampling weights and coefficients of vari-

ation in Example 2.

Example 3. Currency Exchange Data

We now consider a data set involving monthly international exchanges rates (n = 144)

available in West and Harrison (1997). These time series are the monthly changes in ex-

change rates in British pounds of the following p = 6 currencies: US dollar (US), Canadian

dollar (CAN), Japanese yen (JAP), French franc (FRA), Italian lira (ITA) and the German

Deutschmark (GER). The data span the period from January of 1975 to December of 1986

inclusive. For this data the correlation matrix is given by Table 4.

CAN JAP FRA ITA GER

US 0.858 0.801 −0.453 −0.501 0.148

CAN 0.429 −0.144 −0.075 0.191

JAP −0.446 −0.652 0.043

FRA 0.922 0.068

ITA 0.067

Table 4: Sample correlations in Example 3.

In West and Harrison (1997), it was determined that up to three principal components

are needed by using various principal component analyses. Although the dimension has been

reduced to half, it offers no simplification based on a degrees of freedom argument. In other

words, the factor model contains as many parameter as Σ. Also the maximum likelihood
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approach failed to converge for this data set.

Lopes and West (2004) developed a reversible jump MCMC algorithm to handle the

change in dimension as q changes, for the model with a prior on the model parameters for

each q. They chose very diffuse but proper priors. They concluded that two factors are

needed to explain the correlation structure.

Our analysis is based on the prior specified in (7). As noted this greatly simplifies the

specification of the prior. For the N6(µ0, σ
2
0Σ) prior we took µ0 = (1.8, 2.1, 430.6, 10.1,

1984, 12.4)′, where the individual entries are the sample means of these quantities, and

σ2
0 = 100 was chosen to reflect ignorance about the locations parameters. We note that all

other Bayesian factor analyses that we are aware of, have effectively set σ2
0 = 0 so that all

the prior probability for µ is concentrated at the sample means, while this is not a necessity

in our approach. For the scaling parameters, we used (α0i, β0i) = (2.2, 0.1) for i = 1, . . . , 6.

These choices are those made in Lopes and West (2004) and are made here for comparison

purposes. In an actual application we would want to elicit the values of µ0, σ
2
0 and the

(α0i, β0i) .

First we test the hypothesis H0
0 . The posterior and prior densities of d(Ξ, H0

0) are plotted

in in Figure 2.
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Figure 2: The posterior and prior densities of d(Ξ, H0
0) in Example 3.

We see that the posterior leads to much less concentration around 0 than the prior. The

P-value (2) equals 0 (to four decimal places) so we have strong evidence against the null
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hypothesis and conclude that q > 0, i.e., an independence model is not appropriate.

We now test H1
0 . The posterior and prior density comparison is presented in Figure 3.
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Figure 3: The posterior and prior densities of d(Ξ, H1
0) in Example 3.

The plot again shows that posterior leads to much less concentration around 0 than the prior

and the value of (2) is 0.0001. Thus we have strong evidence against the null hypothesis and

conclude that q > 1, i.e., a model with more than 1 factor is needed.

We now proceed to assess H2
0 and plot the prior and posterior densities in Figure 3.
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0
10

20
30

40

distance

prior
posterior

Figure 4: The posterior and prior densities of d(Ξ, H2
0) in Example 3.

This plot shows that posterior concentrates much more around 0 than the prior does. The

relative belief ratio at 0 is approximated by π(dα|X)/π(dα) = 17.2, where dα = 0.018 with

α = 0.01 and (2) equals 0.467. Therefore we do not have evidence against H2
0 and we

conclude that a 2-factor model is reasonable. This conclusion agrees with Lopes and West

(2004).
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We now estimate Ξ, given that Ξ ∈ H2
0 . Based on the entries in Table 4 we obtained

Γ̂2 =



 1.0 0.82345 0.72684 −0.45423 −0.50842 0.14552

0 0.37541 −0.27513 0.74464 0.86111 0.17547





′

,

and so the estimate Ξ̂2 is given by the entries of Table 5.

CAN JAP FRA ITA GER

US 0.823 0.727 −0.454 −0.508 0.146

CAN 0.495 −0.094 −0.095 0.186

JAP −0.535 −0.606 0.057

FRA 0.872 0.065

ITA 0.077

Table 5: Estimated correlations in Example 3 based on H2
0 .

We note that these are all relatively close to the values in Table 4 so the two factor model

seems appropriate. In Figure 5 we plot the prior and posterior densities of the distance from

Ξ̂2. This clearly shows a huge increase in belief for the estimate.
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Figure 5: Plots of prior (—) and posterior (– –) densities of distance to Ξ̂2 in Example 3.
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6 Conclusions

We have developed a Bayesian approach to factor analysis which has several attractive

features. First we only need to place a prior on the full model parameter (µ,Σ) rather than

a prior on each submodel. This cuts down on the need for extensive and difficult elicitation

or the imposition of default improper priors. Further we have developed a computational

approach that allows the use of a uniform prior on the correlation matrix. Accordingly, we

are only required to elicit priors for location and scaling parameters which can be easily

carried out in a variety of ways. The methodology is seen to work well in a variety of

examples. Further we believe that the same approach can be applied to a number of other

statistical problems and such applications are currently being developed.

7 Appendix

Proof of Proposition 1 We note first that if ax2 + bx + c is such that a > 0, then the

minimum of the quadratic occurs at −b/2a. If this value is not in an interval [l, u] then the

minimum of the quadratic over the interval occurs at l or u.

Note that when r < s, then γrs = 0 and so we need only consider the case r ≥ s. We see

that γrs occurs in terms of (4) only when i = r or j = r, so we can write (4) as

p∑

j=r+1



σrj −

min(r,q)∑

k=1

γrkγjk




2

+

r−1∑

i=1



σir −

min(i,q)∑

k=1

γikγrk




2

+ c (A1)

where c is some constant not involving γrs. Now when s = r ≤ q, then the second term in

(A1) does not involve γrr and so we need only consider the first term. We see immediately

that, as a function of γrr, the first term can be written as

(
p∑

j=r+1

γ2
jr

)
γ2

rr − 2

[
p∑

j=r+1

(
σrj −

r−1∑

k=1

γrkγjk

)
γjr

]
γrr + c (A2)

20



where c is a constant. Note that if
∑p

j=r+1 γ
2
jr = 0, then the coefficient of γrr in (A2) is also

0. When s < r, then note that s ≤ q and (A1) can be written as




p∑

j=max(r+1,s)

γ2
js +

r−1∑

i=s

γ2
is



 γ2
rs−

2





∑p
j=max(r+1,s+1)

(
σrj −

∑min(r,q)
k=1,k 6=s γrkγjk

)
γjs+

∑r−1
i=s

(
σir −

∑min(i,q)
k=1,k 6=s γikγrk

)
γis



 γrs + c (A3)

where c is a constant. Again if the coefficient of γ2
rs in (A3) is 0, then the coefficient of γrs

is 0. Now for 1 ≤ r ≤ q, then

γrr ∈



−
(
σrr −

r−1∑

k=1

γ2
rk

)1/2

,

(
σrr −

r−1∑

k=1

γ2
rk

)1/2


 (A4)

and

γrs ∈



−



σrr −

min(r,q)∑

k=1,k 6=s

γ2
rk

1/2



 ,



σrr −

min(r,q)∑

k=1,k 6=s

γ2
rk




1/2


 (A5)

otherwise.

Now just as in the q = 1 case we can select a starting Γq(0) and then iterate using (A2)

and (A3), to minimize each quadratic over the relevant interval as determined by (A4) and

(A5). So we might start with γ11(0) replacing it by γ11(1), and then, with this new value for

γ11, replace γ21(0) by γ21(1), etc. At each step the distance (4) does not increase and so the

sequence of distances converges to a minimum.

Proof of Proposition 2 The Jacobian of the transformation (∆,Ξ) → Σ is given by

|diag(Σ)|−(p−1)/2 and so the joint prior on (µ,Σ) is proportional to

|Σ|−1/2 exp

{
−

1

2σ2
0

(µ− µ0)
′

Σ−1(µ− µ0)

}
π1((diag(Σ))1/2)×

π2((diag(Σ))−1/2Σ(diag(Σ))−1/2)|diag(Σ)|−(p−1)/2.

Making the change of variable Σ → J = Σ−1, which has Jacobian |Σ|p+1, the prior density

21



of (µ,J ) is

|J |−(p+1/2)etr

{
−

1

2σ2
0

J (µ− µ0)(µ− µ0)
′

}
π1(diag(J −1))×

π2((diag(J −1))−1/2J −1(diag(J −1))−1/2)|diag(J −1)|−(p−1)/2.

The likelihood function is proportional (up to a constant function of the data and parameters)

to |Σ|−n/2etr{−(n/2)Σ−1(ȳ−µ)(ȳ−µ)
′

− (n− 1)/2)SΣ−1}, so the joint posterior of (µ,J )

is similarly proportional to

|J |n/2−(p+1/2)etr





− 1

2σ2
0
J (µ− µ0)(µ− µ0)

′

− n
2
J (ȳ − µ)(ȳ − µ)

′

− (n−1)
2

SJ




×

π1(diag(J −1))|π2((diag(J −1))−1/2J −1(diag(J −1))−1/2)|diag(J −1)|−(p−1)/2.

Now we have that

σ−2
0 (µ− µ0)

′

J (µ− µ0) + n(µ− ȳ)
′

J (µ− ȳ)

= (σ−2
0 + n)

(
µ−

σ−2
0 µ0 + nȳ)

σ−2
0 + n

)′

J

(
µ−

σ−2
0 µ0 + nȳ)

σ−2
0 + n

)

+ (σ2
0 + n−1)−1(µ0 − ȳ)′J (µ0 − ȳ)

Integrating out µ gives that the posterior of J is proportional (up to a constant function of

the data and parameters) to

|J |n/2−petr

{
−
A(Y)J

2

}
π1(diag(J −1))×

π2((diagJ −1)−1/2J −1(diagJ −1)−1/2)|diag(J −1)|
−(p−1)/2

where A(Y) = (n− 1)S + (σ2
0 + 1/n)−1(ȳ − µ0)(ȳ − µ0)

′

.

Proof of Corollary 3. When δi ∼ Inverse Gamma (α0i, β0i), and putting σii = δi, then

k(J ) =
∏p

i=1(1/δi)
α0i+1 exp(−β0i/δi)(δi)

−(p−1)/2 =
∏p

i=1(σii)
−α0i−(p+1)/2 exp(−βi/σii). A similar calculation applies to the log-normal case.
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