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Abstract

A question of some interest is how to characterize the amount of information
that a prior puts into a statistical analysis. Rather than a general characteriza-
tion of this quantity, we provide here an approach to characterizing the amount
of information a prior puts into an analysis, when compared to another base
prior. The base prior is considered to be the prior that best reflects the current
available information. Our purpose then, is to characterize priors that can be
used as conservative inputs to an analysis, relative to the base prior, in the sense
that they put less information into the analysis. The characterization that we
provide is in terms of a priori measures of prior-data conflict.

1 Introduction

Suppose we have two proper priors Π1 and Π2 on a parameter space Θ for a
statistical model {Pθ : θ ∈ Θ}. A natural question to ask is: how do we compare
the amount of information each of these priors puts into the problem? While
there are natural intuitive ways in which we can express this, such as prior
variances, it seems difficult to characterize this precisely in general, e.g., a prior
need not have a variance.

We suppose that Pθ(A) =
∫

A fθ(x) µ(dx), i.e., each Pθ is absolutely con-
tinuous with respect to a support measure µ on the sample space X , with the
density denoted by fθ. With this formulation a prior Π leads to a prior pre-
dictive probability measure on X given by M(A) =

∫
Θ Pθ(A) Π(dθ) =

∫
A m(x)

µ(dx), where m(x) =
∫
Θ

fθ(x) Π(dθ) is the density of M with respect to µ.
The specification of a model {Pθ : θ ∈ Θ} and a prior Π is equivalent to

specifying a joint probability model for (θ, x), namely Pθ ×Π. Once we observe
x, the principle of conditional probability implies that any probability state-
ments about θ must be computed using the posterior Π(· |x). If T is a minimal
sufficient statistic for {Pθ : θ ∈ Θ}, then it is well known that the posterior
is the same whether we observe x or T (x). So we will denote the posterior by
Π(· |T ) hereafter.
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Since T is minimal sufficient we know that the conditional distribution of x
given T is independent of θ. We denote this conditional measure by P (· |T ). We
now see that the joint distribution Pθ × Π can be factored as

Pθ × Π = M × Π(· |x) = P (· |T )× MT × Π(· |T ) (1)

where MT is the marginal prior predictive distribution of T.
While much of Bayesian analysis focuses on the third factor in (1), there

are also roles in a statistical analysis for P (· |T ) and MT . In [3] and [4] it is
argued that P (· |T ) is available for checking the sampling model, e.g., if x is a
surprising value from this distribution, then we have evidence that the model
{Pθ : θ ∈ Θ} is incorrect. Further it is argued that, if we conclude that we have
no evidence against the model, then the factor MT is available for checking
whether or not there is any prior-data conflict. So if T (x) is a surprising value
from MT , then we have evidence that the prior Π is placing most of its mass on
θ values where the likelihood is relatively low. This is supported by the fact that
T is equivalent to the likelihood map. Finally, if we have no evidence against
the model, and no evidence of prior-data conflict, then Π(· |T ) is available for
probability statements about θ.

Actually the issues involved in model checking and checking for prior-data
conflict are more involved than this (see Section 3), but (1) gives the basic idea
that the full information, as expressed by the joint distribution of (θ, x), splits
into components, each of which is available for a specific purpose in a statistical
analysis. In fact, in [1] it is argued that the basic idea of avoiding “double use
of the data” can be given precision by saying that each component of (1) is
available for one and only one purpose in a statistical analysis. For example, we
don’t use P (· |T ) for inference about θ, which is a basic principle of statistics
known as the sufficiency principle.

From this it seems clear that the component relevant for any discussions
about the respective merits or features of priors is given by MT . Since P (· |T )
is associated with variation that is independent of θ, it can have nothing to
do with the choice of a prior. Further, Π(· |T ) is associated with probability
statements about θ, after we have observed the data, and so no comparisons
among priors should involve this component, at least if we want to avoid using
the data to choose a prior. In Section 2 we discuss how one could use MT to
compare priors with respect to the amount of information they bring into an
analysis.

One issue that needs to be addressed is how one is to compare the observed
data x0 to P (· |T ) or compare t0 = T (x0) to MT . In essence we need a measure
of surprise. Perhaps the best measure of surprise is the P-value. Effectively, we
are in the situation where we have a value from a single fixed distribution and
we need to specify the appropriate P-value to use. This issue is addressed in
[2]. In [3] and [4] the P-value for checking for prior-data conflict was based on
the prior predictive density mT , namely,

MT (mT (t) ≤ mT (t0)). (2)
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A difficulty with (2) is that it is not invariant under 1-1, smooth transforma-
tions on the sample space when the Pθ are continuous. Accordingly, a general
invariant P-value is developed in [2] for all such situations. When applied to
(2), this leads to using the P-value

MT (m∗
T (t) ≤ m∗

T (t0)) (3)

instead, where m∗
T (t) =

∫
Θ

f∗
θT (t) Π(dθ), f∗

θT (t) =
∫

T−1{t} fθ(x) νT−1{t}(dx) and
νT−1{t} is geometric measure on T−1{t} (the analog of volume measure on a
manifold). Note that it can be shown that the marginal density of T is given by
fθT (t) =

∫
T−1{t} fθ(x)JT (x) νT−1{t}(dx) where JT (x) = (det dT (x)◦dT ′(x))−1/2

and dT is the differential of T. So f∗
θT (t) is an adjustment of fθT (t) where we do

not allow the volume distortions induced by T to affect the density. We will use
(3) throughout the remainder of our discussion but note that, for the examples
considered in this paper, volume distortion does not play a role and we can take
m∗

T (t) = mT (t).
The motivation for this paper comes from [5] and [6], where the notion of

weakly informative priors is introduced as a compromise between informative
and noninformative priors. Our purpose here is to give a definition of what it
means for one prior to be weakly informative with respect to another. The paper
[7] contains some discussion relevant to expressing the absolute information
content of a prior in terms of additional sample values, but it seems difficult to
adapt this to a comparison of priors.

2 Comparing Priors

There are a variety of measures available for comparing two probability mea-
sures. For example, if Π1 and Π2 have densities π1 and π2 with respect to
some support measure υ on Θ, then we could compute the relative entropy
D(π1 ||π2) =

∫
Θ

ln(π1(θ)/π2(θ))Π1(dθ). A difficulty with any such measure is
that it tells us nothing about the how to compare these priors in their role as
part of a statistical analysis. For this we must bring the sampling model into
play.

Perhaps a natural way to do this is to use D(m1 ||m2) where mi is the
prior predictive density of x when using the prior Πi. Note that D(m1 ||m2) =
D(m1T ||m2T ) so, as is appropriate, this measure is not dependent on P (· |T ).
Note, however, that D(m1T ||m2T ) ≥ 0 and equals 0 if and only if M1 = M2.
It is not clear, however, how one can interpret D(m1T ||m2T ) > 0, which arises
whenever M1 �= M2, in terms of the information one prior puts into the analysis
relative to another. For example, suppose M1 has support at more than one
point while M2 is degenerate at a single point. It seems clear in such a situation
that Π2 is putting more information into the analysis than Π1 but this is not
reflected in the value of D(m1T ||m2T ). Overall it seems better to interpret
D(m1T ||m2T ) as a measure of distance between these distributions, as opposed
to a method of comparison with respect to the amount of relative information
the priors put into the analysis.
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Another objection that could be raised concerning D(m1T ||m2T ), is that
D(m1T ||m2T ) �= D(m2T ||m1T ) in general. For our application this is not so
serious as we are concerned with the following context. Suppose an analyst
has in mind a prior Π1 that they believe represents the information at hand
concerning θ. The analyst, however, prefers to use a prior that is somewhat
conservative, with respect to the amount of information put into the analysis,
when compared to Π1. This idea comes from [5] and leads to the notion of weakly
informative priors. In such a situation it seems reasonable to consider Π1 as a
base prior and then compare all other priors to it. The question then is, rather
than relative entropy, what is an appropriate approach for the comparison of
priors?

For a given prior Π1 and observed value t0 = T (x) then, from (3), we have
that M1T (m∗

1T (t) ≤ m∗
1T (t0)) is the relevant quantity for assessing whether or

not there is prior-data conflict with Π1. Before we observe data, however, we
have no way of knowing if we will have a prior-data conflict. Accordingly, since
the analyst has determined that Π1 best reflects the available information, it is
reasonable to consider the prior distribution of M1T (m∗

1T (t) ≤ m∗
1T (t0)) when

t0 ∼ M1T . Of course, this is effectively uniformly distributed (exactly so when
m∗

1T (t) has a continuous distribution when t ∼ M1T ) and this expresses the fact
that all the information about assessing whether or not a prior-data conflict
exists, is contained in the P–value, with no need to compare the P-value to its
distribution.

Consider now, however, the distribution of M2T (m∗
2T (t) ≤ m∗

2T (t0)). Given
that we have identified that a priori the appropriate distribution of t0 is M1T ,
at least for inferences about an unobserved value, then M2T (m∗

2T (t) ≤ m∗
2T (t0))

is not uniformly distributed. In fact, from this distribution of M2T (m∗
2T (t) ≤

m∗
2T (t0)) we can obtain an intuitively reasonable idea of what it means for a

prior distribution Π2 to be weakly informative with respect to Π1. For suppose
that the prior distribution of M2T (m∗

2T (t) ≤ m∗
2T (t0)) clusters around 1. This

implies that, if we were to use Π2 as the prior when Π1 is appropriate, then there
is a small prior probability that a prior-data conflict would arise. Similarly,
if the prior distribution of M2T (m∗

2T (t) ≤ m∗
2T (t0)) clusters around 0, then

there is a large prior probability that a prior-data conflict would arise. If one
prior distribution results in a larger prior probability of there being a prior-data
conflict than another then it seems reasonable to say that the first prior is more
informative than the second. In fact, a completely noninformative prior should
never produce prior-data conflicts.

So we must compare the distribution of P2(t0) = M2T (m∗
2T (t) ≤ m∗

2T (t0))
when t0 ∼ M1T , to the distribution of P1(t0) = M1T (m∗

1T (t) ≤ m∗
1T (t0)) when

t0 ∼ M1T , and do this in a way that is relevant to the prior probability of
obtaining a prior-data conflict. One such approach is to select a γ-quantile
xγ ∈ [0, 1] of the distribution of P1(t0), and then compute the probability

M1T (P2(t0) ≤ xγ). (4)

The value γ is presumably some cut-off, dependent on the application, where we
will consider that evidence of a prior-data conflict exists whenever P1(t0) ≤ γ.
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Of course, if m∗
1T (t) has a continuous distribution when t0 ∼ M1T , then xγ = γ.

If the probability (4) is less than or equal to xγ , then we call the prior Π2 weakly
informative relative to Π1 at level γ, as this indicates the prior distribution of
P2(t0) is more concentrated about 1 than that of P1(t0).

The following example shows that (4) behaves as we think it should in a
simple context.
Example 1. Comparing normal priors

Suppose that t ∼ N(µ, 1/n) with Π1 on µ a N(0, σ2
1) distribution with σ2

1

known. Note that t could be considered as the sample average in a sample
of n from the N(µ, 1) distribution, as this statistic is minimal sufficient. We
then have that M1T is the N(0, 1/n + σ2

1) distribution. Now suppose that Π2

is a N(0, σ2
2) distribution with σ2

2 known. Then M2T is the N(0, 1/n + σ2
2)

distribution and

P2(t0) = M2T (m∗
2T (t) ≤ m∗

2T (t0)) = M2T (m2T (t) ≤ m2T (t0))
= M2T (t2 ≥ t20) = 1 − G1(t20/(1/n + σ2

2)),

where Gk denotes the Chi-squared(k) distribution function. Now under M1T

we have that t20/(1/n + σ2
1) ∼ Chi-squared(1). Therefore,

M1T (P2(t0) ≤ γ) = M1T (1 − G1(t20/(1/n + σ2
2)) ≤ γ)

= M1T

(
t20

1 + σ2
1

≥ 1/n + σ2
2

1/n + σ2
1

G−1
1 (1 − γ)

)

= 1 − G1

(
1/n + σ2

2

1/n + σ2
1

G−1
1 (1 − γ)

)
. (5)

We see immediately that (5) will be less than γ whenever σ2 > σ1. In other
words Π2 will be strictly weakly informative relative to Π1 whenever Π2 is more
diffuse than Π1 and not otherwise. Note that M1T (P2(t0) ≤ γ) converges to 0
as σ2

2 → ∞ to reflect noninformativity. Also, as n → ∞, then (5) increases to
1 − G1((σ2

2/σ2
1)G−1

1 (1 − γ)).
We can generalize this to t ∼ Nk(µ, n−1I) with Π1 given by µ ∼ Nk(0, Σ1) so

that M1T is the Nk(0, n−1I +Σ1) distribution. If Π2 is given by µ ∼ Nk(0, Σ2),
then M1T is the Nk(0, n−1I + Σ1) distribution. It is then easy to see that
P2(t0) = 1 − Gk(t′0(n

−1I + Σ2)−1t0) and M1T (P2(t0) ≤ γ) = M1T (t′0(n
−1I +

Σ2)−1t0 ≥ G−1
k (1−γ)). Now, using the ordering on positive definite matrices, we

have that n−1I + Σ1 < n−1I + Σ2 whenever Σ1 < Σ2 and so (n−1I + Σ2)−1 >
(n−1I + Σ1)−1. This implies that M1T (t′0(n−1I + Σ2)−1t0 ≥ G−1

k (1 − γ)) is
greater than γ when Σ1 < Σ2 and so the Nk(0, Σ2) prior is stricly weakly
informative with respect to the Nk(0, Σ1) prior. In this case (4) converges to
the probability that t′0Σ2

−1t0 ≥ G−1
k (1 − γ) where t0 ∼ Nk(0, Σ2) as n → ∞,

and this probability can be easily computed via simulation.

An interesting feature of Example 1 is that the MiT converge as n → ∞.
This will hold in many examples and, in such a case, we can expect that (4)
will converge to some value as well. This limit can then be taken as a measure
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of the amount of information in Π2 relative to Π1, when we will find evidence
against no prior-data conflict at level γ, that is independent of sample size.

We also notice in Example 1 that, when Σ1 ≤ Σ2, then Π2 = Nk(0, Σ2)
is weakly informative relative to Π1 = Nk(0, Σ1) at every level γ, i.e., Π2 is
uniformly weakly informative relative to Π1. While being uniformly weakly in-
formative seems like a more desirable property, we still have to choose a weakly
informative prior in a particular context. This seems to require selecting a γ
and computing (4), as a measure of how much less informative Π2 is, for a par-
ticular application. The following examples show that a prior may be weakly
informative but not uniformly weakly informative, with respect to another prior.

Example 2. Comparing a Student prior with a normal prior
A conventional belief is that a Student prior is less informative than a normal

prior. Our results here show that this isn’t quite true.
Suppose that t ∼ N(µ, 1/n) with Π1 on µ a N(0, σ2) distribution and we

take Π2 to be a t(λ) distribution, with λ > 2, scaled so that the variance of Π2

is σ2. So when we compare Π2 to Π1 we are only comparing the Student quality
of the prior with normality. Numerical experience suggests that the value of σ2

plays almost no role in this comparison. In Figure 1 we have plotted the prior
predictive densities of t, for various choices of λ, when n = 20 and σ2 = 1.
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Figure 1: Plot of mT densities, arising from standardized Student densities, when

n = 20 and σ2 = 1, in Example 2.

In Figure 2 we have plotted the value of (4), that arises with various stan-
dardized Student priors relative to the normal prior, against γ. We see imme-
diately that none of these Student priors is uniformly weakly informative with
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respect to the normal prior. A standardized t(λ) prior is strictly weakly infor-
mative at level γ for all values of γ less than some cut-off value that depends on
λ. For example, a standardized t(3) distribution is strictly weakly informative
with respect to a N(0, 1) prior whenever γ is less than .03573 and not otherwise,
e.g. when γ = .05. Clearly this has something to do with the peakedness of
the Student priors. While these results do depend on n, numerical evidence
suggests that this dependence is not very strong.
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Figure 2: Plot of (4) versus γ for various standardized Student priors relative to a

N(0, 1) prior when n = 20 in Example 2.

Notice that, as n → ∞, then M1T converges to a N(0, σ2) distribution, while
M2T converges to a t(λ) distribution with variance equal to σ2. Therefore, P2(t0)
converges to 1−H1,λ(λt20/(λ−2)σ2) where H1,λ is the distribution function of an
F1,λ distribution. This implies that (4) converges to 1−G1((λ−2)H−1

1,λ(1−γ)/λ).
Note that this quantity does not depend on σ2 and it converges to γ, as λ → ∞.

Example 3. Comparing beta priors
Suppose that T ∼ Binomial(n, θ) and θ ∼ Beta(α, β). This implies that

mT (t) =
(
n
t

)
Γ(α + β)Γ(t + α)Γ(n − t + β)/Γ(α)Γ(β)Γ(n + α + β) and from

this we can compute (4) for various choices of (α, β).
As a specific example, suppose that n = 20, the base prior is given by

(α, β) = (7, 7), and we take γ = .05 so that x.05 = .0479. As alternatives to
this base prior, we consider Beta(α, α) priors. In Figure 3 we have plotted the
value of (4) as a function of α, for those values of α such that the Beta(α, α)
prior is weakly informative with respect to the Beta(7, 7) prior. We see that a
Beta(α, α) prior is strictly weakly informative whenever 1 ≤ α < 7.
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In Figure 4 we have plotted all the (α, β) corresponding to Beta(α, β) distri-
butions that are weakly informative with respect to the Beta(7, 7) distribution at
level .05, together with the subset of all (α, β) corresponding to Beta(α, β) dis-
tributions that are uniformly weakly informative with respect to the Beta(7, 7)
distribution. The graph on the left corresponds to n = 20 while the one on
the right corresponds to n = 100. The plot for n = 20 shows some anomalous
effects due to the discreteness. For example, a Beta(α, α) prior for α satisfying
7 < α < 15.46486 is weakly informative relative to the Beta(7, 7) prior although
Figure 3 shows that such a prior is not strictly weakly informative. When we
increase n these cases are eliminated as shown in the plot for n = 100. The
limiting regions are difficult to determine in this example.
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Figure 3: Plot of (4) versus α in Example 3.

0 5 10 15

0
5

10
15

alpha

be
ta

0 5 10 15

0
5

10
15

alpha

be
ta

Figure 4: Plot of all (α, β) corresponding to weakly informative priors at level γ = .05

(light and dark shading) and all (α, β) corresponding to uniformly weakly informative

priors (light shading) for n = 20 (on the left) and n = 100 (on the right) in Example

3.
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3 Refinements Based Upon Ancillarity

The approach in Section 2 works whenever T is a complete minimal sufficient
statistic. This is a consequence of Basu’s Theorem as, in such a case, any ancil-
lary is statistically independent of T and so conditioning on such an ancillary
is irrelevant. When U(T ) is a meaningful ancillary, however, then the variation
due to U(T ) is independent of θ and so should be removed from the P-value (3)
when checking for prior-data conflict. Removing this variation is equivalent to
conditioning on U(T ) and so we replace (3) by

MT (m∗
T (t) ≤ m∗

T (t0) |U(T )), (6)

i.e., we use the conditional prior predictive given the ancillary U(T ). To remove
the maximal amount of ancillary variation we must have that U(T ) is a maximal
ancillary. Therefore (4) becomes

M1T (P2(t0 |U(T )) ≤ xγ |U(T )), (7)

i.e., we have replaced P2(t0) by P2(t0 |U(T )) = M2T (m∗
2T (t) ≤ m∗

2T (t0) |U(T ))
and M1T by M1T (· |U(T )).

When ancillary U(T ) exists, then we can also check the model by compar-
ing the observed value U(t0) against PU(T ), the marginal distribution of U(T )
induced by the model, as this distribution is independent of θ. This leads to a
more refined factorization than (1) given by

Pθ × Π = P (· |T ) × PU(T ) × MT (· |U(T )) × Π(· |T )

and each component is available for a specific purpose in a statistical analysis.
In models where T is not a complete minimal sufficient statistic, the factor PU(T )

typically plays the more important role in model checking.
One problem with ancillaries is that multiple maximal ancillaries may exist.

When ancillaries are used for frequentist inferences about θ via conditioning,
this poses a problem because it is not clear which multiple ancillary to use
and confidence regions depend on the maximal ancillary chosen. For checking
for prior-data conflict via (6), however, this does not pose a problem. This is
because we simply get different checks depending on which maximal ancillary
we condition on. For example, if conditioning on maximal ancillary U1(T ) does
not lead to prior-data conflict, but conditioning on maximal ancillary U2(T )
does, then we have evidence against no prior-data conflict existing.

Similarly, when we go to use (7), we can also simply look at the effect of
each maximal ancillary on the analysis and make our assessment about Π2 based
on this. For example, we can use the maximum value of (7) over all maximal
ancillaries to assess whether or not Π2 is weakly informative relative to Π1. When
this maximum is small, we conclude that we have a small prior probability of
finding evidence against the null hypothesis of no prior-data conflict when using
Π2.
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Example 4. Nonunique maximal ancillaries
Suppose that we have a sample of n from the

Multinomial (1, (1 − θ) /6, (1 + θ) /6, (2 − θ) /6, (2 + θ) /6)

distribution where θ ∈ [−1, 1] is unknown. Then the counts (f1, f2, f3, f4) con-
stitute a minimal sufficient statistic and U1 = (f1 + f2, f3 + f4) is ancillary as
is U2 = (f1 + f4, f2 + f3) .

Then T = (f1, f2, f3, f4) | U1 is given by

f1 | U1 ∼ Binomial (f1 + f2, (1 − θ) /2)

independent of
f3 | U1 ∼ Binomial (f3 + f4, (2 − θ) /4)

giving

mT (f1, f2, f3, f4 |U1) =
(

f1 + f2

f1

)(
f3 + f4

f3

)
×

∫ 1

−1

(
1 − θ

2

)f1 (
1 + θ

2

)f2 (
2 − θ

4

)f3 (
2 + θ

4

)f4

π (θ) dθ.

We then have two 1-dimensional distributions f1 |U1 and f3 | U1 to use for check-
ing for prior-data conflict. A similar result holds for the conditional distribution
given U2.

For example, suppose π is a Beta(20, 20) distribution on [−1, 1], so the prior
concentrates about 0, and for a sample of n = 18 we have that U1 = f1+f2 = 10
and U2 = f1 + f4 = 8. In Figure 5 we have plotted all the values of (α, β)
that correspond to a Beta(α, β) prior that is weakly informative relative to the
Beta(20, 20) prior at level γ = .05. So for each such (α, β) we have that (7) is
less than or equal to .05 for both U = U1 and U = U2, i.e., (7) is less than or
equal to .05 for these values of (α, β) when U = U1 and when U = U2.
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Figure 5: Plot of all (α, β) corresponding to weakly informative priors at level γ = .05

in Example 4.
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4 Conclusions

We have developed an approach to measuring the amount of information a prior
puts into an a statistical analysis relative to another base prior. This base prior
can be considered as the prior that best reflects current information and our
goal is to determine a prior that is weakly informative with respect to the base
prior. Our measure is in terms of the prior predictive probability measure,
using the base prior, of obtaining a prior-data conflict. This was applied in
several examples where the approach is seen to work quite well. More involved
contexts require some additional computational complexities, but these are not
insurmountable.

As noted in Example 3, we need to be careful when we conceive of a prior
being weakly informative relative to another. This entails choosing a γ and
computing (4). The difference between these quantities indicates to what extent
the prior is less informative than the base prior in terms of the prior probability
of observing a prior data conflict. While this is a design consideration, i.e., (4)
is used to choose a prior Π2 before we observe the data, we still should check
for prior-data conflict with Π2 after observing the data.
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