Exercises 1 STA 3000, 2020

1. Consider the decision problem given by $\mathcal{X} = \{1, 2, 3, 4\}, \Theta = \{a, b\}, \Psi(\theta) = \theta, L(\theta, \psi) = 1 - I_{\{0\}}(\theta - \psi)$ and the model is given by the following table.

	x = 1	x = 2	x = 3	x = 4
$\theta = a$	1/4	1/4	0	1/2
$\theta = b$	1/2	0	1/4	1/4

(a) Calculate the risk function of the decision function given by d(1) = a, d(2) = a, d(3) = a and d(4) = b.

(b) Is d admissible?

(c) Calculate the prior risk of d when the prior is given by $\pi(a) = 1/4, \pi(b) = 3/4.$

(d) Obtain a Bayes rule.

(e) Calculate the risk function and the prior risk of the decision function δ given by

	x = 1	x = 2	x = 3	x = 4
$\delta(\cdot, \{a\})$	1/2	1	1/3	2/3
$\delta(\cdot, \{b\})$	1/2	0	2/3	1/3

(f) From the point-of-view of frequentist risk which decision function is best among those considered in this question?

2. Suppose that X takes values in $\{\theta - 1, \theta + 1\}$ with equal probabilities where θ is unknown in \mathbb{Z} (the integers). After observing X the decision problem is to estimate θ and we use the loss function $L(\theta, a) = \min\{|\theta - a|, 1\}$.

(a) Calculate the risk function of the nonrandomized decision function d(X) = X + 1 if X < 0 and d(X) = X - 1 if $X \ge 0$.

(b) Calculate the risk function of the randomized decision δ_p which selects X-1 or X+1 with probabilities p and q respectively.

(c) Which of δ_p and d is preferred?

3. Suppose that the conditional density of X given θ is $\exp(-|x - \theta|/2)$ where θ has prior density $\exp(-|\theta - \eta|/2)$ on R^1 for some fixed η . Further suppose that $\Psi(\theta) = \theta$ and the loss function is $L(\theta, a) = (\theta - a)^2$. Find a Bayes rule based on observing x.