Exercises 3 STA 3000, 2020

1. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right) \stackrel{i . i . d .}{\sim} N(\mu, 1)$ where $\mu \in\left\{\mu_{0}, \mu_{1}\right\}$ where $\mu_{0}<\mu_{1}$ and consider various approaches to assessing the hypotheis $H_{0}=\mu_{0}$.
(a) Determine the likelihood ratio $\operatorname{LR}(\bar{x})=f_{\mu_{1}}(\bar{x}) / f_{\mu_{0}}(\bar{x})$ and the probabilities $P_{\mu_{i}}(\operatorname{LR}(\bar{x})>1)$ for $i=0,1$. Determine the limiting values as $n \rightarrow \infty$ of $\operatorname{LR}(\bar{x})$ when H_{0} is true and when it is false and the limiting values of $P_{\mu_{i}}(\operatorname{LR}(\bar{x})>1)$ for $i=0,1$.
(b) Suppose the prior $\Pi\left(\left\{\mu_{0}\right\}\right)=p$ is used where $0<p<1$. Show that the Bayes factor $B F\left(\left\{\mu_{1}\right\} \mid \bar{x}\right)$ in favor of μ_{1} is given by $\operatorname{LR}(\bar{x})$. Determine the limiting values of $\Pi\left(\left\{\mu_{0}\right\} \mid \bar{x}\right)$ as $n \rightarrow \infty$ when H_{0} is true and when it is false. Determine the limiting value of $R B\left(\left\{\mu_{0}\right\} \mid \bar{x}\right)=\Pi\left(\left\{\mu_{0}\right\} \mid \bar{x}\right) / \Pi\left(\left\{\mu_{0}\right\}\right)$ as $n \rightarrow \infty$ when H_{0} is true and when it is false. Show that $B F\left(\left\{\mu_{0}\right\} \mid \bar{x}\right)>1$ iff $R B\left(\left\{\mu_{0}\right\} \mid \bar{x}\right)>1$.
(c) As shown in class the MP size α test is of the form reject H_{0} when $\operatorname{LR}(\bar{x})>$ $k_{0}\left(n, \mu_{0}, \mu_{1}, \alpha\right)$. Determine the limiting probabilities

$$
\lim _{n \rightarrow \infty} P_{\mu_{i}}\left(k_{0}\left(n, \mu_{0}, \mu_{1}, \alpha\right)<L R(\bar{x}) \leq 1\right)
$$

for $i=0,1$.
(d) The p -value approach is to consider a future independent sample with MSS \bar{X}, compute the tail probability

$$
P_{\mu_{0}}\left(\sqrt{n}\left(\bar{X}-\mu_{0}\right)>\sqrt{n}\left(\bar{x}-\mu_{0}\right) \mid \bar{x}\right)
$$

and assert that evidence against H_{0} has been obtained when this is small (typically less than some predetermined α like $\alpha=0.05)$. Determine the limiting values of this p -value as $n \rightarrow \infty$ when H_{0} is true and when it is false.
(e) Comment on the degree to which these various approaches can give contradictory conclusions such as when the methods of parts (a) and (b) can indicate evidence in favor of H_{0} while those of parts (c) and (d) suggest H_{0} is false.
2. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right) \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(p)$ where $p \in[0,1]$ is unknown.
(a) If F denotes the cdf of the $\operatorname{binomial}(n, p)$ distribution, then prove (use integration by parts)

$$
F(z)=\frac{\Gamma(n+1)}{\Gamma(z+1) \Gamma(n-z)} \int_{\theta}^{1} y^{z}(1-y)^{n-z-1} d y .
$$

(b) Determine the UMP size α test of $H_{0}: p \leq p_{0}$ versus $H_{a}: p>p_{0}$.
3. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right) \stackrel{i . i . d .}{\sim} N\left(\mu_{0}, \sigma^{2}\right)$ where $\sigma^{2}>0$ is unknown and μ_{0} is known. Determine the UMP size α test of $H_{0}: \sigma^{2} \leq \sigma_{0}^{2}$ versus $H_{a}: \sigma^{2}>\sigma_{0}^{2}$. Derive an expression for the power function of this test in terms of the chi-squared distribution.

