Exercises 4 STA 3000, 2020

1. Suppose $C_{\gamma}:[0,1] \times \mathcal{X} \rightarrow 2^{\Psi}$ is a γ-confidence region for $\psi=\Psi(\theta)$, namely,

$$
\operatorname{Prob}_{\theta}\left(\Psi(\theta) \in C_{\gamma}(u, x)\right) \geq \gamma
$$

for every $\theta \in \Theta$ where $(u, x) \sim \operatorname{Prob}_{\theta}$ given by $u \sim U(0,1)$ statistically independent of $x \sim P_{\theta}$. Now for each $\psi_{0} \in \Psi$ define a test function $\varphi_{\psi_{0}}: \mathcal{X} \rightarrow[0,1]$ by

$$
\begin{equation*}
\varphi_{\psi_{0}}(x)=\operatorname{Prob}\left(\psi_{0} \notin C_{\gamma}(u, x) \mid x\right) \tag{1}
\end{equation*}
$$

(a) Show that the power function of $\varphi_{\psi_{0}}$ is given by

$$
\beta(\theta)=E_{\theta}\left(\varphi_{\psi_{0}}\right)=\operatorname{Prob}_{\theta}\left(\psi_{0} \notin C_{\gamma}(u, x)\right)
$$

and so $\varphi_{\psi_{0}}$ is size $1-\gamma$ for $H_{0}=\left\{\psi_{0}\right\}$ vs $H_{a}=\left\{\psi_{0}\right\}^{c}$.
(b) Since $\left\{\varphi_{\psi_{0}}: \psi_{0} \in \Psi\right\}$ is a set of $1-\gamma$ test functions for the hypothesis testing problems $H_{0}=\left\{\psi_{0}\right\}$ vs $H_{a}=\left\{\psi_{0}\right\}^{c}$, the set function $C_{\gamma}^{*}:[0,1] \times \mathcal{X} \rightarrow 2^{\Psi}$ given by

$$
C_{\gamma}^{*}(u, x)=\left\{\psi_{0}: \varphi_{\psi_{0}}(x)<u\right\}
$$

is, as shown in class, a γ-confidence region for $\psi=\Psi(\theta)$. Show that the coverage probabilities for C_{γ}^{*} are the same as those for C_{γ}.
(c) Prove that C_{γ} is a uniformly most accurate unbiased γ-confidence region for $\psi=\Psi(\theta)$ iff each $\varphi_{\psi_{0}}$ defined in (1) is UMPU size $1-\gamma$ for $H_{0}=\left\{\psi_{0}\right\}$ vs $H_{a}=\left\{\psi_{0}\right\}^{c}$ for each $\psi_{0} \in \Psi$.
(d) Show that $C_{\gamma}^{*}=C_{\gamma}$ when C_{γ} is nonrandomized.
(e) Show that it is always possible to find a γ-confidence region with exact confidence γ.
2. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right)$ are i.i.d. Bernoulli($\left.\theta\right)$.
(a) Determine the UMPU size α test for $H_{0}=\left\{\theta_{0}\right\}$ versus $H_{a}=\left\{\theta_{0}\right\}^{c}$.
(b) Determine the uniformly most accurate unbiased $1-\alpha$ confidence interval for θ.
3. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right)$ is a sample from an $\operatorname{gamma}(\eta, \theta)$ distribution $\left(f_{\theta}(x)=\theta^{\eta} x^{\eta-1} \exp \{-\theta x\} / \Gamma(\eta)\right.$ for $\left.x>0\right)$ where η is known and $\theta>0$ is unknown.
(a) Determine the UMP size α test of $H_{0}: \theta \leq \theta_{0}$ versus $H_{a}: \theta>\theta_{0}$.
(b) Determine the UMPU size α test of $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta \neq \theta_{0}$.
4. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right)$ are i.i.d. $N\left(\mu, \sigma^{2}\right)$ where μ and σ^{2} are completely unknown and we want to test $H_{0}: \sigma^{2} \leq \sigma_{0}^{2}$ versus $H_{a}: \sigma^{2} \geq \sigma_{0}^{2}$.and consider the location group $G=(R,+)$ acting on R^{n} via $T_{g} x=x+g 1$ where $1 \in R^{n}$ is the vector of ones. Obtain the optimal invariant size α test. Hint: find the optimal invariant test for $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ versus $H_{a}: \sigma^{2} \geq \sigma_{0}^{2}$ first.
5. Suppose that $x \sim N_{2}(0, \Sigma)$ statistically independent of $y \sim N_{2}(0, \Delta \Sigma)$ where $\Delta>0$ and Σ p.d. are unknown.
(a) Let

$$
G_{1}=\left\{\left.\left[\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right), c\right] \right\rvert\, a_{1}, b, c>0 \text { and } a_{2} \in R^{1}\right\}
$$

and define the product on G_{1} by

$$
\left[\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right), c\right]\left[\left(\begin{array}{cc}
a_{1}^{\prime} & a_{2}^{\prime} \\
0 & b
\end{array}\right), c^{\prime}\right]=\left[\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
a_{1}^{\prime} & a_{2}^{\prime} \\
0 & b
\end{array}\right), c c^{\prime}\right] .
$$

Prove that this defines a group.
(b) For

$$
g=\left[\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right), c\right]
$$

define the transformation $T_{g}: R^{4} \rightarrow R^{4}$ by

$$
T_{g}\binom{x}{y}=\binom{\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right) x}{c\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right) y}
$$

Prove that this defines an action on R^{4}. Is this action free?
(c) Prove that the action defined in (b) leaves the model invariant and determine the induced action on Θ.
(d) Suppose $\Psi(\Sigma, \Delta)=\Delta$ and the loss function is given by $\rho(\psi / \Delta)$ where $\rho: R^{1} \rightarrow[0, \infty)$ is convex and satisfies $\rho(1)=0$. Prove that this decision problem is invariant under G_{1} and determine the action on the Ψ space. Justify why we can restrict to nonrandomized rules.
(e) Prove that a nonrandomized rule d is equivariant iff $d(x, y)=k_{1} y_{2}^{2} / x_{2}^{2}$ for some k_{1} and the optimal estimator is determined by finding the value k_{1} that minimizes $E_{f}\left[\rho\left(k_{1} y_{2}^{2} / x_{2}^{2}\right)\right]$ where f is the bivariate standard normal density.
(f) Repeat (a)-(e) (modifying part (e) appropriately) but using the group

$$
G_{2}=\left\{\left.\left[\left(\begin{array}{ll}
a_{1} & 0 \\
a_{2} & b
\end{array}\right), c\right] \right\rvert\, a_{1}, b, c>0 \text { and } a_{2} \in R^{1}\right\} .
$$

6. Suppose $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} N_{k}(\theta, I)$ with $\theta \in \Theta=R^{k}$. Interest is in estimating $\Psi(\theta)=\theta$ and the loss function is $L(\theta, \psi)=\|\theta-\psi\|^{2}$. Consider the group $G=R^{k}$ with $g_{1} \cdot g_{2}=g_{1}+g_{2}$.
(a) Prove that G is a group.
(b) Suppose we define $T_{g}: R^{k \times n} \rightarrow R^{k \times n}$ by $T_{g} X=X+g \mathbf{1}^{\prime}$. Prove that this defines an action of G on the sample space. Is the action free?
(c) Show that the group leaves the model invariant and determine the action of G on Θ and on Ψ. Show that G acts transitively on Ψ. Show that G leaves the decision function invariant.
(d) Show that

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}
$$

is an equivariant mss. Explain why we can then base the search for an optimal equivariant estimator on \bar{X}.
(e) Show that the optimal equivariant estimator is \bar{X}.
(f) Suppose instead we want to estimate $\Psi(\theta)=\|\theta\|^{2}$. Is this problem invariant under G.

