Exam STA3000, 2020

Instructions: Please write your answers on this exam in the spaces provided. **Name:**

1. Suppose that a response variable is generated by randomly selecting an individual ω from a population Ω and obtaining the measurement $x = X(\omega) \in \{1, 2, 3\}$. The proportions of elements of Ω taking these values is given by one of three possibilities, that we label by a, b and c, as provided in the following table.

	x = 1	x = 2	x = 3
a	1/3	1/3	1/3
b	1/6	1/6	2/3
c	1/4	1/4	1/2

Suppose we observe a single measurement x.

(a) (5 marks) Identify the statistical model, namely, provide the sample space \mathcal{X} , parameter space Θ and family of distributions f_{θ} .

(b) (5 marks) Provide the sampling distributions of $\theta_{MLE}(x)$.

(c) (5 marks) Determine whether or not θ_{MLE} is a sufficient statistic and if so, whether or not it is minimal sufficient.

(d) (5 marks) Suppose that the quantity of interest is $\Psi(\theta) = \theta$ and a loss function is given by $L(a, \psi) = 1 - I_{\{a\}}(\psi)$ and $L(\theta, \psi) = 2(1 - I_{\{\theta\}}(\psi))$ otherwise. Determine the risk function for θ_{MLE} .

(e) (5 marks) If a uniform prior is placed on Θ , then determine the prior risk of θ_{MLE} .

(f) (5 marks) Suppose δ is a decision function such that $\delta(1, \cdot)$ is degenerate at $b, \delta(2, \cdot)$ is uniform on $\{a, b\}$ and $\delta(3, \cdot)$ is degenerate at b. Determine the risk function of δ and if either δ or θ_{MLE} is preferred.

(g) (5 marks) Does δ in (f) depend on the data only through a minimal sufficient statistic? If not, modify δ so that it does and determine the risk function of this modified estimator.

2. Suppose that x_1, \ldots, x_n is a sample from a $N(\mu, \sigma^2)$ distribution where $\mu \in \mathbb{R}^1, \sigma^2 > 0$ are unknown. Suppose we wish to estimate the third quartile $\psi = \Psi(\mu, \sigma^2) = \mu + \sigma z_{0.75}$ and we use squared error loss.

(a) (5 marks) Justify why we need only consider nonrandomized estimators that are functions of (\bar{x}, s^2) .

(b) (5 marks) Determine an optimal unbiased estimator of ψ . Is this estimator unique?

(c) (5 marks) Is the estimator determined in (b) admssible? Hint: consider all estimators of the form x + cs for some constant c.

3. (a) (5 marks) Suppose that X is a random variable and m is a median of the distribution of X. Prove that for all constants a_1, a_2 satisfying either $m \leq a_1 \leq a_2$ or $m \geq a_1 \geq a_2$ then $E(|X - a_1|) \leq E(|X - a_2|)$. Hint: write $E(|X - a_i|)$ without absolute value and show $E(|X - a_2|) - E(|X - a_1|) \geq 0$.

(b) (5 marks) Suppose in a statistical problem we want to estimate $\Psi(\theta) \in \mathbb{R}^1$ where the range of Ψ is an interval and the loss function is $L(\theta, \psi) = |\psi - \Psi(\theta)|$. Prove that we can restrict to nonrandomized estimators. Using (a) show that a nonrandomized estimator d is unbiased for $\Psi(\theta)$ iff $\Psi(\theta)$ is a median of the distribution of d for every θ . 4. Suppose that f is a density on $\mathcal{X} = \mathbb{R}^n$ with respect to volume measure and the statistical model is given by the set of density functions $\{\theta^{-n}f(x/\theta): \theta \in \Theta\}$ where $\Theta = \{\theta: \theta > 0\}$.

(a) (2 marks) Show that we can consider $G = \Theta$ as a group with product $\theta_1 \cdot \theta_2 = \theta_1 \theta_2$.

(b) (5 marks) Prove that $T_{\theta}x = \theta x$ defines an action of G on \mathcal{X} , that G is a symmetry group of the model and determine \overline{T}_{θ} . Is G transitive on Θ ?

(c) (3 marks) Determine the set which must be deleted from the sample space so that G acts freely on \mathcal{X} . Determine the orbits on \mathcal{X} .

(d) (3 marks) Suppose that we want to estimate $\Psi(\theta) = \theta$ and the loss function is given by $L(\theta, \psi) = \rho(\psi/\theta)$ for some convex function $\rho : (0, \infty) \to R^1$. What is the purpose of restricting to convex ρ ? What is the action of the group on Ψ ? Prove that *G* leaves this decision problem invariant. Explain what it means for an estimator to be equivariant in this problem.

(e) (4 marks) Show that [x] = ||x|| is equivariant and determine a maximal invariant D(x).

(f) (3 marks) Putting s = ||x|| and u = D(x), show that $J(x \to s, u) = s^{n-1}h(u)$ for some function h.

(g) (2 marks) Show how you would compute the Pitman estimate of θ .

(h) (5 marks) Determine the Pitman estimate when f corresponds to the $N_n(0, I)$ distribution and $\rho(\tau) = (\tau - 1)^2$.

(i) (3 marks) Explan why there isn't a uniformly most powerful invariant (under G) size α test of $H_0: \theta = \theta_0$ versus $H_0: \theta \neq \theta_0$.

(j) (5 marks) Under the same distribution assumption in (h), determine the uniformly most powerful unbiased size α test of $H_0: \theta = \theta_0$ versus $H_0: \theta \neq \theta_0$.

(k) (5 marks) Under the same distribution assumption in (h), determine the uniformly most accurate unbiased γ -confidence interval for θ .