Exam STA3000, 2020

Instructions: Please write your answers on this exam in the spaces provided.
Name:

1. Suppose that a response variable is generated by randomly selecting an individual ω from a population Ω and obtaining the measurement $x=X(\omega) \in$ $\{1,2,3\}$. The proportions of elements of Ω taking these values is given by one of three possibilities, that we label by a, b and c, as provided in the following table.

	$x=1$	$x=2$	$x=3$
a	$1 / 3$	$1 / 3$	$1 / 3$
b	$1 / 6$	$1 / 6$	$2 / 3$
c	$1 / 4$	$1 / 4$	$1 / 2$

Suppose we observe a single measurement x.
(a) (5 marks) Identify the statistical model, namely, provide the sample space \mathcal{X}, parameter space Θ and family of distributions f_{θ}.
(b) (5 marks) Provide the sampling distributions of $\theta_{M L E}(x)$.
(c) (5 marks) Determine whether or not $\theta_{M L E}$ is a sufficient statistic and if so, whether or not it is minimal sufficient.
(d) (5 marks) Suppose that the quantity of interest is $\Psi(\theta)=\theta$ and a loss function is given by $L(a, \psi)=1-I_{\{a\}}(\psi)$ and $L(\theta, \psi)=2\left(1-I_{\{\theta\}}(\psi)\right)$ otherwise. Determine the risk function for $\theta_{M L E}$.
(e) (5 marks) If a uniform prior is placed on Θ, then determine the prior risk of $\theta_{M L E}$.
(f) (5 marks) Suppose δ is a decision function such that $\delta(1, \cdot)$ is degenerate at $b, \delta(2, \cdot)$ is uniform on $\{a, b\}$ and $\delta(3, \cdot)$ is degenerate at b. Determine the risk function of δ and if either δ or $\theta_{M L E}$ is preferred.
(g) (5 marks) Does δ in (f) depend on the data only through a minimal sufficient statistic? If not, modify δ so that it does and determine the risk function of this modified estimator.
2. Suppose that x_{1}, \ldots, x_{n} is a sample from a $N\left(\mu, \sigma^{2}\right)$ distribution where $\mu \in R^{1}, \sigma^{2}>0$ are unknown. Suppose we wish to estimate the third quartile $\psi=\Psi\left(\mu, \sigma^{2}\right)=\mu+\sigma z_{0.75}$ and we use squared error loss.
(a) (5 marks) Justify why we need only consider nonrandomized estimators that are functions of $\left(\bar{x}, s^{2}\right)$.
(b) (5 marks) Determine an optimal unbiased estimator of ψ. Is this estimator unique?
(c) (5 marks) Is the estimator determined in (b) admssible? Hint: consider all estimators of the form $x+c s$ for some constant c.
3. (a) (5 marks) Suppose that X is a random variable and m is a median of the distribution of X. Prove that for all constants a_{1}, a_{2} satisfying either $m \leq a_{1} \leq a_{2}$ or $m \geq a_{1} \geq a_{2}$ then $E\left(\left|X-a_{1}\right|\right) \leq E\left(\left|X-a_{2}\right|\right)$. Hint: write $E\left(\left|X-a_{i}\right|\right)$ without absolute value and show $E\left(\left|X-a_{2}\right|\right)-E\left(\left|X-a_{1}\right|\right) \geq 0$.
(b) (5 marks) Suppose in a statistical problem we want to estimate $\Psi(\theta) \in R^{1}$ where the range of Ψ is an interval and the loss function is $L(\theta, \psi)=|\psi-\Psi(\theta)|$. Prove that we can restrict to nonrandomized estimators. Using (a) show that a nonrandomized estimator d is unbiased for $\Psi(\theta)$ iff $\Psi(\theta)$ is a median of the distribution of d for every θ.
4. Suppose that f is a density on $\mathcal{X}=R^{n}$ with respect to volume measure and the statistical model is given by the set of density functions $\left\{\theta^{-n} f(x / \theta): \theta \in \Theta\right\}$ where $\Theta=\{\theta: \theta>0\}$.
(a) (2 marks) Show that we can consider $G=\Theta$ as a group with product $\theta_{1} \cdot \theta_{2}=\theta_{1} \theta_{2}$.
(b) (5 marks) Prove that $T_{\theta} x=\theta x$ defines an action of G on \mathcal{X}, that G is a symmetry group of the model and determine \bar{T}_{θ}. Is G transitive on Θ ?
(c) (3 marks) Determine the set which must be deleted from the sample space so that G acts freely on \mathcal{X}. Determine the orbits on \mathcal{X}.
(d) (3 marks) Suppose that we want to estimate $\Psi(\theta)=\theta$ and the loss function is given by $L(\theta, \psi)=\rho(\psi / \theta)$ for some convex function $\rho:(0, \infty) \rightarrow R^{1}$. What is the purpose of restricting to convex ρ ? What is the action of the group on Ψ ? Prove that G leaves this decision problem invariant. Explain what it means for an estimator to be equivariant in this problem.
(e) (4 marks) Show that $[x]=\|x\|$ is equivariant and determine a maximal invariant $D(x)$.
(f) (3 marks) Putting $s=\|x\|$ and $u=D(x)$, show that $J(x \rightarrow s, u)=s^{n-1} h(u)$ for some function h.
(g) (2 marks) Show how you would compute the Pitman estimate of θ.
(h) (5 marks) Determine the Pitman estimate when f corresponds to the $N_{n}(0, I)$ distribution and $\rho(\tau)=(\tau-1)^{2}$.
(i) (3 marks) Explan why there isn't a uniformly most powerful invariant (under $G)$ size α test of $H_{0}: \theta=\theta_{0}$ versus $H_{0}: \theta \neq \theta_{0}$.
(j) (5 marks) Under the same distribution assumption in (h), determine the uniformly most powerful unbiased size α test of $H_{0}: \theta=\theta_{0}$ versus $H_{0}: \theta \neq \theta_{0}$.
(k) (5 marks) Under the same distribution assumption in (h), determine the uniformly most accurate unbiased γ-confidence interval for θ.

