Change the point on page 9 just before the heading Closed form approach to

- for the bias in favor for estimation: generate a sample $\psi_{01}, \ldots, \psi_{0 N^{*}} \sim \pi_{\Psi}$, compute for each

$$
\begin{aligned}
& M\left(R B_{\Psi}\left(\psi_{0 i} \mid \bar{x}, \bar{y}\right) \geq 1 \mid \psi_{0 i}+\delta\right) \\
& M\left(R B_{\Psi}\left(\psi_{0 i} \mid \bar{x}, \bar{y}\right) \geq 1 \mid \psi_{0 i}-\delta\right)
\end{aligned}
$$

and average each over the $\psi_{0 i}$ values and then the bias in favor for estimation is the maximum of these two averages

- note that the first of these is the prior probability that when the true value is $\psi_{0 i}+\delta$ the just meaningfully false value $\psi_{0 i}$ does not have evidence against it or, in other words, this false value is not in the implausible region (the set of ψ values for which there is evidence against) and similarly for the second expression
- the average of the first quantity over $\psi_{01}, \ldots, \psi_{0 N^{*}} \sim \pi_{\Psi}$ is estimating the prior probability that evidence against a just meaningfully false value (on the negative side) is not obtained

