2. Frequentism and Birnbaum’s Theorem

- *frequentism* in statistics means that any statistical procedure must be justified based on its properties under repeated sampling such as mean-squared error for estimates, power for tests, expected size of confidence sets, etc.

- repeated sampling means considering data sets x_1, x_2, \ldots i.i.d. f_θ and the average performance of the procedure for each $\theta \in \Theta$

- so if one procedure does better with respect to a particular repeated sampling criterion than another, uniformly in θ, then it is preferred

- there is currently no frequentist theory that produces answers to E and H for many meaningful problems and, in some instances, the answers provided are somewhat questionable

- the criteria used to judge a procedure are typically loss-based and loss functions (optimality criteria) need to be chosen and are not falsifiable via the data which is contrary to the goal of objectivity

- for example, in an estimation problem should we use squared error, absolute error or something else?

- often the choice is based on mathematical convenience and convention
- attempted to characterize what are good frequentist procedures based on commonly used, partial characterizations of statistical evidence and produced a surprising result
- there are two basic principles of frequentism which most accept as sensible: the sufficiency S and the conditionality C principles
- furthermore, there is the non-frequentist likelihood principle L
- Birnbaum apparently proved that, if you accept S and C, then you must accept L
- this is paradoxical because S and C allow for frequentism but L doesn’t
- Bayesianism conforms to L, so Birnbaum’s Theorem is sometimes cited as support for Bayesian inference
- we examine this result more closely

- wlog we simplify to the context where \mathcal{X} is finite
- let $\mathcal{I}_\Theta=\vdots$ denote the set of all inference bases based on such \mathcal{X} with fixed Θ (easily generalized to allow for reparameterizations)
- a relation R on a set \mathcal{I} is a subset of $\mathcal{I} \times \mathcal{I}$ so, if $(l_1, l_2) \in R$, then l_1 and l_2 are related
- a relation R on \mathcal{I} is an equivalence relation if it satisfies
 (i) (reflexive) $(l, l) \in R$ for all $l \in \mathcal{I}_\Theta$
 (ii) (symmetric) if $(l_1, l_2) \in R$ then $(l_2, l_1) \in R$
 (iii) (transitive) if $(l_1, l_2) \in R$ and $(l_2, l_3) \in R$ then $(l_1, l_3) \in R$
- an eq. rel. on \mathcal{I} partitions \mathcal{I} into equivalence classes
- a statistical principle is a relation on \mathcal{I}_Θ such that two related inference bases contain the same amount of evidence concerning the true value of θ and so inferences should be the same
- to be a valid characterization of evidence the principle should be an equivalence relation
- if a relation R on \mathcal{I} is not an eq. rel., various equivalence relations can be obtained from it
- let $\mathcal{R}_* = \{ R_* : R_* \subset R, R_* \text{ is an eq. rel.} \}$ and if $R_* \subset R_{**} \subset R$ with R_{**} an eq. rel. then $R_* = R_{**}$} and since the intersection of eq. rel.’s on \mathcal{I} is an eq. rel. then $R_{lam} = \bigcap_{R_* \in \mathcal{R}} R_*$ is an eq. rel. called the laminal eq. rel. induced by R (the biggest eq. rel. within R consistent with all the others)
- also, let $\mathcal{R}^* = \{ R^* : R \subset R^*, R^* \text{ is an eq. rel.} \}$ and define $\bar{R} = \bigcap_{R^* \in \mathcal{R}} R^*$ the smallest eq. rel. containing R

Lemma (chaining) If R is a reflexive relation on \mathcal{I}, then $\bar{R} = \{ ((l, l') : \exists n \text{ and } l_1, \ldots, l_n \in \mathcal{I} \text{ s.t. } l_1 = l, l_n = l' \text{ and } (l_i, l_{i+1}) \in R \text{ or } (l_{i+1}, l_i) \in R \}$.
- do we have to accept the elements of \bar{R} as equivalent?

Example
- $\mathcal{I} = \{2, 3, 4, \ldots\}$ and $(i, j) \in R$ when i and j have a common factor bigger than 1 so reflexive and symmetric but $(6, 3) \in R$ and $(2, 6) \in R$ yet $(2, 3) \notin R$ so not transitive
- and $\bar{R} = \mathcal{I} \times \mathcal{I}$ since for any (i, j), then $(i, ij) \in R$ and $(ij, j) \in R$ and \bar{R} expresses nothing meaningful
likelihood principle

Likelihood Principle (L)

\((I_1, I_2) \in L \text{ whenever the likelihood function based on } I_1 \text{ equals the likelihood function based on } I_2.\)

- the likelihood function is any positive multiple of the density at the observed data considered as a function of \(\theta\), immediately gives

Lemma L is an eq. rel. on \(\mathcal{I}_\Theta\)

- so \(L\) is a potentially valid characterization of statistical evidence but

Example *Irrelevancy of stopping rules.*

- \(x \sim \text{binomial}(n, \theta), \theta \in (0, 1]\) observe \(x = k\), gives
 \[L(\theta \mid x) = \theta^k (1 - \theta)^{n-k}\] (sample for \(n\) tosses)

- \(y \sim \text{negative-binomial}(k, \theta), \theta \in (0, 1]\) and observe \(y = n - k\) so
 \[L(\theta \mid y) = \theta^k (1 - \theta)^{n-k}\] (sample until \(k\) heads)

- should inferences be the same?
sufficiency principle

- recall that, for model \(\{ f_\theta : \theta \in \Theta \} \), a statistic \(T \) (any function defined on \(\mathcal{X} \)) is sufficient if the conditional distribution of the data \(x \) given the value \(T(x) \) is independent of \(\theta \), \(T \) is minimal sufficient if for any sufficient statistic \(T' \) there is a function \(h_{T,T'} \) such that \(T(x) = h_{T,T'}(T'(x)) \) and obviously a 1-1 function of a mss is a mss

- let \([x] = \{ z \in \mathcal{X} : f_\theta(x) = cf_\theta(z) \text{ for some } c > 0 \text{ and every } \theta \in \Theta \} \) so \([x] \) is the eq. class containing \(x \) induced by the eq. rel. on \(\mathcal{X} \) that says two data sets are equivalent if they give rise to the same likelihood function

Lemma \([\cdot] \) is a minimal sufficient statistic for \(\{ f_\theta : \theta \in \Theta \} \).

Sufficiency Principle (S)

If \(T_i \) is a mss for the model of \(l_i = (\{ f_{i\theta} : \theta \in \Theta \}, x_i) \) for \(i = 1, 2 \) and there is a 1-1 function \(h \) such that \(T_1 = h(T_2) \) with \(T_1(x_1) = h(T_2(x_2)) \), then \((l_1, l_2) \in S \).
- the underlying idea is that, because the conditional distribution given a sufficient statistic does not involve θ, reducing the data to the value of the sufficient statistic, so the information locating x within

$$T^{-1}\{x\} = \{z : T(x) = T(x)\}$$

is discarded, does not lose any evidence concerning the true value of θ and we want to make the maximum reduction in the data to the value of a mss

Lemma S is an eq. rel. on \mathcal{I}_Θ and $S \subset L$.

Proof: The eq. rel. part is obvious. If $(I_1, I_2) \in S$, then by the factorization theorem $f_{i\theta}(x_i) = k(x_i)g_{T_{i\theta}}(T_i(x_i))$ where $g_{T_{i\theta}}$ is the density of the mss T_i for $\{f_{i\theta} : \theta \in \Theta\}$. Also, $g_{T_{1\theta}}(T_1(x_1)) = g_{T_{2\theta}}(h(T_2(x_2)))$ so $f_{1\theta}(x_1) = cg_{T_{2\theta}}(h(T_2(x_2))) = c'f_{2\theta}(x_2)$ which implies $(I_1, I_2) \in L$.

- so S is a potentially valid characterization of statistical evidence
Example Two measuring instruments.

- a physicist wants to measure a voltage and picks up a voltmeter
- there are two voltmeters available and, based on experience, it is known that a measurement from voltmeter 1 gives values distributed $\mathcal{N}(\mu, \sigma_1^2)$ and voltmeter 2 gives values distributed $\mathcal{N}(\mu, \sigma_2^2)$ where μ is the unknown voltage and $\sigma_1^2 \gg \sigma_2^2$ are both known

- the stores manager tosses a fair coin giving the physicist voltmeter 1 if heads is obtained and voltmeter 2 otherwise and suppose voltmeter 2 is provided with the physicist knowing this

- voltages $x = (x_1, \ldots, x_n)$ were obtained and \bar{x} is the estimate but how to quantify the accuracy of this estimate, namely, the conditional, given the voltmeter used, 0.95-CI $\bar{x} \pm (\sigma_2 / \sqrt{n})z_{0.025}$ or the longer unconditional (approx.) 0.95-CI $\bar{x} \pm (\sqrt{\sigma_1^2 + \sigma_2^2} / \sqrt{n})z_{0.025}$

- most would say the conditional interval is the right one

- note - the distribution of the choice of the voltmeter does not involve the unknown μ
- a statistic U is *ancillary* for the model $\{f_\theta : \theta \in \Theta\}$ if the distribution of $U(x)$ is independent of θ.

Conditionality Principle (C) If U is an ancillary for the model in $I = (\{f_\theta : \theta \in \Theta\}, x)$, then $(I, I_U) \in C$ and $(I_U, I) \in C$ where

$I_U = (\{f_\theta(\cdot | U(x)) : \theta \in \Theta\}, x)$ and $f_\theta(\cdot | U(x))$ is the conditional density of the data given $U(x)$.

- the basic idea is that we want to remove all variation that does not depend on θ so appropriate accuracy assessments can be made.

Lemma C is reflexive and symmetric but not transitive and $C \subset L$.

- so C is not a proper characterization of statistical evidence.

- the basic idea to the proof is that there can be many ancillaries for a model but if U_1 and U_2 are ancillaries it is not the case in general that (U_1, U_2) is ancillary.

- in particular there is no *maximal ancillary* U (every other ancillary can be written as a function of U).
Birnbaum’s Theorem If you accept S and C as proper characterizations of statistical evidence, then you must accept L as a proper characterization of statistical evidence and frequentism is not relevant.

Proof: Suppose that $(l_1, l_2) \in L$. Construct a new inference base $l = (M, y)$ from l_1 and l_2 as follows. Let M be given by

$$\mathcal{X}_M = (\{1\} \times \mathcal{X}_{M_1}) \cup (\{2\} \times \mathcal{X}_{M_2}),$$

where

$$f_{M, \theta}(1, x) = \begin{cases} (1/2)f_{M_1, \theta}(x) & \text{when } x \in \mathcal{X}_{M_1} \\ 0 & \text{otherwise}, \end{cases}$$

$$f_{M, \theta}(2, x) = \begin{cases} (1/2)f_{M_2, \theta}(x) & \text{when } x \in \mathcal{X}_{M_2} \\ 0 & \text{otherwise}. \end{cases}$$

Then

$$T(i, x) = \begin{cases} (i, x) & \text{when } x \notin \{x_1, x_2\} \\ \{x_1, x_2\} & \text{otherwise} \end{cases}$$

is sufficient for M and so $((M, (1, x_1)), (M, (2, x_2))) \in S$. Also, $U(i, x) = i$ is ancillary for M and thus

$$((M, (1, x_1)), (M_1, x_1)) \in C, ((M, (2, x_2)), (M_2, x_2)) \in C.$$

This completes the "proof".
- but what this actually proves, using the chaining argument, is the following

Lemma $\overline{S \cup C} = L$

- namely, the smallest eq. rel. containing $S \cup C$ is L (and note $S \cup C \subset L$ is not an eq. rel.)

- so we do not have to accept the additional equivalences induced in $S \cup C$

- Evans, Fraser and Monette (1986) prove

Lemma $\overline{C} = L$.

- C is a significant problem for frequentism, can it be resolved? mostly just ignored

- note C is not a problem for Bayes because in that formulation we condition on all the data, not just ancillaries

- also ancillary statistics have a role to play in model checking and checking for prior-data conflict