5.1.10 We get an approximate value of P(C) by dividing the number of sample values lying in the set C by the sample size, i.e., P(C) is determined by $\bar{I}_C = n^{-1} \sum_{i=1}^{n} I_C(X_i)$ for a sample X_1, \ldots, X_n . The weak law of large numbers (see Theorem 4.2.1) guarantees that \bar{I}_C is close to P(C) when the sample size is big. However, the accuracy depends on the size of P(C). Consider the central limit theorem (see Theorem 4.4.3), $(\bar{I}_C - P(C))/(P(C)(1 - P(C))/n)^{1/2} \xrightarrow{D} N(0, 1)$. When P(C) is very close to 0 or 1, a small change of \bar{I}_C could lead to a large difference from the value P(C).

5.2.17 The conditional probability $P(X = x | X > 5) = \theta(1 - \theta)^{x-6}$ where $x \ge 6$ and $\theta = 1/3$. The conditional probability function is decreasing and the value x = 6 is the most probable.

Again the shortest interval containing 95% probability of a future X is [6, c] satisfying $P(6 \le X \le c | X > 5) \ge 0.95$. Since $P(X \le x | X > 5) = 1 - (1 - \theta)^{x-5}$, the solution is $c \ge 5 + \ln(0.05) / \ln(2/3) = 12.3884$. Finally, the interval [6, 13] is the solution.

5.3.15 The first quartile c, of a $N(\mu, \sigma^2)$ distribution satisfies

$$0.25 = \int_{-\infty}^{c} \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx = \Phi\left(\frac{c-\mu}{\sigma}\right).$$

Therefore, $c = \mu + \sigma z_{.25}$, where $z_{.25}$ is the first quartile of the N(0, 1) distribution, i.e., $\Phi(z_{.25}) = .25$. But we see from this that several different values of (μ, σ^2) can give the same first quartile, e.g., $(\mu, \sigma^2) = (0, 1)$ and $(\mu, \sigma^2) = (z_{.25}/2, 1/4)$ both give rise to normal distributions whose first quartile equals $z_{.25}$. Therefore, we cannot parameterize this model by the first quartile.

5.3.18 If P_1 is the true probability measure, the sample mean $\bar{X} = (X_1 + \cdots + X_n)/n$ has a N(1, 1/100) distribution. And \bar{X} has a N(0, 1/100) distribution if P_2 is true. Hence, we conclude the true probability measure is P_1 if $\bar{X} \ge 1/2$ and is P_2 if $\bar{X} < 1/2$. The probability of making an error is $P_1(\bar{X} < 1/2) = P_1((\bar{X} - 1)/\sqrt{1/100} < (1/2 - 1)/\sqrt{1/100}) = \Phi(-5) = 2.8665 \times 10^{-7}$. Thus, this inference is very reliable.