6.1.8

(a) The three likelihood functions are as follows.

(b) Since $L(1 \mid 1) / L(2 \mid 1)=0.3 / 0.1=3=L(1 \mid 3) / L(2 \mid 3)$ and $L(1 \mid 2) / L(2 \mid 2)=$ $0.1 / 0.7=1 / 7 \neq 3$, a statistic $T: S \rightarrow\{1,2\}$ given by $T(1)=T(3)=1$ and $T(2)=2$ is a sufficient statistic.
6.1.19 The likelihood function is given by

$$
\begin{aligned}
L\left(\theta \mid x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \frac{1}{\Gamma\left(\alpha_{0}\right)}\left(\theta x_{i}\right)^{\alpha_{0}-1} \exp \left\{-\theta x_{i}\right\} \theta \\
& =\Gamma^{-n}\left(\alpha_{0}\right)\left(\prod x_{i}\right)^{\alpha-1} \theta^{n \alpha_{0}} \exp (-\theta n \bar{x})
\end{aligned}
$$

By the factorization theorem \bar{x} is a sufficient statistic. The logarithm of the likelihood is given by $\ln L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\ln \left\{\Gamma^{-n}\left(\alpha_{0}\right)\left(\prod x_{i}\right)^{\alpha_{0}-1}\right\}+n \alpha \ln \theta-$ $\theta n \bar{x}$. Differentiating this and setting it equal to 0 , we obtain $\theta=\alpha / \bar{x}$. So given a likelihood function, we can determine \bar{x} and this proves that \bar{x} is minimal sufficient.
6.1.20 The likelihood function is given by $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{-n} I_{\left[x_{(n)}, \infty\right)}(\theta)$ when $\theta>0$. By the factorization theorem $x_{(n)}$ is a sufficient statistic. Now notice that the likelihood function is 0 to the left of $x_{(n)}$ and positive to the right. So given the likelihood, we can determine $x_{(n)}$ and it is minimal sufficient.
6.2.20 First, recall that the MLE for μ is \bar{x} (Example 6.2.2). The parameter of interest now is $\psi(\mu)=P_{\mu}(X<1)=\Phi(1-\mu)$, where Φ is the cdf of a $N(0,1)$. Since $\Phi(1-\mu)$ is a strictly decreasing function μ, then ψ is a 1-1 function of μ. Hence, we can apply Theorem 6.2 .1 and conclude that $\hat{\psi}=\Phi(1-\bar{x})$ is the MLE.
6.3.25 Using $c\left(x_{1}, \ldots, x_{n}\right)=\bar{x}+k\left(\sigma_{0} / \sqrt{n}\right)$, we have that k satisfies

$$
P\left(\mu \leq \bar{x}+k\left(\sigma_{0} / \sqrt{n}\right)\right)=P\left(\frac{\bar{x}-\mu}{\sigma_{0} / \sqrt{n}} \geq-k\right)=P(Z \geq-k) \geq \gamma
$$

So $k=-z_{1-\gamma}=z_{\gamma}$, i.e., the γ-percentile of a $N(0,1)$ distribution.
6.3.26 The P -value for testing $H_{0}: \mu \leq \mu_{0}$ is given by

$$
\begin{aligned}
\max _{\mu \in H_{0}} P_{\mu}\left(\frac{\bar{X}-\mu}{\sigma_{0} / \sqrt{n}}>\frac{\bar{x}_{o}-\mu}{\sigma_{0} / \sqrt{n}}\right) & =\max _{\mu \in H_{0}} P\left(Z>\frac{\bar{x}_{o}-\mu}{\sigma_{0} / \sqrt{n}}\right) \\
& =\max _{\mu \in H_{0}}\left(1-\Phi\left(\frac{\bar{x}_{o}-\mu}{\sigma_{0} / \sqrt{n}}\right)\right)
\end{aligned}
$$

Since $\left(1-\Phi\left(\left(\bar{x}_{o}-\mu\right) /\left(\sigma_{0} / \sqrt{n}\right)\right)\right.$) is an increasing function of μ, its maximum is at $\mu=\mu_{0}$.
6.3.27 The form of the power function associated with the above hypothesis assessment procedure is given by

$$
\begin{aligned}
\beta(\mu) & =P_{\mu}\left(1-\Phi\left(\frac{\bar{X}-\mu_{0}}{\sigma_{0} / \sqrt{n}}\right)<\alpha\right)=P_{\mu}\left(\Phi\left(\frac{\bar{X}-\mu_{0}}{\sigma_{0} / \sqrt{n}}\right)>1-\alpha\right) \\
& =P_{\mu}\left(\frac{\bar{X}-\mu_{0}}{\sigma_{0} / \sqrt{n}}>z_{1-\alpha}\right)=P_{\mu}\left(\frac{\bar{X}-\mu}{\sigma_{0} / \sqrt{n}}>\frac{\mu_{0}-\mu}{\sigma_{0} / \sqrt{n}}+z_{1-\alpha}\right) \\
& =1-\Phi\left(\frac{\mu_{0}-\mu}{\sigma_{0} / \sqrt{n}}+z_{1-\alpha}\right) .
\end{aligned}
$$

