7.1.16 Suppose that $X_{\tau} \sim N\left(\mu_{0}, \tau^{2}\right)$. Then $P\left(X_{\tau}<x\right)=\Phi\left(\left(x-\mu_{0}\right) / \tau\right) \rightarrow$ $\Phi(0)=1 / 2$ for every x and this is not a distribution function.
7.1.17 First, observe that the posterior density of θ given $x_{1}, \ldots x_{n}$ is $\pi\left(\theta \mid x_{1}, \ldots x_{n}\right) \propto \pi(\theta) \prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)$. Using this as the prior density to obtain the posterior density of θ given $x_{n+1}, \ldots x_{n+m}$, we get $\pi\left(\theta, x_{1}, \ldots x_{n} \mid x_{n+1}, \ldots x_{n+m}\right) \propto$ $\pi(\theta) \prod_{i=1}^{n} f_{\theta}\left(x_{i}\right) \prod_{i=n+1}^{m+n} f_{\theta}\left(x_{i}\right)$, and this is the same as the posterior density of θ given $x_{1}, \ldots x_{n}, x_{n+1}, \ldots x_{n+m}$.
7.2.17 From the equation $B F(A)=[\Pi(A \mid s) /(1-\Pi(A \mid s))] /[\Pi(A) /(1-\Pi(A))]$, we get $\Pi(A \mid s)=1 /[1+B F(A) /[\Pi(A) /(1-\Pi(A))]]$. Both statisticians' Bayes factor equals $B F(A)=100$. The prior odds of Statistician I is $\Pi\left(H_{0}\right) /(1-$ $\left.\Pi\left(H_{0}\right)\right)=(1 / 2) /(1 / 2)=1$. Thus Statistician I's posterior probability is $\Pi\left(H_{0} \mid s\right)$ $=1 /[1+(1) 100]=1 / 101=0.0099$. The prior odds of Statistician II is $\Pi\left(H_{0}\right) /\left(1-\Pi\left(H_{0}\right)\right)=(1 / 4) /(3 / 4)=1 / 3$ and the posterior probability is $\Pi\left(H_{0} \mid s\right)=1 /[1+(1 / 3) 100]=3 / 103=0.0292$. Hence, Statistician II has the bigger posterior belief in H_{0}.
7.1.18 The joint density of $\left(\theta, x_{1}, \ldots x_{n}\right)$ is given by

$$
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{n \bar{x}+\alpha-1}(1-\theta)^{n(1-\bar{x})+\beta-1}
$$

and integrating out θ gives the marginal probability function for $\left(x_{1}, \ldots x_{n}\right)$ as $m\left(x_{1}, \ldots x_{n}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(n \bar{x}+\alpha) \Gamma(n(1-\bar{x})+\beta)}{\Gamma(\alpha+\beta+n)}$ for $\left(x_{1}, \ldots x_{n}\right) \in\{0,1\}^{n}$.

To generate from this distribution we can first generate $\theta \sim \operatorname{Beta}(\alpha, \beta)$ and then generate $x_{1}, \ldots x_{n}$ i.i.d. from the $\operatorname{Bernoulli}(\theta)$ distribution.
7.2.18 Note that a credible set is an acceptance region and the compliment of γ-credible set is a $(1-\gamma)$ rejection region. Since $\psi(\theta)=0 \in(-3.3,2.6)$, the P -value must be greater than $1-0.95=0.05$.
7.2.21 The likelihood function is given by $L\left(\theta \mid x_{1}, . ., x_{n}\right)=\theta^{-n} I_{\left(x_{(n)}, \infty\right)}(\theta)$ and the prior is $I_{(0,1)}(\theta)$, so the posterior is

$$
\frac{\theta^{-n} I_{\left(x_{(n)}, 1\right)}(\theta)}{\int_{x_{(n)}}^{1} \theta^{-n} d \theta}=\frac{\theta^{-n} I_{\left(x_{(n)}, 1\right)}(\theta)}{(n-1)\left(x_{(n)}^{1-n}-1\right)}
$$

Since this density strictly increases in $\left(x_{(n)}, 1\right)$ and HPD interval is of the form $(c, 1), c$ is determined by

$$
\gamma=\int_{c}^{1} \frac{\theta^{-n} I_{\left(x_{(n), 1)}\right.}(\theta)}{(n-1)\left(x_{(n)}^{1-n}-1\right)} d \theta=\frac{c^{1-n}-1}{x_{(n)}^{1-n}-1}
$$

so $c=\left\{1+\gamma\left(x_{(n)}^{1-n}-1\right)\right\}^{1 /(1-n)}$.
7.2.23 Let $\psi\left(\mu, \sigma^{2}\right)=\mu+\sigma z_{0.75}=\mu+\left(1 / \sigma^{2}\right)^{-1 / 2} z_{0.75}$ and $\lambda=\lambda\left(\mu, \sigma^{2}\right)=$ $1 / \sigma^{2}$, so

$$
J(\theta(\psi, \lambda))=\left|\operatorname{det}\left(\begin{array}{cc}
\frac{\partial \psi}{\partial \mu} & \frac{\partial \psi}{\partial\left(\frac{1}{\sigma^{2}}\right)} \\
\frac{\partial \lambda}{\partial \mu} & \frac{\partial \lambda}{\partial\left(\frac{1}{\sigma^{2}}\right)}
\end{array}\right)\right|=\left|\operatorname{det}\left(\begin{array}{cc}
1 & -\frac{1}{2} z_{0.75}\left(\frac{1}{\sigma^{2}}\right)^{-\frac{3}{2}} \\
0 & 1
\end{array}\right)\right|=1 .
$$

Therefore, the posterior density of ψ is given by

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}}\left(n+\frac{1}{\tau_{0}^{2}}\right)^{1 / 2} \lambda^{1 / 2} \exp \left(-\frac{\lambda}{2}\left(n+\frac{1}{\tau_{0}^{2}}\right)\left(\left(\psi_{0}-\lambda^{-1 / 2} z_{0.75}\right)-\mu_{x}\right)^{2}\right) \\
& \quad \times \frac{\left(\beta_{x}\right)^{\alpha_{0}+n / 2}}{\Gamma\left(\alpha_{0}+n / 2\right)} \lambda^{\alpha_{0}+n / 2-1} \exp \left(-\beta_{x} \lambda\right) d \lambda
\end{aligned}
$$

which is a difficult integral to evaluate.
7.2.28 Since the variance of a $t(\lambda)$ distribution is $\lambda /(\lambda-2)$, the posterior variance of μ is given by

$$
\left.\begin{array}{l}
\operatorname{Var}\left(\mu_{x}+\sqrt{\frac{1}{n+2 \alpha_{0}}} \sqrt{\frac{2 \beta_{x}}{n+1 / \tau_{0}^{2}}} t\left(n+2 \alpha_{0}\right)\right) \\
=\left(\sqrt{\frac{1}{n+2 \alpha_{0}}} \sqrt{\left.\frac{2 \beta_{x}}{n+1 / \tau_{0}^{2}}\right)^{2} \frac{n+2 \alpha_{0}}{n+2 \alpha_{0}-2}}=\left(\frac{2 \beta_{x}}{n+1 / \tau_{0}^{2}}\right)\left(\frac{1}{n+2 \alpha_{0}-2}\right.\right.
\end{array}\right) .
$$

7.2.32 We can write $X_{n+1}=\mu+\sigma U$, where $U \sim N(0,1)$ independent of $X_{1}, \ldots, X_{n}, \mu, \sigma$. We also have that $\mu=\mu_{x}+\left(n+1 / \tau_{0}^{2}\right)^{-1 / 2} \sigma Z$, where $Z \sim$ $N(0,1)$ is independent of $X_{1}, \ldots, X_{n}, \sigma$. Therefore, we can write

$$
\begin{aligned}
& X_{n+1}=\mu_{x}+\left(n+1 / \tau_{0}^{2}\right)^{-1 / 2} \sigma Z+\sigma U \\
& =\mu_{x}+\sigma\left\{\left(n+1 / \tau_{0}^{2}\right)^{-1 / 2} Z+U\right\}=\mu_{x}+\left\{\left(n+1 / \tau_{0}^{2}\right)^{-1}+1\right\}^{1 / 2} \sigma W
\end{aligned}
$$

where

$$
\begin{aligned}
W & =\left\{\left(n+1 / \tau_{0}^{2}\right)^{-1}+1\right\}^{-1 / 2}\left\{\left(n+1 / \tau_{0}^{2}\right)^{-1 / 2} Z+U\right\} \\
& =\frac{X_{n+1}-\mu_{x}}{\left\{\left(n+1 / \tau_{0}^{2}\right)^{-1}+1\right\}^{1 / 2} \sigma} \sim N(0,1)
\end{aligned}
$$

is independent of $X_{1}, \ldots, X_{n}, \sigma$. Therefore, just as in Example 7.2.1,

$$
\begin{aligned}
T & =\frac{W}{\sqrt{\left(2 \frac{\beta_{x}}{\sigma^{2}}\right) /\left(2 \alpha_{0}+n\right)}} \\
& =\frac{X_{n+1}-\mu_{x}}{\left\{\left(n+1 / \tau_{0}^{2}\right)^{-1}+1\right\}^{1 / 2}\left(\left(2 \beta_{x}\right) /\left(2 \alpha_{0}+n\right)\right)^{1 / 2}} \sim t\left(2 \alpha_{0}+n\right)
\end{aligned}
$$

7.2.34 The prior predictive probability measure for the data s with a mixture of Π_{1} and Π_{2} prior distributions is given by

$$
\begin{aligned}
& m(s)=E_{\Pi}\left(f_{\theta}(s)\right)=\sum_{\theta} f_{\theta}(s) \Pi(\{\theta\}) \\
& =\sum_{\theta} f_{\theta}(s)\left(p \Pi_{1}(\{\theta\})+(1-p) \Pi_{2}(\{\theta\})\right) \\
& =p \sum_{\theta} f_{\theta}(s) \Pi_{1}(\{\theta\})(1-p) \sum_{\theta} f_{\theta}(s) \Pi_{2}(\{\theta\}) \\
& =p f_{\theta_{0}}(s)+(1-p) \sum_{\theta} f_{\theta}(s) \Pi_{2}(\{\theta\})=p m_{1}(s)+(1-p) m_{2}(s) .
\end{aligned}
$$

The posterior probability measure is given by

$$
\begin{aligned}
& \Pi(A \mid s)=\sum_{\theta \in A} \frac{f_{\theta}(s) \Pi(\{\theta\})}{m(s)}=\sum_{\theta \in A} \frac{f_{\theta}(s)\left(p \Pi_{1}(\{\theta\})+(1-p) \Pi_{2}(\{\theta\})\right)}{p m_{1}(s)+(1-p) m_{2}(s)} \\
& =\frac{p m_{1}(s)}{p m_{1}(s)+(1-p) m_{2}(s)} \sum_{\theta \in A} \frac{f_{\theta}(s) \Pi_{1}(\{\theta\})}{m_{1}(s)} \\
& \quad+\frac{(1-p) m_{2}(s)}{p m_{1}(s)+(1-p) m_{2}(s)} \sum_{\theta \in A} \frac{f_{\theta}(s) \Pi_{2}(\{\theta\})}{m_{2}(s)} \\
& =\frac{p m_{1}(s)}{p m_{1}(s)+(1-p) m_{2}(s)} \Pi_{1}(A \mid s)+\frac{(1-p) m_{2}(s)}{p m_{1}(s)+(1-p) m_{2}(s)} \Pi_{2}(A \mid s) .
\end{aligned}
$$

7.3.11
(a) We have that $\frac{1}{n} \ln \left(L\left(\hat{\theta} \mid x_{1}, \ldots, x_{n}\right) \pi(\hat{\theta})\right)=\frac{1}{n} \sum_{i=1}^{n} \ln L\left(\hat{\theta} \mid x_{i}\right)+$ $\frac{1}{n} \ln \pi(\hat{\theta}) \xrightarrow{\text { a.s }} E_{\theta}(\ln L(\theta \mid X))=I(\theta)$ by the strong law of large numbers.
(b) Then from the results of part (a) we have that, denoting the true value of θ by θ_{0},

$$
\frac{\theta-\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)}{\hat{\sigma}\left(X_{1}, \ldots, X_{n}\right) / \sqrt{n}} \xrightarrow{a . s} \sqrt{n I\left(\theta_{0}\right)}\left(\theta-\theta_{0}\right)
$$

when $\theta \sim \Pi\left(\cdot \mid X_{1}, \ldots, X_{n}\right)$. This implies that when the sample size is large then inferences will be independent of the prior.
7.3.15 Suppose that the posterior expectation of ψ exists. Then by the theorem
of total expectation we have that

$$
\begin{aligned}
& E\left(\psi \mid x_{1}, \ldots, x_{n}\right)=E\left(\left.\frac{\sigma}{\mu} \right\rvert\, x_{1}, \ldots, x_{n}\right) \\
& =E\left(\left.\frac{\sigma}{\mu}\left(I_{(-\infty, 0)}(\mu)+I_{(0, \infty)}(\mu)\right) \right\rvert\, x_{1}, \ldots, x_{n}\right) \\
& =E\left(\left.\frac{\sigma}{\mu} I_{(-\infty, 0)}(\mu) \right\rvert\, x_{1}, \ldots, x_{n}\right)+E\left(\left.\frac{\sigma}{\mu} I_{(0, \infty)}(\mu) \right\rvert\, x_{1}, \ldots, x_{n}\right) \\
& =E\left(\left.E\left(\left.\frac{\sigma}{\mu} I_{(-\infty, 0)}(\mu) \right\rvert\, \sigma, x_{1}, \ldots, x_{n}\right) \right\rvert\, x_{1}, \ldots, x_{n}\right) \\
& \quad+E\left(\left.E\left(\left.\frac{\sigma}{\mu} I_{(0, \infty)}(\mu) \right\rvert\, \sigma, x_{1}, \ldots, x_{n}\right) \right\rvert\, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

and reasoning as in Problem 7.2.24, we have that $E\left(\left.\frac{\sigma}{\mu} I_{(-\infty, 0)}(\mu) \right\rvert\, \sigma, x_{1}, \ldots, x_{n}\right)$ $=-\infty$ and $E\left(\left.\frac{\sigma}{\mu} I_{(-\infty, 0)}(\mu) \right\rvert\, \sigma, x_{1}, \ldots, x_{n}\right)=\infty$, so $E\left(\psi \mid x_{1}, \ldots, x_{n}\right)=\infty-\infty$ which is undefined.
7.4.3
(a) First, we compute the prior predictive for the data as follows.

$$
m_{\tau}(1,1,3)=\sum_{\theta=1}^{2} \pi(\theta) f_{\theta}(1,1,3)= \begin{cases}\frac{1}{2}\left(\frac{1}{3}\right)^{3}+\frac{1}{2}\left(\frac{1}{2}\right)^{2} \frac{1}{8}=\frac{59}{1728} & \tau=1 \\ \frac{1}{3}\left(\frac{1}{3}\right)^{3}+\frac{2}{3}\left(\frac{1}{2}\right)^{2} \frac{1}{8}=\frac{43}{1296} & \tau=2\end{cases}
$$

The maximum value of the prior predictive is obtained when $\tau=1$, therefore we choose the first prior.
(b) The posterior of θ given $\tau=1$ is

$$
\pi_{1}(\theta \mid 1,1,3)= \begin{cases}\frac{\frac{1}{2}\left(\frac{1}{3}\right)^{3}}{\frac{59}{12}}=\frac{32}{59} & \theta=a \\ \frac{\frac{1}{2}\left(\frac{1}{2}\right)^{2}}{} \frac{1}{8} \\ \frac{59}{1728}=\frac{27}{59} & \theta=b\end{cases}
$$

7.4.16 From Exercise 6.5 .1 the Fisher information is $n / 2 \sigma^{4}$. Therefore, Jeffreys' prior is given by $1 / \sigma^{2}$.
7.4.17 We use the prior $1 / \sigma^{2}$. The posterior distribution is proportional to

$$
\begin{aligned}
& \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \exp \left(-\frac{n}{2 \sigma^{2}}(\bar{x}-\mu)^{2}\right) \exp \left(-\frac{(n-1) s^{2}}{2 \sigma^{2}}\right) \frac{1}{\sigma^{2}} \\
& =\left(\frac{1}{\sigma^{2}}\right)^{\frac{1}{2}} \exp \left(-\frac{n}{2 \sigma^{2}}(\bar{x}-\mu)^{2}\right) \exp \left(-\frac{(n-1) s^{2}}{2 \sigma^{2}}\right)\left(\frac{1}{\sigma^{2}}\right)^{\frac{n+1}{2}}
\end{aligned}
$$

So the posterior distribution of $\left(\mu, \sigma^{2}\right)$ is given by $\mu \mid \sigma^{2}, x_{1}, \ldots, x_{n} \sim N\left(\bar{x}, \sigma^{2} / n\right)$ and $1 / \sigma^{2} \mid x_{1}, \ldots x_{n} \sim \operatorname{Gamma}\left(\frac{n+3}{2}, \frac{n-1}{2} s^{2}\right)$.

