
7.1.16 Suppose that X� � N
�
�0; �

2
�
: Then P (X� < x) = � ((x� �0) =�) !

� (0) = 1=2 for every x and this is not a distribution function.

7.1.17 First, observe that the posterior density of � given x1; :::xn is
� (� j x1; :::xn) / � (�)

Qn
i=1 f� (xi) : Using this as the prior density to obtain the

posterior density of � given xn+1; :::xn+m; we get � (�; x1; :::xn jxn+1; :::xn+m) /
� (�)

Qn
i=1 f� (xi)

Qm+n
i=n+1 f� (xi) ; and this is the same as the posterior density

of � given x1; :::xn; xn+1; :::xn+m:

7.2.17 From the equation BF (A) = [�(Ajs)=(1��(Ajs))]=[�(A)=(1��(A))],
we get �(Ajs) = 1=[1 + BF (A)=[�(A)=(1 � �(A))]]. Both statisticians�Bayes
factor equals BF (A) = 100. The prior odds of Statistician I is �(H0)=(1 �
�(H0)) = (1=2)=(1=2) = 1. Thus Statistician I�s posterior probability is�(H0js)
= 1=[1 + (1)100] = 1=101 = 0:0099. The prior odds of Statistician II is
�(H0)=(1 � �(H0)) = (1=4)=(3=4) = 1=3 and the posterior probability is
�(H0js) = 1=[1 + (1=3)100] = 3=103 = 0:0292. Hence, Statistician II has
the bigger posterior belief in H0.

7.1.18 The joint density of (�; x1; :::xn) is given by

� (�+ �)

� (�) � (�)
�n�x+��1 (1� �)n(1��x)+��1

and integrating out � gives the marginal probability function for (x1; :::xn) as
m (x1; :::xn) =

�(�+�)
�(�)�(�)

�(n�x+�)�(n(1��x)+�)
�(�+�+n) for (x1; :::xn) 2 f0; 1gn :

To generate from this distribution we can �rst generate � � Beta(�; �) and
then generate x1; :::xn i.i.d. from the Bernoulli(�) distribution.

7.2.18 Note that a credible set is an acceptance region and the compliment of
-credible set is a (1 � ) rejection region. Since  (�) = 0 2 (�3:3; 2:6), the
P-value must be greater than 1� 0:95 = 0:05.

7.2.21 The likelihood function is given by L (� jx1; ::; xn) = ��nI(x(n);1) (�)

and the prior is I(0;1) (�) ; so the posterior is

��nI(x(n);1) (�)R 1
x(n)

��n d�
=

��nI(x(n);1) (�)

(n� 1)
�
x1�n(n) � 1

� :
Since this density strictly increases in

�
x(n); 1

�
and HPD interval is of the form

(c; 1); c is determined by

 =

Z 1

c

��nI(x(n);1) (�)

(n� 1)
�
x1�n(n) � 1

� d� = c1�n � 1
x1�n(n) � 1

;

so c =
n
1 + 

�
x1�n(n) � 1

�o1=(1�n)
:
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7.2.23 Let  
�
�; �2

�
= � + �z0:75 = � +

�
1=�2

��1=2
z0:75 and � = �

�
�; �2

�
=

1=�2; so

J (� ( ; �)) =

�������det
0B@

@ 
@�

@ 

@( 1
�2
)

@�
@�

@�

@( 1
�2
)

1CA
������� =

������det
0@ 1 � 1

2z0:75
�
1
�2

�� 3
2

0 1

1A������ = 1:
Therefore, the posterior density of  is given byZ 1

0

1p
2�

�
n+

1

�20

�1=2
�1=2 exp

�
��
2

�
n+

1

�20

���
 0 � ��1=2z0:75

�
� �x

�2�
� (�x)

�0+n=2

� (�0 + n=2)
��0+n=2�1 exp (��x�) d�:

which is a di¢ cult integral to evaluate.

7.2.28 Since the variance of a t(�) distribution is �= (�� 2), the posterior vari-
ance of � is given by

V ar

 
�x +

r
1

n+ 2�0

s
2�x

n+ 1=�20
t(n+ 2�0)

!

=

 r
1

n+ 2�0

s
2�x

n+ 1=�20

!2
n+ 2�0

n+ 2�0 � 2
=

�
2�x

n+ 1=�20

��
1

n+ 2�0 � 2

�
:

7.2.32 We can write Xn+1 = � + �U; where U � N(0; 1) independent of

X1; : : : ; Xn; �; �: We also have that � = �x +
�
n+ 1=�20

��1=2
�Z; where Z �

N(0; 1) is independent of X1; : : : ; Xn; �. Therefore, we can write

Xn+1 = �x +
�
n+ 1=�20

��1=2
�Z + �U

= �x + �
n�
n+ 1=�20

��1=2
Z + U

o
= �x +

n�
n+ 1=�20

��1
+ 1
o1=2

�W

where

W =
n�
n+ 1=�20

��1
+ 1
o�1=2 n�

n+ 1=�20
��1=2

Z + U
o

=
Xn+1 � �xn

(n+ 1=�20 )
�1
+ 1
o1=2

�

� N(0; 1)

is independent of X1; : : : ; Xn; �. Therefore, just as in Example 7.2.1,

T =
Wr�

2�x�2

�
= (2�0 + n)

=
Xn+1 � �xn

(n+ 1=�20 )
�1
+ 1
o1=2

((2�x) = (2�0 + n))
1=2

� t (2�0 + n) :
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7.2.34 The prior predictive probability measure for the data s with a mixture
of �1 and �2 prior distributions is given by

m (s) = E� (f� (s)) =
X
�

f� (s)� (f�g)

=
X
�

f� (s) (p�1(f�g) + (1� p)�2(f�g))

= p
X
�

f� (s)�1 (f�g) (1� p)
X
�

f� (s)�2 (f�g)

= pf�0 (s) + (1� p)
X
�

f� (s)�2 (f�g) = pm1 (s) + (1� p)m2 (s) :

The posterior probability measure is given by

�(A j s) =
X
�2A

f� (s)� (f�g)
m (s)

=
X
�2A

f� (s) (p�1 (f�g) + (1� p)�2 (f�g))
pm1 (s) + (1� p)m2 (s)

=
pm1 (s)

pm1 (s) + (1� p)m2 (s)

X
�2A

f� (s)�1 (f�g)
m1 (s)

+
(1� p)m2 (s)

pm1 (s) + (1� p)m2 (s)

X
�2A

f� (s)�2 (f�g)
m2 (s)

=
pm1 (s)

pm1 (s) + (1� p)m2 (s)
�1 (A j s) +

(1� p)m2 (s)

pm1 (s) + (1� p)m2 (s)
�2 (A j s) :

7.3.11
(a) We have that 1

n ln
�
L
�
�̂ jx1; : : : ; xn

�
�
�
�̂
��
= 1

n

Pn
i=1 lnL

�
�̂ jxi

�
+

1
n ln�

�
�̂
�
a:s! E� (lnL (� jX)) = I(�) by the strong law of large numbers.

(b) Then from the results of part (a) we have that, denoting the true value of �
by �0;

� � �̂ (X1; : : : ; Xn)

�̂ (X1; : : : ; Xn) =
p
n

a:s!
p
nI(�0) (� � �0)

when � � �(� jX1; : : : ; Xn) : This implies that when the sample size is large
then inferences will be independent of the prior.

7.3.15 Suppose that the posterior expectation of  exists. Then by the theorem
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of total expectation we have that

E ( jx1; : : : ; xn) = E

�
�

�
jx1; : : : ; xn

�
= E

�
�

�

�
I(�1;0) (�) + I(0;1) (�)

�
jx1; : : : ; xn

�
= E

�
�

�
I(�1;0) (�) jx1; : : : ; xn

�
+ E

�
�

�
I(0;1) (�) jx1; : : : ; xn

�
= E

�
E

�
�

�
I(�1;0) (�) j�; x1; : : : ; xn

�
jx1; : : : ; xn

�
+ E

�
E

�
�

�
I(0;1) (�) j�; x1; : : : ; xn

�
jx1; : : : ; xn

�
and reasoning as in Problem 7.2.24, we have that E

�
�
�I(�1;0) (�) j�; x1; : : : ; xn

�
= �1 and E

�
�
�I(�1;0) (�) j�; x1; : : : ; xn

�
=1; so E ( jx1; : : : ; xn) =1�1

which is unde�ned.

7.4.3
(a) First, we compute the prior predictive for the data as follows.

m� (1; 1; 3) =
2X
�=1

�(�)f�(1; 1; 3) =

(
1
2

�
1
3

�3
+ 1

2

�
1
2

�2 1
8 =

59
1728 � = 1

1
3

�
1
3

�3
+ 2

3

�
1
2

�2 1
8 =

43
1296 � = 2

The maximum value of the prior predictive is obtained when � = 1; therefore
we choose the �rst prior.
(b) The posterior of � given � = 1 is

�1 (� j 1; 1; 3) =

8><>:
1
2 (

1
3 )

3

59
1728

= 32
59 � = a

1
2 (

1
2 )

2 1
8

59
1728

= 27
59 � = b:

7.4.16 From Exercise 6.5.1 the Fisher information is n=2�4. Therefore, Je¤reys�
prior is given by 1=�2:

7.4.17 We use the prior 1=�2. The posterior distribution is proportional to�
1

�2

�n
2

exp
�
� n

2�2
(�x� �)2

�
exp

�
� (n� 1) s

2

2�2

�
1

�2

=

�
1

�2

� 1
2

exp
�
� n

2�2
(�x� �)2

�
exp

�
� (n� 1) s

2

2�2

��
1

�2

�n+1
2

:

So the posterior distribution of
�
�; �2

�
is given by � j�2; x1; :::; xn � N(�x; �2=n)

and 1=�2 jx1; :::xn �Gamma
�
n+3
2 ; n�12 s2

�
:
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