Instructions: The test is out of 100 and each question is worth 7. Your maximum grade is 100 . See the end for some useful information. Please, at most 1 question/page in your booklets! No aids allowed.

1. Let X be a rv in $\{0,1,2, \ldots\}$. Show $E(X)=\sum_{n=0}^{\infty} P(X>n)$.
2. (a) Let A_{1}, A_{2}, \ldots be an infinite sequence of events with $P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots<\infty$. Let $Y=I\left(A_{1}\right)+I\left(A_{2}\right)+\cdots$. Show $E(Y)<\infty$. (b) Let $X \geq 0$ and suppose that there is an event A with $P(A)>0$ such that $X(\omega)=\infty, \forall \omega \in A$. Show $E(X)=\infty$. Hint: $E(X)=E\left\{X\left[I(A)+I\left(A^{c}\right)\right]\right\}=E[X I(A)]+E\left[I\left(A^{c}\right)\right] \geq E[X I(A)] \geq E[M I(A)]$ for any constant $M>0$.
3. If $E(|X|)=0$ show $X \stackrel{\text { as }}{=} 0$. Use this to show that a rv with variance 0 must be constant wp1.
4. Show $[\operatorname{cov}(X, Y)]^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$. Use this to show that $|\operatorname{corr}(X, Y)| \leq 1$.
5. Let X_{1}, X_{2}, \ldots be uncorrelated with mean μ. Set $S_{n}=X_{1}+\cdots+X_{n}$ and $\bar{X}=S_{n} / n$. Show $E\left[(\bar{X}-\mu)^{2}\right] \rightarrow 0$, as $n \rightarrow \infty$.
6. Consider a Poisson process of rate λ on \mathbb{R}^{2}. Let $N(r)$ denote the number of points in a circle of radius r centered at the origin and Y_{2} be the distance from the origin to the 2nd closest point. Calculate the pdf of Y_{2}.
7. Let Z_{1}, Z_{2}, \ldots be iid Bernoulli $(1 / 4)$ and let $S_{n}=Z_{1}+\cdots+Z_{n}$. Let T denote the smallest n such that $S_{n}=2$. Obtain the pgf of T and then calculate $\operatorname{Var}(T)$.
8. Let $\{N(t): t \geq 0\}$ be a Poisson process with $E[N(1)]=2$. $N(t)$ is the number of points in $[0, t]$. Suppose the points are located at $T_{1}<T_{2}<\cdots$. Calculate the pdf of T_{1} and the pdf of T_{3}. Now obtain the mgf's of each of these rv's.
9. For the process in $\# 8$ calculate $\operatorname{cov}(N(2), N(5))$ and the joint pgf of these two variables.
10. Let X be a rv and $c>0$ some constant. Show $P(X \geq c) \leq\left(e^{2 X}\right) / e^{2 c}$.
11. Let X be uniform on $(0,1)$. Set $Y=-2 \log (X)$. Find the df and pdf of Y. Calculate $E(Y)$ using the pdf of Y and directly using the pdf of the uniform.
12. Let X_{1}, X_{2} be independent each with mean 1. Suppose both X_{1} and $X_{1}+X_{2}$ are Poisson rv's. Show $X_{2} \sim \operatorname{Poisson}(1)$.
13. Let Y_{1}, \ldots, Y_{k} be multinomial $\left(N ; p_{1}, \ldots, p_{k}\right)$. Calculate $\operatorname{cov}\left(Y_{i}, Y_{j}\right)$ for $i \neq j$.
14. (a) A rv X has pgf $G(z)=.2+.8 z^{25}$. Calculate $E\left(X^{3 / 2}\right)$. (b) Let X_{1}, X_{2} be iid $N(0,1)$. Find the joint pdf of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$. Are Y_{1} and Y_{2} independent? Why or why not? Are they uncorrelated or correlated?
15. Suppose events $A_{n} \uparrow A$. Show $A=\bigcap A_{n}$. Now show $A_{n}^{c} \uparrow A^{c}$. Finally, argue $P\left(A_{n}\right) \rightarrow$ $P(A)$. Use this to show that $A_{n} \downarrow A$ implies $P\left(A_{n}\right) \rightarrow P(A)$. Finally, if $A_{1} \cdot A_{2}, \ldots$ is a sequence of events each having probability1, show $P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=1$.

Information

$r v=r a n d o m$ variable, $\mathrm{pgf}=$ probability generating function, $\mathrm{mg}=$ moment generating function, $\mathrm{pdf}=$ probability density function, $\mathrm{df}=$ distribution function, $\mathrm{iid}=$ independent with the same distribution
A $N(0,1)$ rv has pdf $f(z)=[1 / \sqrt{2 \pi}] \exp \left(-z^{2} / 2\right)$. Its odd moments are 0 while $E\left(Z^{2 k}\right)=$ $\frac{(2 k)!}{2^{k}(k!)}$.
A Bernoulli (p) rv can only take on 1 or 0 with probabilities p and $q=1-p$, respectively.
The geometric (p) probabilities are $q^{k-1} p, k=1,2, \ldots$
A $\operatorname{gamma}(r, \lambda)$ rv has pdf $f(x)=\lambda^{r} x^{r-1} e^{-\lambda x} /(r-1)!, x>0$ and is 0 ow. Here $r>0$ is an integer. The case $r=1$ yields the exponential (λ).
$1+x+x^{2}+\cdots=1 /(1-x),|x|<1 ; 1+x+x^{2} / 2!+x^{3} / 3!+\cdots=e^{x}$
The Poisson (λ) probabilities are $e^{-\lambda} \lambda^{k} / k$!
The multinomial $\left(N ; p_{1}, \ldots, p_{k}\right)$ probabilities are $\frac{N!}{\left(i_{1}!\right) \ldots\left(i_{k}!\right)} p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}, i_{1}+\cdots+i_{k}=N$. Here $p_{1}+\cdots+p_{k}=1$.
$I(A)$ is the indicator rv of the event A. It has range $\{0$,$\} . A sequence sof events A_{n} \rightarrow A$ if $I\left(A_{n}\right) \rightarrow I(A)$. If the sequence is monotone (i.e. either increasing or decreasing in the sense that $A_{1} \subset A_{2} \subset \cdots$ or $\left.A_{1} \supset A_{2} \supset \cdots\right)$ then we write either $A_{n} \uparrow A$ or $A_{n} \downarrow A$.
$S D(X)=\sqrt{\operatorname{Var}(X)}, \operatorname{corr}(X, Y)=\operatorname{cov}(X, Y) /[S D(X) S D(Y)]$

