Assignment2

STA447

Instructions: The assignment is due in class on April 7 at 6:10PM. No late assignments will be accepted. All questions of equal value unless otherwise noted.

- 1. (i) Let X_1, X_2, \ldots be iid with mean 0 and variance σ^2 . Set $S_n = X_1 + \cdots + X_n$; $S_0 = 0$. Show that $\{W_n = S_n^2 n\sigma^2\}$ is a martingale. (ii) Suppose $\{U_n\}$ and $\{V_n\}$ are independent martinagales. Show that $\{U_n + V_n\}$ is a martingale. Give an example that shows this is not necessarily true if we drop the independence assumption.
- 2. (i) An extended stopping time (possibly infinite) for $\{S_n\}$ is a positive integer, or infinite, valued rv T_e such that $T_e = n$ only depends on The S process up until time n, for each finite n. If T_e is finite wp1 then it is a stopping time. Assume the S process is a martingale and T_e is an extended stopping time for it. Show that the stopped process $S_n^e = S_n I(T_e \ge n) + S_{T_e} I(T_e < n)$ is also a martingale. (ii) A gambler either wins or loses 1 on each bet with probability 1/2 each. Play continues until the gambler either reaches a total winnings of 10 or -5. Show that the expected number of bets is 50. Note: -5 is a loss!
- 3. (i) Let X_1, X_2, \ldots be iid with mean μ . Set $W_n = (X_1 + \cdots + X_n)/n$. Show $E(W_n | W_{n+1}, W_{n+2}, \ldots) = W_{n+1}$, so that $\{W_n\}$ is a reverse martingale. (ii) Let $\{X_n\}$ be a branching process with offspring mean μ and offspring variance σ^2 . Assume the process never beccomes extinct and starts with a population size of 2. Show that $X_n/E(X_n)$ converges almost surely.
- 4. Let $\{N(t) : t \geq 0\}$ be a renewal process with *iid* interarrival times X_i which are not 0 wp1. Answer (i) and (ii). (i) Show $P(X_{N(t)} \geq x) \geq P(X_1 > x)$. (ii) If $X_i \sim exponential(\lambda)$ evaluate $P(X_{N(t)} \geq x)$.
- 5. (i) Consider a population where individuals independently give birth at an exponentiat rate μ and die at an exponential rate λ (ie a simple Birth and Death process). Suppose that, independently, individuals enter the population from afar according to a Poisson process of rate θ . Denote the population size at time t by X(t). Evaluate E(X(t)|X(0) = i). (ii) Consider a Yule process with an initial population size of 1 and birth rate λ . At some fixed time t the process stops and is replaced by an emigration process which is a Poisson process of rate μ . Let T_0 denote the time to extinction. Obtain the mean and pdf of T_0 .
- 6. (i) For the renewal process in #4 show $E\left(\frac{X_1+\dots+X_N(t)}{N(t)}|N(t)>0\right) = E(X_1|X_1 \le t)$. (ii) Consider a symmetric random walk on \mathbb{Z}^3 . Transitions can only occur to one of the 6 nearest points (each has integer coordinates) with probability 1/6 each. The process starts at the origin. Show it is transient.
- 7. Let X_1, X_2, \ldots be *iid* with mean μ . Give a complete and rigorous proof that $\overline{X} \xrightarrow{as} \mu$. Note that you may not assume finite 2nd moments.
- 8. Let $\{X(t) : t \ge 0\}$ be a simple Birth process with $\lambda_n = n\lambda$ and X(0) = 1. Conditional on X(1) = 10, calculate the pdf of the time to the 8th birth.
- 9. Let $\{N(t) : t \ge 0\}$ be a renewal process with iid $gamma(2, \lambda)$ interarrival times. Calculate the renewal function m(t).
- 10. Let $E(|X_n|) < \infty$ and $E(|X_n X|) \to 0$. For and x such that P(X = x) = 0, show

 $E(|X_n|I(|X_n| < x)) \rightarrow E(|X|I(|X| < x))$ and use this to show that $\{X_n\}$ is ui.