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1.1 Tail Events, Kolmogorov 0-1

• If we have any collection of σ-algebras {Gn}n>0 (where Gn ⊂ F and (Ω,F , P ) is our

probability space) then we may form the tail σ-algebra of this collection as follows:

– we set Tn = σ
(⋃

k≥n Gk
)

– we define the tail σ-algebra of the collection {Gn}n>0, T , as:

T =
⋂
n>0

Tn

• Now, by construction, we have Tj+1 ⊂ Tj, ∀j and so if A ∈ T this says that ∀N , A ∈ Tn

(and so, effectively, all of the Gn) for n ≥ N and that this characterizes A. So A is

effectively determined by the aymptotic structure of the Gn; It must keep occurring

past every n.
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• If it happens that this collection of σ-algebras {Gn}n>0, is independent, in the sense

that for any p and distinct n1, . . . , np ∈ N, if An1 ∈ Gn1 , . . . , Anp ∈ Gnp then we have:

P

(
p⋂
i=1

Ani

)
=

p∏
i=1

P (Ani
)

Then we get a great result about the tail σ-algebra, T , generated by the {Gn}n>0 .

This fabulous result was handed down to us by the godfather of modern probability:

Kolmogorov. It says that if this collection of σ-algebras is independent then the events

in the tail algebra effectively either happen, or do not!

So, formally, here it is:

Theorem 1. Kolmogorov’s 0-1 Law: If {Gn}n>0 is a collection of independent σ-

algebras (on (Ω,F , P )) and T is the tail σ-algebra which they form then any A ∈ T

satisfies P (A) = 0 or 1.

There are many extensions of this (can even extend it to tail σ-algebra of a “nice” class

of markov chains (which you’ll see later)). The proof of this result follows a few simple

steps:

– For each n consider σ
(⋃

k≤n−1 Gk
)

and Tn.

– The collection of events {AnAn+1 . . . An+r : Ak ∈ Gk, r ≥ 0} generates Tn while

{A1A2 . . . An−1 : Ak ∈ Gk} generates Hn := σ
(⋃

k≤n−1 Gk
)
.

– The definition of independence, combined with the fact that these are π-systems,

guarantees that Hn is independent of Tn for every n.

– We have that T ⊂ Tn for all n (by definition) and Hn ⊂ Hn+1 implies that
⋃
kHk

is a π-system which is independent of T and generatesH∞ := σ
(⋃

k>0 Gk
)
. As the
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Hn are independent of the Tn for every n, this guarantees that H∞ is independent

of T .

– This relies on the following theorm: If I is a π-system (meaning I1, I2 ∈ I ⇒

I1I2 ∈ I) and F = σ(I) then if µ1 = µ2 on I it follows that µ1 = µ2 on

F . This holds for other properties, such as independence (but this is really

just an extension of this theorem: i.e. µ1(A1A2 . . . Ak) = P (A1A2 . . . Ak) and

µ2(A1A2 . . . Ak) = P (A1)P (A2) · · ·P (Ak)). Really just a practical theorem that

allows us to prove things about measures using tangible classes of sets.

– But H∞ := σ
(⋃

k>0 Gk
)

and so, by construction, T ⊂ H∞. The previous results

thus imply that T is independent of itself! So for any A ∈ T we have:

P (AA) = P (A)P (A)⇒ P (A) = [P (A)]2

i.e. we must have P (A) = 0 or 1.

– as a side note, this can be proven using martingale convergence theorems, which

you will cover later in the course!

• Despite all of this abstraction, the tail σ-algebra is a very useful construction. Indeed,

it contains many events which are useful to the study of sums of random variables.

E.g. can you show that the following events are members of the tail σ-algebra of a

collection of random variables X1, X2, . . . (define this for them):

– {ω ∈ Ω : limnXn(ω) exists}

– {ω ∈ Ω :
∑

nXn(ω) converges}

– {ω ∈ Ω : limk k
−1∑

n≤kXn(ω) exists}
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Kolmogorov 0-1 tells us that if the Xi are independent, then these events either happen,

or do not! Similarly, there are random variables, such as:

Z = lim
n

sup
k≥n

{
k−1

∑
m≤k

Xm

}

which are T measurable. This can prove to be very useful. E.g. can you show that the

kolmogorov 0-1 law implies that if the Xi are independent then Z (or any r.v. which

is T measurable) must be a.s. constant (possibly infinite)?

• Example: Suppose X1, X2, . . . are IID X ∼exp(1). Then it follows that:

P

(
lim
n

sup
Xn

log n
= 1

)
= 1

to see this, notice that it is sufficient to show that for each ε > 0

P (Xn > (1− ε) log n, i.o.) = 1 while P (Xn > (1 + ε) log n, i.o.) = 0

For the first statement we can employ Borel Cantelli II. Notice that:

P (Xn > (1− ε) log n) = P (X > (1− ε) log n) = e−(1−ε) logn = n−(1−ε)

and
∑

n n
−(1−ε) =∞ for each ε > 0. BCII thus implies that P (Xn > (1−ε) log n, i.o.) =

1. For the second statement, BCI would be easiest but we can use K0-1. Notice that,

by definition, for all N we have:

P (Xn > (1 + ε) log n, i.o.) ≤
∑

n≥N+1

P (Xn > (1 + ε) log n)

=
∑

n≥N+1

n−(1+ε) ≤
∫ ∞
N

x−(1+ε)dx =
1

εN ε

Choosing N large enough (N > (1/ε)(1/ε)) we see P (Xn > (1 + ε) log n, i.o.) < 1.

As this is a tail event, and the Xn are independent, K0-1 then implies that P (Xn >

(1 + ε) log n, i.o.) = 0.
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Probably easier to just apply Borel Cantelli lemmas for computations, but K0-1 tells

us that many important r.v.’s and their probabilities are trivial!

• Notice what K0-1has to say about Borel Cantelli: For a sequence of independent events

An, set Gn = {∅, An, Acn,Ω} which are then independent σ-algebras. K0-1 tells us that,

as {An, i.o.} is a tail event w.r.t. this sequence of σ algebras, P (An, i.o.) = 0 or 1. The

Borel Cantelli lemmas tell us precisely when this happens.

1.2 Some Integration Results:

Good bit of work to develop these from scratch. We’ll just state them:

Theorem 2. Monotone Convergence: If 0 ≤ Xn ↗ X a.s., then E(X) = E(limXn) =

limE(Xn).

Theorem 3. Fatou’s Lemma: If Xn ≥ 0 a.s. then E(limn inf Xn) ≤ limn inf E(Xn).

See lecture notes for a quick and easy proof of Fatou. Can use monotone convergence if

you set things up properly.

Proof. If we set ZN = infk≥N Xn then the Zn form an increasing sequence. Monotone

convergence thus implies that:

E(lim inf Xn) = E(limZn) = limE(Zn)

But, by construction ZN = infk≥N Xn ≤ Xm for all m ≥ N and so monotonicity of integral

implies that for m ≥ N :

0 ≤ E(ZN) ≤ E(Xm)
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and hence:

0 ≤ E(ZN) ≤ inf
m≥N

E(Xm)

Taking limits gives the result.

Theorem 4. Dominated Convergence: If Xn → X a.s. and |Xn| ≤ Y with E(Y ) < ∞,

then E(X) = E(limXn) = limE(Xn).

Theorem 5. Probabilistic Dominated Convergence: If Xn
P→ X and |Xn| ≤ Y with E(Y ) <

∞, then E(X) = E(limXn) = limE(Xn).

1.3 L2 Theory and Conditional Expectation

• Work on a probability space (Ω,F , P ) and define L2(Ω,F , P ) to be collection of random

variables X ∈ mF which satisfy EX2 <∞. For such X define ||X|| = (EX2)1/2, then

this defines a pseudo norm on L2(Ω,F , P ) (just quotient things out to get a norm).

• Can show that for this collection < X, Y >:= E(XY ) defines an inner product which

gives rise to || · || (check this). Given completeness, we have that L2(Ω,F , P ) with this

inner product is a Hilbert Space.

• All seems very abstract, but this lends a nice geometric flavor to the whole theory as

closed subspaces and convex sets now have a closest point to any given point: their

projection and this is well defined and unique. Maybe give example of why you need

to be careful in infinite dimensional spaces (and possible example from Cheney about

spaces in which for such sets, no closest point exists).

• So here we have it:
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Theorem 6. Completeness of L2(Ω,F , P ): For each sequence of variables Xn ∈

L2(Ω,F , P ) which satisfy:

||Xn −Xm|| → 0 as m,n→∞

there is an X ∈ L2(Ω,F , P ) such that ||Xn−X|| → 0 as n→∞, and hence L2(Ω,F , P )

is complete (and thus a Hilbert Space).

Proof. The idea is to pick a subsequence which converges for a.e. ω and then to show

that the entire sequence must converge to this value.

– So use the cauchy property to pick a subsequence for which:

||Xn+1 −Xn|| < 2−n

and define:

Y (ω) = |X1(ω)|+
∞∑
n=1

|Xn+1 −Xn|

Then, by construction, monotone convergence implies that (Take Yn = |X1| +∑n−1
j=1 |Xj+1 −Xj| ↗ Y )

||Y || ≤ ||X1||+
∞∑
n=1

||Xn+1 −Xn|| <∞

which implies that Y 2 (and hence Y ) is finite, and hence converges, for a.e. ω.

– SetX(ω) = limnXn(ω) = X1(ω)+
∑∞

n=1(Xn+1(ω)−Xn(ω)). As |Xn| ≤ Y and Y is

integrable (Cauchy Schwarz), dominated convergence implies that X is integrable

and hence converges for a.e. ω. For all n, ||Xn|| ≤ ||Y || and so another application

of dominated convergence yields ||X|| ≤ ||Y || and hence X ∈ L2(Ω,F , P )
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– Now notice that the triangle inequality implies that (taking m to be any number

in the sequence and n(m) to be the closest number along our specially chosen

subsequence):

||Xm −X|| ≤ ||Xm −Xn(m)||+ ||Xn(m) −X||

≤ ||Xm −Xn(m)||+
∑

k>n(m)

2−k

which can be made arbitrarily small by making m large enough.

– Thus we have constructed an X ∈ L2(Ω,F , P ) so that ||Xm − X|| → 0 which

shows that this space is complete.

• One can now use this completeness to prove that nice euclideanesque properties hold

for L2(Ω,F , P ). Chief among these is the closest point property which we can prove

using two key characteristics of Hilbert Space: 1.) the fact that a hilbert space has

an inner product (and hence the parallelogram law holds), 2.) the fact that a hilbert

space is complete:

• So here it is:

Theorem 7. Closest point property Suppose that M is a closed linear subspace of

L2(Ω,F , P ). Then for each X ∈ L2(Ω,F , P ) there is a unique PMX ∈ L2(Ω,F , P ) so

that:

||X − PMX|| = inf
Z∈M
||X − Z||
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Furthermore < Z,X − PMX >= 0 for every Z ∈ M . This means that every X ∈

L2(Ω,F , P ) has a unique decomposition as X = PMX + (X − PMX) (and thus

L2(Ω,F , P ) has a well defined orthogonal decomposition).

Maybe give example to show how crucial closed property is.... span of a basis example...

Proof. The idea of the proof is to pick a sequence in M , {Xn}, for which ||Xn − X||

converges to d = infZ∈M ||X − Z|| (which we may always do, by def of infimum).

We then use the parallelogram law to show that this sequence must be Cauchy, and

Completeness + closedness to show that it then converges to an element of L2(Ω,F , P ).

So here goes:

– Set d = infZ∈M ||X − Z||. We may employ parallelogram law to see that:

||(X −Xm)− (X −Xn)||2 + ||2X − (Xn +Xm)||2

= 2(||X −Xm||2 + ||X −Xn||2)

Using that ||2X − (Xn +Xm)||2 ≥ 4d2 we arrive at:

||Xn −Xm||2 + d2 ≤ 2(||X −Xm||2 + ||X −Xn||2)

from which we see that ||Xn − Xm|| may be made arbitrarily small by choosing

m,n large enough. Thus the sequence Xn is cauchy and hence, by completeness

of L2 and closedness of M converges to an element, PMX, of M .

– To see uniqueness, suppose that Y is any other element which satisfies ||Xn−Y || →

0. Then we have:

||PMX − Y || ≤ ||PMX −Xn||+ ||Xn − Y ||
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which can be made arbitrarily small. Since ||X|| = 0 implies X = 0, this gives

Y = PMX.

– To show that < Z,X−PMX >= 0 for every Z ∈M . Trivially satisfied for Z = 0

so suppose Z 6= 0 and suppose, for contradiction, that this is not the case. Then

for each δ ∈ R we find that (by the fact that PMX is closest to X):

d2 = ||X−PMX||2 ≤ ||X−PMX−δZ||2 = d2 +δ2||Z||2−2δ < Z,X−PMX >

and so we must have:

0 ≤ δ2||Z||2 − 2δ < Z,X − PMX >

by choosing δ small enough and opposite the sign of < Z,X − PMX > arrive at

a contradiction and so conclude that < Z,X − PMX >= 0. E.g. take 0 < |δ| <

2 < Z,X − PMX > /||Z||2

– Notice that at no point in this proof did we make reference to any property of

L2(Ω,F , P ) other than completeness, which is one of the defining properties of a

hilbert space. This proof goes over unchanged to general Hilbert spaces!

• Application: One of the main applications of the closest point property to probabil-

ity theory is to rigorously define the notion of conditional expectation. We work on

(Ω,F , P ). If we are given a σ algebra G ⊂ F then for X ∈ L1(Ω,F , P ) we define

E(X|G) as the equivalence class Z ∈ L1(Ω,G, P ) satisfying:

E(ZY ) = E(XY )
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for every Y ∈ L1(Ω,G, P ). One can show that this is equivalent to requiring that:

E(Z1A) = E(X1A)

for every A ∈ G (one way is easy, the other is a relatively simple application of the std.

machine).

• Notice that if everything is square integrable, this has the interpretation of< Z, Y >=<

X, Y > (in terms of our inner product < X, Y >= E(XY )) which is one of the defin-

ing properties of a projection (and which our closest point to a linear subspace in a

hilbert space satisfies). Thus the E(X|G) (as defined) loosely has the interpretation

of a projection of X onto L1(Ω,F , P ), (and so a closest point) which is sort of what

motivates the definition in the first place.

This definition is all well and good, but for a given X does such a Z even exist? If so,

is it unique? By rephrasing the problem in terms of Hilbert Space theory, we can get

quick answer. Here is how to proceed:

– First notice that L2(Ω,G, P ) is a closed subspace of L2(Ω,F , P ) (which we have

shown is a Hilbert Space). Why is this so? Take any sequence Yn ∈ L2(Ω,G, P )

with ||Yn − Y || → 0. Then Y is an a.s. limit of G-measurable random variables

and hence G measurable. Furthermore, ||Y || ≤ supn(||Yn||+ ||Y − Yn||) <∞ and

hence L2(Ω,G, P ) is a closed subspace of L2(Ω,F , P ).

– Set M = L2(Ω,G, P ). Then our previous work guarantees that for any X ∈

L2(Ω,F , P ) there is a unique PMX ∈ L2(Ω,G, P ) so that:

||X − PMX|| = inf
Y ∈M
||X − Y ||
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and < Z,X − PMX >= 0 or E(ZX) = E(ZPMX) for every Z ∈ L2(Ω,G, P ).

Thus (recall uniqueness) Z = PMX satisfies the definition of conditional expec-

tation.

– Cauchy Schwarz implies that L2(Ω,F , P ) ⊂ L1(Ω,F , P ). Taken together with the

fact that the continuous functions are dense in both L2(Ω,F , P ) and L1(Ω,F , P ),

this implies that L2(Ω,F , P ) is dense in L1(Ω,F , P ). Thus for any Y ∈ L1(Ω,F , P )

we may find a sequence Yn ∈ L2(Ω,F , P ) so that |Yn| ↗ |Y | a.s. (consider

Yn = Y I(|Y | ≤ n))

– Given such a sequence, E(Yn|G) = PMYn is well defined as a version of conditional

expectation. So consider W = limnE(Yn|G). Then if we can show that

∗ W = limnE(Yn|G) satisfies the conditional expectation property

∗ W ∈ L1(Ω,G, P )

we will have proven the existence of a random variable E(Y |G) for every Y ∈

L1(Ω,F , P ). Enough to show it for positive random variables, which works (using

monotone convergence and fact that U ≥ 0 implies E(U |G) ≥ 0 + alternative

definition of conditional expectation in terms of coincidence of expectations over

G-sets).

• Application: Maybe talk about Karhunen-Lòeve .... Optimal projection, sparsest

representation.... Useful for functional estimation.... catch 22: do you gain more from

sparsity than you loose in estimating the optimal basis?? Should be the case with large

enough data sets (properly done, estimates of eigenstucture are effectively consistent).
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1.4 Generating Function Stuff

• If X : Ω→ {0} ∪N, we call X a counting random variable. A useful tool for studying

the structure of such r.v.’s X is the Probability Generating Funciton, GX(s),

defined by:

GX(s) := E(sX) =
∞∑
k=0

skP (X = k)

• Jensen implies that |G(s)| ≤ E(|s|X) ≤
∑∞

k=0 P (X = k) = 1 for |s| ≤ 1 and, further-

more, is uniformly convergent for s in this range.

• If we assume that the moments of X are finite then we get that

|G(p)(s)| ≤
∞∑
k=1

|s|kk(k−1) . . . (k−p+1)P (X = k) ≤
∞∑
k=1

|s|kkpP (X = k) ≤ E(Xk) <∞

for |s| ≤ 1 and so the derivatives of G are uniformly convergent for |s| ≤ 1

• As the limits defining the G(p)(s) are continuous and the convergence is uniform for

|s| ≤ 1, we get that the derivatives are continuous (as uniform convergence preserves

continuity).

• Combining these facts, we get that for any p, and y ∈ (0, 1]

G(p)(y) = lim
s↗y

G(p)(s) = E[lim
s↗y

sXX(X − 1) · · · (X − p+ 1)]

and taking y = 1 we get:

G(p)(1) = E(X(X − 1) · · · (X − p+ 1))

• Can use similar arguments to show that:

G(k)(0) = k!P (X = k)

13



and so from the derivatives of G we may recover the distribution of X!

• May extend, probability generating functions to vectors of counting random variables:

For X : Ω→ ({0} ∪ N)n and s ∈ Rn, we define the PGF, GX(s), of X as:

GX(s1, . . . , sn) := E(sX1
1 · · · sXn

n )

Analogous results hold. Good exercise to show that independence of X1, . . . , Xn is

equivalent to:

GX(s1, . . . , sn) = GX1(s1) · · ·GXn(sn)

• Suppose that N is a counting random variable with pgf GN as are X1, X2, . . . (which

are IID copies of some counting r.v. X, independent of N) with pgf GX(s). Consider

the sum:

S = X1 + · · ·+XN

which you will see is useful in the study of branching processes. Then we have that:

GS(s) = E(sS) = E(sX1+···+XN ) = E(E(sX1+···+XN |N)) = E(GX(s)N)

and so GS(s) = GN(GX(s)).
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