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Abstract: First order probability matching priors are priors for which Bayesian and frequentist inference,
in the form of posterior quantiles, or confidence intervals, agree to a second order of approximation. The
present paper shows that the class of matching priors developed by Peers (1965) and Tibshirani (1989) are
readily (and uniquely) implemented in a third order approximation to the posterior marginal density. The
authors show how strong orthogonality of parameters simplifies the arguments, and illustrate their results
on several examples.
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Résumé : First order probability matching priors are priors for which Bayesian and frequentist inference,
in the form of posterior quantiles, or confidence intervals, agree to second order of approximation. The
present paper shows that the class of matching priors developed by Peers (1965) and Tibshirani (1989) are
readily (and uniquely) implemented in a third order approximation to the posterior marginal density. The
authors show how strong orthogonality of parameters simplifies the arguments, and illustrate their results
on several examples.

1. INTRODUCTION

We consider parametric models for a response Y = (Y1,...,Y,)? with joint density f(y;6), where
the parameter 87 = (4, A\T) is assumed to be a d-dimensional vector with 1 the scalar compo-
nent of interest. The log-likelihood function of the model is denoted by ¢(0) = log f(y;0). We
write j(0) = —n"Yyre(0;y) = —n"10%4(0;y)/00T 08 for the observed information matrix and
i(0) = n"YE {—Llyry(0;Y); 0} for the expected Fisher information matrix, per observation, and use
subscript notation to indicate the partition of these matrices in accordance with the partition of
the parameter; for example iy (0) = n= E{—02((0)/0v:0\; 0}.

In the absence of subjective prior information about the parameter 8, it may be natural to use
a prior which leads to posterior probability limits that are also frequentist limits in the sense that

pr {¢ <P (Y) | Y} =pry{p" " (Y) = ¢} + O(n7),

where (1= (Y") is the upper (1 — a) quantile of the marginal posterior distribution function
II(¢p | V), assumed to have density 7(¢) | Y). Following Datta & Mukerjee (2004) we call such
priors first order probability matching priors.

In a model with a scalar parameter, Welch & Peers (1963) showed that 7(6) o i'/2(8) is the
unique first order probability matching prior. In models with nuisance parameters, Peers (1965)
derived a class of first order matching priors for v, as solutions to a partial differential equation.



See also Mukerjee & Ghosh (1997), who provided a simpler derivation. In general this differential
equation is not easy to solve, unless the components ¥ and A\ are orthogonal with respect to
expected Fisher information, i.e. iyx(f#) = 0. In this case Tibshirani (1989) and Nicolau (1993)
showed that a family of solutions is:

w(,A) iy (1, Ag(N), (1)

where ¢g(\) is an arbitrary function. Sometimes consideration of higher order matching enables
restriction of the class of functions g()\), occasionally enabling a unique matching prior to be
defined; see Mukerjee & Dey (1993).

Levine & Casella (2003) proposed solving the partial differential equation numerically, in mod-
els with a single nuisance parameter. Sweeting (2005) considered vector nuisance parameters and
introduced data-dependent priors that locally approximate the matching priors. Both papers sug-
gest implementing these priors using a Metropolis-Hastings algorithm, a rather computationally
intensive procedure. Our work is closely connected to DiCiccio & Martin (1993), who use match-
ing priors in approximate Bayesian inference as an alternative to more complicated frequentist
formulas.

In this paper we argue that as long as one is satisfied with an approximation to the marginal
posterior accurate to O(n~3/2), the choice g(A\) = 1 in (1) is the simplest, and show that the
marginal posterior approximation with this choice gives results that in simulations are verified
to be very close to correct, from a frequentist point of view. The resulting marginal posterior is
invariant to reparametrization, and is easily calculated with available software.

The paper is organized as follows. Section 2 presents the third order approximation to the
marginal posterior. Section 3 justifies the choice g(A) = 1. Section 4 discusses models where
the orthogonal components can be obtained without solving the differential equations. Section 5
illustrates the results on some examples. Section 6 provides our conclusions.

2. APPROXIMATE BAYESIAN INFERENCE

The Laplace approximation to the marginal posterior density 7 (¢ | y) is given by:

. R 1/2 N
™ = c|Jp MN[M2 ex 4y -4, ) |JAA(¢,A}\)‘ } ﬂ-(l/}: /\Aw)»
(W [ y) = cljp(¥)] p{lp(¥) <w>}{m(¢7x¢>| (¥, A)

where 5\1/, is the constrained maximum likelihood estimate, £,(¢) = £(3, 5\¢) is the profile log-
likelihood for 1, 67 = (1), AT) is the full maximum likelihood estimate, and jp(’LZ)) = —Ez(z/;) is
the observed information corresponding to the profile log-likelihood. In the independently and
identically distributed sampling context Tierney & Kadane (1986) showed that this approximation
has relative error O(n=3/2).

The corresponding O(n*S/ 2) approximation to the marginal posterior tail probability is:

pr (U > | V) = 1 TI( | y) = B(r) + (1—1) o(r) 2)

r 4B

where ¢ and ® are the standard normal density and standard normal distribution function respec-
tively, and

ro= sign(d — )20, () — £, (1) }]/2

i@ 3)] }” " ()
@] m(, Ay)

g = ég(w){jp@/?)}”?{



this was derived in DiCiccio & Martin (1991). An asymptotically equivalent approximation to
(2), called Barndorff-Nielsen’s approximation after Barndorff-Nielsen (1986), provides approximate
posterior quantiles for :

pr (¥ 24 |Y)=(rp), (3)

where 7% = r +r~tlog(qp /7).

When the model is given in an orthogonal parameterization 7 = (¢, A7), another version of
the Laplace approximation to the marginal posterior density for i) can be obtained by using the
adjusted profile log-likelihood function £, () = £,(¢)) — 1 log |jaa (¢, Ay)| (Cox & Reid 1987):

D s (Y, A

70 |9) = lial@) explla(w) — balh)) ) ()
(¥, )

where j, (1)) = —£”(1). This approximation also has a relative error of O(n~3/2), and was discussed

in more detail in DiCiccio & Martin (1993).
3. FIRST ORDER PROBABILITY MATCHING PRIORS

When the model is given in an orthogonal parameterization the first order matching prior for the
parameter of interest 1, given by (1), enters approximation (2) as a ratio, so the relevant quantity
is:

/2,7 3\ /%
i (1, Ng(N)
1/2,, 1 Sy
i (0, A)g(hy)
Although the function g(A) is an arbitrary factor in (1), for sufficiently smooth ¢ the ratio
g(N)/g(Ay) = 1+ 0py(n~1), as a consequence of the result that Ay, = A + Op(n~!) under pa-
rameter orthogonality. It follows that the approximation to II(¢) | y) in (2) is unique to O(n™1).
An approximation to the marginal posterior probabilities to O(n~!) leads to posterior quantiles
for 1 to Op(n’z)’/ 2), as can be verified by inversion of the relevant asymptotic series, as outlined in

the Appendix.
The first order matching prior for v,

v (9, ) oc iy (1, ) (5)

has the simplest analytical form under the class of Tibshirani’s matching priors, and gives the
same marginal posterior distribution for the parameter of interest as if any other matching prior
of form (1) were used instead. Accordingly, we call this prior “the unique matching prior for
the component ¥” under the orthogonal parameterization ¢y and A. This uniqueness was noted
in DiCiccio & Martin (1993), in a discussion of the relation between the Bayesian third order
approximation (2) and a frequentist version developed in Barndorff-Nielsen (1986).

If an orthogonal parameterization is not explicitly available, the differential equations defining
parameter orthogonality can be used in conjunction with (5) to give an expression for the prior
in the original parameterization. We use the invariance argument presented in Mukerjee & Ghosh
(1997) to express the matching prior in terms of the original parameterization.

More precisely, if our model is given in a parameterization ¢* = (1), 1) not necessarily orthog-
onal, let #7 = (1), \) be an orthogonal reparameterization. Such an orthogonal reparameterization
always exists when v is scalar; it is a solution of the partial differential equation:

iunt) = 25 { D i o), 0




(Cox & Reid 1987). The unique first order matching prior 7wy (1), A) can be written in the original
parameterization as:

Ty () o< iyl (. m) J(,m), (7)

where iy, (1,0) = iy (¥, 1) — iy (0, 1) {iny (10,m)} " iny(1h,n) is the (1,4) component of the
expected Fisher information in the orthogonal parameterization, and J(v,n) = [0\/0nT | is the

Jacobian of the transformation. In accordance with calling prior (5) a unique matching prior in
the orthogonal parameterization (¢, \), the prior (7) shall be referred to as the unique matching
prior in the (1, n) parameterization.

The analogy between (5) and (7) can be also justified by noting that in the orthogonal param-
eterization 6 = (1, A), the unique matching prior for ¢ is proportional to the square root of the
inverse of the asymptotic variance for 1& For a general parameterization ¢ = (¢, 7) the variance
of 4 is the inverse of the partial information for v, i.e. i%¥(¢) = {igyp.n(¢)} " (Severini 2000, Ch
3.6), so the matching prior (7) in parameterization ¢ is a natural extension of the unique matching
prior (5).

The unique matching prior (7) is similar to the local probability matching prior proposed by
Sweeting (2005). The two priors share the term involving the partial information iy, (8); the
extra factor in Sweeting’s local prior is proportional to a local approximation of the Jacobian
J(1,n), based only on the parameter of interest and on the overall maximum likelihood estimate:
see Sweeting’s (2005) equation (8). An advantage of the unique matching prior is invariance to
reparameterization.

4. STRONG ORTHOGONALITY

We examine in some detail models for which the orthogonal reparameterization has the property
that 5\¢ = X holds for all 1, which we call strong orthogonality. Barndorff-Nielsen & Cox (1994, Ch
3.6) pointed out that if Xw = X holds for all 1 then the components 1) and A must be orthogonal.
For models which admit strong orthogonality the difficulty of obtaining matching priors can be
reduced significantly, and the Bayesian posterior quantiles derived using (3) approximate the exact
Bayesian posterior quantiles to O(n=2).

For simplicity consider n to be a scalar nuisance parameter. If the score function corresponding
to the nuisance parameter ) has the form

for some functions h(-;y) and A(+,-) with |OA(v,1)/0nT| # 0, where the proportionality refers to
non-zero functions which depend on the parameter only, then A and ¢ are strongly orthogonal.
This follows from the equivariance of the constrained maximum likelihood estimator 7.

A simple form of (8) frequently encountered is h {A(¥,n); y} = M4, n) —p(y) where we assume
|OX(x,m)/OnT| # 0. Such is the case for the mean value reparameterization in the exponential
family model. Another class of models giving strong orthogonality of parameters are those with
likelihood orthogonality: i.e. L(v,n) = L1(v) La{A(¢),n)}. The one-way random effects model in
Section 5.3 belongs to this class.

This result is readily extended to the case where the nuisance parameter is a vector and h is
then a vector of functions. More specifically, for n7 = (9y,...,m4_1) if the score function for the
parametric model f(y;,n) has the form

fm(q/%??; y) o8 hl {)\1(1/)7771)7 y}7
Ly, (05 y) o P AM (W, m1s o), ha() () ovs b1 () fe—1()s wl,
k=2,....d—1



then 5\1/; = )\ and strong orthogonality holds. In these expressions we assume for each 1 < k < d—1
that hi(Mg,0,...,0; y) = 0 has a unique solution. For details on the proof we refer the reader to
Staicu (2007). We use strong orthogonality in the example of Section 5.5.

5. EXAMPLES
5.1 LINEAR EXPONENTIAL FAMILY

Consider a sample of independently and identically distributed observations Y = (Y1,...,Y,)7
from the model:
Flys; &) = exp{ ws(ys) +n" t(y:) — c(9) — d(yi)}

where ¢7 = (¢,n7) is the full parameter and 1 the component of interest. An orthogonal repa-
rameterization is given by 67 = (¢, \T) with A = Ey {4 (y)}, where t4(y) = Y_;_, t(y;). This can
be obtained from the orthogonality equation (6), but more directly by noting that the arguments
of the previous section ensure that 5\1/, =\

The unique first order matching prior is

70 (9) o< iyl (@) | (@)]4-

and it provides a unique marginal posterior distribution function for 9 to O(n=3/2), as approxi-
mated by either (2) or (3). In these approximations, the expression for ¢p simplifies to:

. n 1/2
45 = (4(0) iy n(®) {m} |

where iy (8) = cpp(d) = cun(é) {eqn(9)} " equ(9), 6 = (1, 1y) and ¢ = (s, ). The example
is considered in DiCiccio & Martin (1993) as well.

5.2 LOGISTIC REGRESSION

We analyze the urine data of Davison & Hinkley (1997, Example 7.8). The presence or absence
of calcium oxalate crystals in urine as well as specific gravity, pH, osmolarity, conductivity, urea
concentration and calcium concentration are measured for 77 complete cases. The relationship
between calcium oxalate crystals and the 6 explanatory variables is investigated under the logistic
regression model. Matching priors for logistic regression are obtained numerically in Levine &
Casella (2003) and Sweeting (2005); here we give a simple analytical solution.

The logistic regression model for a vector of independent random variables Y; ~ Binomial(m;, p;)
has log-likelihood function

(B) =>4 (Bo + Brwvi+ ..+ Byzpi) — »_ mylog {1 4 eotPimttpmnil
i=1 1=1

Assume the parameter of interest is ¢ = 3,, and take = (8o, ..., 3p—1)T to be the nuisance param-
eter. Since the model is in the exponential family, A\ = Eg {t(y)} = Eg(X 7 Yis- -y Dopq YiTp—1,i) "
is orthogonal to 1. Therefore, the unique matching prior has the form:

70 (B) o< iyl o ()i (B)] 9)
With iy o (8) = iy (B) — iy (B) {ing(B)} " iny(B).

The block matrices which partition the expected Fisher information function have a simple
form: iyy(3) = 2 V(B)xy, ipn(B) = xIV(3)X_p and iy, (8) = XT,V(8)X_p, where V(8) =



diag {m;p;(1 — p;)}, X is the n x (p 4+ 1) model matrix and X_, = X — {z,} is the n x p matrix
obtained by removing the column vector x,. For p = 2 this example is discussed in Sweeting (2005),
where comparison with his equation (18) shows that the factor |i,,(5)|+ in (9) is approximated by
exp{f2ﬂpT(ﬁA)}, a function that is log-linear in ¢ = ,; the function T' depends only on z and the
fitted probabilities.

For illustration, we take ¢ = g, the coeflicient of the effect of calcium concentration on the
presence of calcium oxalate crystals in urine. The 95% posterior probability intervals using the
Bayesian approach with matching prior (9) are given in Table 1. The frequentist calculations were
carried out using the cond package in the hoa library bundle for R (Brazzale 2000). Although
this package does not provide the Bayesian solution explicitly, the components needed are readily
derived from the workspace. Also shown is the standard output from cond: two (first order)
normal approximations, and the frequentist version of the 75 approximation. The second normal
approximation is based on the adjusted log-likelihood function ¢, (v)), described above (4). While
both approximations have relative error O(n~'/2), the normal approximation based on £, (1)) often
seems to provide more accurate inferences in the presence of nuisance parameters, although this
is not the case here. The third order frequentist approximation is the saddlepoint approximation
to the conditional distribution of Y " | zg;y; given t = \. The matching prior version is indeed
equivalent to the frequentist solution, giving essentially the same confidence limits and p-values. A
plot of the p-value function for 8g (not shown) confirms that the survivor function for G based on
the matching prior accurately approximates the frequentist p-value function for all relevant values
of Bg. We might expect that with 7 covariates and a sample size as large as 77 the data might
swamp the prior, and first order asymptotics would suffice. However, this is not the case; there is
actually much less information in binary data than in continuous data. This point is expanded on
in Brazzale, Davison & Reid (2007, pp. 58-9). Chapter 2 of the same book gives an overview of
higher order frequentist approximations of the type presented here.

Table 1: Comparison of the 95% confidence intervals for g and of the p-values for testing Hy:
B =0 .

95% CI for B¢ p-value

( ) 4.9887e-004
Normal approximation to conditional m.l.e.3§ ( ) 9.3724e-004
Third order frequentist approximation (0.3224 1.208)  6.6893e-006
Laplace approximation with prior (9) ( ) 5.3555e-006

Normal approximation to m.l.e. Bg

5.3 RANDOM EFFECTS MODEL

Consider the one-way random effects model Y;; = p+ 7 + €5, fori=1,...,kand j =1,...,n;,
where 7; and €;; are mutually independent with 7; ~ N(0,02) and €;; ~ N(0,0?). For each i, the
log-likelihood component is

1

1 1 1
U, 02, 0% ) = _5(7% —1)logo? — 5 log(o? 4 n;o?) — ini,uQ (02 +nio?)”

— =2 gt (0? + o) T g (02 +nge?)Th



where ;. = n; ! Z;lzl yi; and s7 = Z;L:l(y” — #;.)?. Note this has the form of an exponential
family log-likelihood, with some canonical parameters depending on the sample size.

If ¢ = u is the parameter of interest, n = (02,0?) is orthogonal to p and a unique matching
prior is obtained from (5). However the (v,) component of the expected Fisher information

matrix is a function only of the nuisance parameter:

iy (1, 02 Zm o2 +nio®) ",

so we can further simplify the unique matching prior for ¥» = u to the flat prior:

7TU(¢,77) x 1

When 1 = o2 is the parameter of interest with = (02, u) being the nuisance component,
we take Ao = pu, since ;\2,1# = §.. where .. = N~! Zle n;y; and N = Zle n;. The differential
equation (6) can then be used to obtain A\;. In the balanced design with ny = ... = ng = n, the
score functions corresponding to the nuisance parameter 1 have the form

Ly (4,m)

C(0,m) = nk(p+nm) g —m},

and we can use the result described in Section 4 to identify Ay = ¢ + nmy and Ay = 75 as being
orthogonal to the interest parameter 1. Moreover for this reparameterization we have strong
orthogonality: A W= A\ = ¥ Zl 1(Fi. — y..)? and Ao o= Ao = .. for all .

Regardless of the method used, we find the partial information for 1, iyy.,(1,n) o< =2, and
the Jacobian of the transformation |0A/OnT| = n. Then by using (7) we obtain the prior:

7TU(/lﬁ7 77) X ’(/)_1

which gives unique approximate matching inference based on matching priors in the orthogonal
parameterization (1, AT).

Computing the posterior using (2) or (3) involves very elementary calculations on the model;
the main computational work involved is evaluating the constrained maximum likelihood estimator
for a grid of 200 values for 1) .

We performed the same simulation study of Levine & Casella (2003). We randomly generated
100,000 data sets from the random effects model with n =10 and k = 3, fory =10 and o, =0 =1
and calculated the 95% posterior intervals for the parameter of interest 1 = 2. The posterior
interval was easily obtained by spline smoothing. The simulated coverage of the 95% posterior
intervals was 94.991%; the coverage obtained by Levine & Casella using a Metropolis Hastings

algorithm with the prior m(1,n) o< ¥~ (¢ + nny)~! was 92.3%.

5 K
(¢ +nm)~2 {—nj (¥ +nm) + % > Wi - 772)2}

i=1

5.4 INVERSE GAUSSIAN MODEL

Suppose that Y; ~ IG(u, o) with probability density function

—3/2
2 y (y—n)? }
s = e >0,
i, o) 2702 Xp{ 20%%y Y

where > 0 and ¢ = 1,...,n. This parameterization is orthogonal and the expected information

matrix is i(u,0?) = diag(p=3072, 07%/2). When ¢ = 02 and A = p we have strong orthog-

onality; )\d, =\ = g, where § = n~! >, yi. Hence all the first order matching priors lead



to unique approximation to the marginal posterior distribution as given by (2); the unique first

order matching prior is my (0%, u) « o=2. When the interest parameter is 1y = p we do not

have strong orthogonality any longer; 5\1/, =n"! Sy 4 gp=2 — 2¢p~1. The unique matching
prior (5) is 7y (p,02) o< p=3/20~1. Datta & Ghosh (1995) propose the reverse reference prior
Trr(p,0?) o< p=3/2072 as it is a matching prior for each parameter in turn. This prior is of the
form (1) with g(\) = A=/2, so both priors Trr (1, 02) and 7 (i, 02) result in the same approximate

Bayesian inference to order O(n™1).
5.5 MULTIVARIATE NORMAL MEAN

Suppose that Y; ~ N(u;,1) with g; € R for ¢ = 1,...,p, and take the parameter of interest to
be ¥ = (u3 + ...+ ug)l/z. Datta & Ghosh (1995) use the reparameterization (¢, A1,..., Ap—1)
with pq = tcosAi, pe = Y¥sinAjcoshy , ..., pp_1 = wl_[f:_f sin \; cos Ap—1, and lastly u, =
) Hf;f sin \; sin \,_1; the information in this reparameterization is i(1, \) = diag(1,¥?, ¥?sin® )y,
This reparameterization also gives strong orthogonality, as we now show. The constrained maxi-
mum likelihood estimate 5\1)_171,, is the solution of £y, , (¢, A) = 0, where

Ory_ (0, ) < yp_18in A, 1 — gy, cos Ap_1,

yielding A,_1. = A = arctan(y,/y,_1)-
Next, we note that the score function corresponding to coordinate A, 2, £, ,(1,A) has the
form

On,_o (Y, A) < yp_asinA,_o — (yp—1€08 Ap_1 + ypsin Ap_1) cos Ap_a,

and therefore the solution A, 5., of the score equation Uy, , (1, A) = 0 is Apop = Ap_g =
arctan(yp_1/yp_2) cos Ap_1 + (Yp/Yp_2) sin A,_1; we continue with this backward procedure to ob-
tain 5\¢ = \. Having strong orthogonality, the unique matching prior is 7y (¥, \) x 1. Datta &
Ghosh (1995) and Tibshirani (1989) obtained 7 (1), A) Hi;i sin?~17% ;. as a first order match-
ing prior for t; this prior is also a reference prior. Both priors give the same posterior quantiles
to third order.

2. DISCUSSION

We have illustrated the use of m;(6), a particular choice of Tibshirani-Peers matching prior, in
two practical and two theoretical examples. Several further examples are discussed in Staicu
(2007). The use of this prior in third order approximations is quite straightforward, and avoids
any simulation or numerical integration. There is no need to choose among the family of matching
priors, in particular to search for a matching prior to higher order: in fact when 5\¢ = ;\, the unique
first order matching prior is second order matching if and only if the model has the property that

e RGO CION

(R. Mukerjee, personal communication).

A reviewer has pointed out that with improper priors there is no guarantee that the posterior
is proper, and this needs to be checked on a case-by-case basis. For the examples of Section 5,
the posterior is indeed proper, and it seems possible that the matching argument could be used in
conjunction with the third order approximation to show that the unique prior will, under regularity
conditions on the model, lead to proper priors.

The reference approach to noninformative priors, based on maximizing the Kullback-Liebler
distance between the prior and the posterior, often gives posterior inferences which are frequentist

VTP sin? \).



matching, although they are not derived from this point of view. Kass & Wasserman (1995) provide
an introduction to this literature, and show that under parameter orthogonality, and subject to
rather strong regularity conditions, the reference prior is proportional to |ixx(6)|"/?g(1)), exactly
opposite to (1).

The approximation used for the logistic regression example is to a conditional distribution, given
a sufficient statistic for the nuisance parameter. The normal approximation to r} has frequentist
matching conditionally on this statistic, and hence unconditionally. It is also an approximation
to a discrete distribution, whereas the theory of quantile matching implicitly assumes underlying
continuity. The approximation is best viewed as matching a continuous (smoothed) version of the
discrete distribution, as in Davison & Wang (2002), but the theoretical details to verify this have
not yet been established. Rousseau (2000) provides the most detailed results on this aspect.

Severini (2007) has considered the construction of conditional priors m(A | ¢), using a notion
of parameter orthogonality which he calls strongly unrelated. Although this work was not directly
focussed on frequentist matching, a referee has suggested that it may be possible to use Severini’s
approach to extend the notion of matching priors.

APPENDIX

LEMMA 1. For 0 < a < 1, denote by 1/;(17”‘) (m,y) the posterior quantile corresponding to prior
m(0) x z}/j(@) g(\), which is defined by {1~ (7, y) | y} =1 — a. We assume that g(\) # 0
has a continuous first derivative for all \. Then

PN y) = U (my,y) + 0p(n32);

that is, the posterior quantile is unique to Op(n_3/2) under the class of matching priors w(0).

Proof. Let z, denote the 100(1 — ) percentile of a standard normal variate and let %% (1, \) stand
for the (1,1) component of the inverse of the observed information matrix. The Cornish-Fisher
inversion of the Edgeworth expansion for the marginal posterior distribution of v leads to:

PN (my) = P +n T V2GV0)}Y? 2,
+ 0GP0} wi (20, T y) + Op(n™3/?),

where w1 (2o, m,y) = A11(m,y) + A12(y) + (22 + 2)A3(y) with
An(my) = {549 6))y 12 T6(0) gy T 0) g }
(m,9) {7*7(0)} {W(H)J ()+W(9)J()

7y (0) = On(0)/0vy, mx(0) = On(0)/OX and the expressions for Ao and Aj are given in Mukerjee
& Reid (1999). Tt suffices to show Ay (7, y) does not depend on g(\) to order O,(n~'/?). By the
assumptions on ¢ and the consistency of the maximum likelihood estimator we have gx(A)/g(\) =
Op(1) and the result follows.
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