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Likelihood 
N. REID 

1. INTRODUCTION the model density, 

In 1997 a study conducted at the University of Toronto 
concluded that the risk of a traffic accident increased by 
four-fold when the driver was using a cellular telephone 
(Redelmeier and Tibshirani 1997a). The report also stated 
that such a large increase was very unlikely to be due to 
chance, or to unmeasured confounding variables, although 
the latter could not be definitively ruled out. Figure l(a) 
shows the likelihood function for the important parameter 
in the investigators’ model, the relative risk of an accident. 
Figure l(b) shows the log of the likelihood function plotted 
against the log of the relative risk. The likelihood function 
was the basis for the inference reported. (The point estimate 
of relative risk from the likelihood function is actually 6.3, 
although 4.0 was the reported value. The maximum likeli- 
hood estimate was downweighted by a method devised to 
accommodate some complexities in the study design.) As 
with most real life studies, there were a number of deci- 
sions related first to data collection, and then to modeling 
the observed data, that involved considerable creativity and 
a host of small but important decisions relating to details 
of constructing the appropriate likelihood function. A non- 
technical account of some of these was given by Redelmeier 
and Tibshirani (19974, and a more statistically oriented 
version was given by Redelmeier and Tibshirani (1997b). 
In this vignette I am simply using the data to provide an 
illustration of the likelihood function. 

Assume that one is considering a parametric model 

L(8)  = L(8;  Y) = c f ( y ;  8)) (1) 

where c can depend on y but not on 8. Within the con- 
text of the given parametric model, the likelihood function 
measures the relative plausibility of various values of 8, 
for a given observed data point y .  The notation for the 
likelihood function emphasizes that the parameter 8 is the 
quantity that varies, and that the data value is considered 
fixed. The constant of proportionality in the definition is 
needed, for example, to accommodate one-to-one transfor- 
mations of the random variable Y that do not involve 0, as 
these clearly should have no effect on our inference about 
8. Another way to say the same thing is that the likelihood 
function is not calibrated in 8, or that only relative values 
L(Q1)/L(Q2) are well determined. 

The likelihood function was proposed by Fisher (1922) 
as a means of measuring the relative plausibility of various 
values of 8 by comparing their likelihood ratios. When 8 
is one- or two-dimensional, the likelihood function can be 
plotted and provides a visual assessment of the set of like- 
lihood ratios. Several authors, beginning with Fisher, sug- 
gested that ranges of plausible values for 8 can be directly 
determined from the likelihood function, first by determin- 
ing the maximum likelihood estimate, e = e ( ~ ) ,  the value 
of 8 that maximizes L(8;  y), and then using as a guideline 

L ( e ) / L ( 8 )  E (1,3), very plausible; 

f ( y ;  8) ,  which is the probability density function with re- 
spect to a suitable measure for a random variable Y .  The 
parameter is assumed to be k-dimensional and the data are 
assumed to be n-dimensional, often representing a sequence 
of iid random variables: Y = (Yl, . . . Y,). The likelihood 
function is defined to be a function of 8, proportional to 

L ( e ) / L ( 8 )  E (3 ,  lo) ,  somewhat implausible; 

and 

L ( 8 ) / L ( 8 )  E (10) ca) highly implausible. 
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Figure 1. Likelihood and Log-Likelihood Function for the Relative 
Risk; Based on Redelmeier and Tibshirani (1997~). 

The ranges suggested here are taken from Kass and Raftery 
(1993, attributed to Jeffreys. Other authors have suggested 
different cutoff points; for example, Fisher (1956, p. 71) 
suggested using 2, 5 ,  and 15, and Royall (1997) suggested 
4, 8, and 32. General introductions to the definition of the 
likelihood function and its informal use in inference were 
given by Fisher (1956), Edwards (1972), Kalbfleisch (19851, 
Azzalini (1996), and Royall (1 997). 

2. LIKELIHOOD FUNCTION AND INFERENCE 

2.1 Bayesian Inference 

Although the use of likelihood as a plausibility scale is 
sometimes of interest, probability statements are usually 
preferred in applications. The most direct way to obtain 
these is by combining the likelihood with apriorprobability 
function for 8, to obtain a posterior probability function, 

.ir(QlY) . i r ( v ( 8 ; Y ) >  (2) 

where the constant of proportionality is J n(Q)L(8;  y) do. 

This leads directly to Bayesian inferences of this sort: 
Using the prior density ~ ( e ) ,  we conclude that values of 0 
greater than OU have posterior probability less than .05 and 
are hence inconsistent with the model and the prior. Jeffreys 
(1961) emphasized this use of the likelihood function, and 
investigated the possibility of using “flat” or “noninforma- 
tive” priors. He also suggested the plausibility range de- 
scribed earlier, in the context of Bayesian inference with a 
flat prior. 

One difficulty in applying Bayesian inference is in con- 
structing a suitable prior, and interest has been renewed 
in the construction of noninformative priors, which lead to 
posterior probability intervals that are in one way or another 
minimally affected by the prior density. One example of a 
noninformative prior is one for which the posterior proba- 
bility limit 0~ described in the previous paragraph does in 
fact lead to an interval that, when considered as a confidence 
interval, has (at least approximately) coverage equal to its 
posterior probability content. If 0 is a scalar parameter, then 
the appropriate prior is Jeffreys’s prior ~ ( 0 )  oc { i ( O ) } ’ / ’ ,  
where i(O) is the Fisher information in the model f ( y ;  O ) ,  

2 dL(8;  Y )  
i ( 0 )  = E {  }’ = 1 { V} f ( g ; O ) d y .  (3) 

This result was derived by Welch and Peers (1963) in re- 
sponse to a question raised by Lindley (1958). Unfortu- 
nately, there is no satisfactory general prescription for such 
a probability matching prior when 8 is multidimensional. 
Another type of noninformative prior, motivated rather dif- 
ferently, is the reference prior of Bernardo (Berger and 
Bernardo 1992). Kass and Wasserman (1996) provided an 
excellent review of noninformative priors. 

Another difficulty in applying Bayesian inference with 
multidimensional parameters, or in more complex situa- 
tions, is the high-dimensional integration needed either to 
evaluate the normalizing constant in (2) or to compute 
marginal posterior densities for particular parameters of 
interest from the multidimensional posterior. These diffi- 
culties have largely been solved by the introduction of a 
number of numerical methods, including importance sam- 
pling and Markov chain Monte Carlo (MCMC) methods. 
An introduction to Gibbs sampling was given by Casella 
and George (1992); see also the vignettes on Gibbs sam- 
pling and MCMC methods in this issue. 

Bayesian inference respects the so-called likelihood prin- 
ciple, which states that inference from an experiment should 
be based only on the likelihood function for the observed 
data. Any inference that uses the sampling distribution of 
the likelihood function, as described in the next section, 
does not obey the likelihood principle. The discovery by 
Birnbaum (1962) that the principles of sufficiency and con- 
ditionality imply the likelihood principle led to considerable 
discussion in the 1960s and 1970s on various aspects of the 
foundations of inference. A good overview was provided by 
Berger and Wolpert (1984). More recently, there has been 
less interest in these foundational issues. 
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2.2 Classical Inference 

Frequentist probability statements can be constructed 
from the likelihood function by considering the sampling 
distribution of the likelihood function and derived quanti- 
ties. In fact, this is practically necessary from a frequentist 
standpoint, because the likelihood map is sufficient, which 
in particular implies that the minimal sufficient statistic in 
any model is determined by the likelihood map L(8;  .). This 
is why, for example, the Neyman-Pearson lemma concludes 
that the most powerful test depends on the likelihood ratio 
statistic. 

The conventional derived quantities for a parametric like- 
lihood function are the score function 

(4) i’p) = a log q e y a e ,  
the maximum likelihood estimate 

supZ(8) = @), (5 )  
e 

and the observed Fisher information 

j ( b )  = -a2~(8)/a821e=e, (6) 

where l (8)  = log L(B), is the log-likelihood function. 
In the case where Y = (Yl, . . . , Y,) is a sample of iid 

random variables, the log-likelihood function is a sum of 
n iid quantities, and under some conditions on the model a 
central limit theorem can be applied to the score function 
(4). More general sampling, such as (Yl, . . . , Y,) indepen- 
dent, but not identically distributed, or weakly dependent, 
can be accommodated if the model satisfies enough reg- 
ularity conditions to ensure a central limit theorem for a 
suitably standardized version of the score function. Under 
many types of sampling, the score function is a martingale, 
and the martingale central limit theorem can be applied. 
Thus for a wide class of models, the following results can 
be derived: 

(7) 

(9) 

where xg is the chi-squared distribution on p degrees of 
freedom and p is the dimension of 8. 

Similar results are available for inference about compo- 
nent parameters: writing 8 = (+, A), and letting denote 
the restricted maximum likelihood estimate of X for + fixed, 

(10) SUP l(+, 4 Y) = I ( + ,  &; Y) = ZP(+), 
x 

one has, for example, 

where q is the dimension of +. The function &(+) defined 
in (10) is called the projile log-likelihood function. 

These limiting results are taken as the size of the sam- 
ple, n, in an independent sampling context, increases, with 

the dimension of 8 held fixed. More generally, limit state- 
ments can be derived for the limit as the amount of Fisher 
information in Y increases. 

The approximations suggested by these limiting results, 
such as 

called first-order approximations, are widely used in prac- 
tice for inference about 8. The development of high-speed 
computers throughout the last half of the twentieth cen- 
tury has enabled accurate and fast computation of maxi- 
mum likelihood estimators in a wide variety of models, and 
most statistical packages have general-purpose routines for 
calculating derived likelihood quantities. This has meant in 
particular that development of alternative methods of point 
and interval estimation derived in the first half of the cen- 
tury are less important for applied work than they once 
were. 

2.3 Likelihood as Pivotal 

A major development in likelihood-based inference of 
the past 20 years is the discovery that the likelihood func- 
tion can be used directly to provide an approximate sam- 
pling distribution for derived quantities that is more accu- 
rate than approximations like (12). The main result, usually 
called Barndorff-Nielsen’s approximation, was initially de- 
veloped in a series of articles in the August 1980 issue of 
Biometrika (Barndorff-Nielsen; Cox; Durbin; Hinkley), all 
of which derived in one version or another that 

f(b; 81.) A clj(b)11/2 exp{l(b)  - Z(8)}. (13) 

The right side of (13) is often called Barndorff-Nielsen’s 
p* approximation. This formula generalizes an exact result 
for location models due to Fisher (1934). The renormalizing 
constant c is  equal to ( 2 ~ ) - ~ / ~ { 1 + 0 ( n - ~ ) } .  In some gener- 
ality, (1 3) is a third-order approximation, meaning the ratio 
of the right side to the true sampling density of b (given a) 
is 1 + O ( C ~ / ~ ) .  Despite its importance, a rigorous proof of 
(13) is not yet available, although Skovgaard (1990) gave a 
very careful and helpful derivation. It is necessary to condi- 
tion on a statistic a so that (13) is meaningful, because the 
likelihood function appearing on the right side depends on 
the data y, yet it is being used as the sampling distribution 
for 8. The role of a is to complete a one-to-one transfor- 
mation from y to (b ,  a). For (13) to be useful for inference, 
a must have a distribution either exactly or approximately 
free of 8; otherwise, we have lost information about 8 in 
reducing to the conditional model. 

The importance of (13) for the theory of inference is that 
it shows that the distribution of the maximum likelihood 
estimator (and other derived quantities) is obtained to a very 
high order of approximation directly from the likelihood 
function, as it is in a location model. 

A result related to (13) and more directly useful for in- 
ference is the approximation of the cumulative distribution 
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function for 8. In the case where 0 is a scalar, this is ex- 
pressed as 

where 

and 

where 1;6(0) = al(0;e,a)/ae. As with (13), this is an ap- 
proximation with relative error O ( K ~ / ~ ) .  Two advantages 
of (14) over (13) are that it gives tail areas or p-values di- 
rectly, and that it depends on a rather weakly, through a 
first derivative on the sample space. Approximation (14) 
shows that the first-order approximation to the likelihood 
ratio statistic [the scalar parameter version of (9)], pro- 
vides the leading term in an asymptotic expansion to its 
distribution, that the next term in the expansion is easily 
computed directly from the likelihood function, and that 
in frequentist-based inference, the sample space derivative 
of the log-likelihood function plays an essential role. This 
last result has the potential to clarify (and also narrow) the 
difference between frequentist and Bayesian inference. Ap- 
proximation (14) is often called the Lugannani and Rice ap- 
proximation, as a version for exponential families was first 
developed by Lugannani and Rice (1980). There are analo- 
gous versions of (14), (15), and (16) for inference about a 
scalar component of 8 in the presence of a nuisance param- 
eter; a partial review was given by Reid (1996), and more 
recent work was presented by Barndorff-Nielsen and Wood 
(1998), Fraser, Reid, and Wu (1999), and Skovgaard (1996). 
(See also the approximations vignette by R. Strawderman.) 

3. PARTIAL LIKELIHOOD AND ALL THAT 

3.1 Nuisance Parameters 

I defined at (10) the profile log-likelihood function Zp(+), 
which is often used in problems in which the parameter of 
the model 8 is partitioned into a parameter of interest + 
and a nuisance parameter A. Typically X is introduced into 
the model to make it more realistic. More generally, one 
can define 

&(+) = SUP l(0). (17) 
+ = N O )  

The profile likelihood is not a real likelihood function, in 
that it is not proportional to the sampling distribution of 
an observable quantity. However, there are limiting results 
analogous to (7)-(9), such as (1  11, that continue to provide 
first-order approximations. These approximations are ex- 
pected to be poor if the dimension of the nuisance param- 
eter X is large relative to n, as it is known that the re- 
sults break down if the dimension of 8 increases with n. 
More intuitively, because no adjustment is made for errors 
of estimation of the nuisance parameter in (10) or (17), it 
is likely that the apparent precision of (10) or (17) is over- 

stated. Several methods have been suggested for construct- 
ing a likelihood function better suited to problems with nui- 
sance parameters. Some models may contain a conditional 
or marginal distribution that contains all the information 
about the parameter of interest, or is at least free of the 
nuisance parameter, and this density provides a true condi- 
tional or marginal likelihood. In fact, Figure 1 is a plot of 
the conditional likelihood of a component of the minimal 
sufficient statistic for the model, this likelihood depending 
only on the relative risk of an accident and not on nuisance 
parameters describing the background risk. More precisely, 
that model has the factorization 

f(y; +> f(slt; +)f(t; +, A), (18) 

and Figure 1 shows Lc(+) oc f(slt;+). The justification 
for ignoring the term f(t; +,A)  is not entirely clear and 
not entirely agreed on, although the claim is usually made 
that this component contains “little” information about + 
in the absence of knowledge of A. A review of some of this 
work was given by Reid (1995). 

In models where a conditional or marginal likelihood is 
not available, a natural alternative is a suitably defined ap- 
proximate conditional or marginal likelihood, and approxi- 
mation (13) has led to several suggestions for modijied pro- 
file likelihoods. These typically have the form 

for some choice of B(.)  of the same asymptotic order as the 
second term in (1 8), typically 0, (1). The original modified 
profile likelihood is due to Barndorff-Nielsen (1983); Cox 
and Reid (1987) suggested using (18) with B(+) = 0, and 
several other versions have been proposed. Brief overviews 
were given by Mukerjee and Reid (1999) and Severini 
(1998). 

3.2 Partial Likelihood 

gous to (18), say 
In more complex models there is often a partition analo- 

L(8;  Y) = h(+; Y P 2 ( + ,  A; Y) (20) 

where it seems intuitively obvious that the second compo- 
nent cannot provide information about + in the absence of 
knowledge of A. The most famous model for which this 
is the case is Cox’s proportional hazards model for failure 
time data, where L1 depends on the observed failure times 
and LZ depends on the failure process between observed 
failure times. Cox (1972) proposed basing inference about 
the parameters of interest on L1, which he called a condi- 
tional likelihood, later changed to partial likelihood (Cox 
1975). Cox (1972) also showed that a martingale central 
limit theorem could be applied to the score statistic com- 
puted from L1, leading to asymptotic normality for derived 
quantities such as the partial maximum likelihood estimate. 

There are many related models where a partial likelihood 
leads to an adequate first-order approximation (Andersen, 
Borgan, Gill, and Keiding 1993; Murphy and van der Vaart 
1997). There is not yet a theory of higher-order approxima- 
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tions in this setting, however. Likelihood partitions, such as 
(20), were discussed in some generality by Cox (1999). 

3.3 Pseudolikelihood 

One interpretation of partial likelihood is that the proba- 
bility distribution of only part of the observed data is mod- 
eled, as this makes the problem tractable and with luck 
provides an adequate first-order approximation. A similar 
construction was suggested for complex spatial models by 
Besag (1 977), using the conditional distribution of the near- 
est neighbors of any given point, and using the product of 
these conditional distributions as a pseudolikelihood func- 
tion. A more direct approach to likelihood inference in spa- 
tial point processes was described by Geyer (1999). 

3.4 Quasi-Likelihood 

The last 30 years have also seen the development of an 
approach to modeling that does not specify a full probabil- 
ity distribution for the data, but instead specifies the form 
of, for example, the mean and the variance of each obser- 
vation. This viewpoint is emphasized in the development 
of generalized linear models (McCullagh and Nelder 1989) 
and is central to the theory of generalized estimating equa- 
tions (Diggle, Liang, and Zeger 1994). A quasi-likelihood 
is a function that is compatible with the specified mean and 
variance relations. Although it may not exist, when it does, 
it has in fairly wide generality the same asymptotic distri- 
bution theory as a likelihood function (Li and McCullagh 
1994; McCullagh 1983). 

3.5 Likelihood and Nonpararnetric Models 

Suppose that we have a model in which we assume that 
Yl, . . . Y, are iid from a completely unknown distribution 
function F( . ) .  The natural estimate of F( . )  is the empirical 
distribution function, 

Although it is not immediately clear what the likelihood 
function or likelihood ratio is in a nonparametric setting, for 
a suitably defined likelihood F,(.) is the maximum likeli- 
hood estimator of F ( . ) .  This was generalized to much more 
complex sampling, including censoring, by Andersen et al. 
(1 993). 

The empirical distribution function plays a central role in 
two inferential techniques closely connected to likelihood 
inference: the bootstrap and empirical likelihood. The non- 
parametric bootstrap uses samples from F, for constructing 
an inference, usually by Monte Car10 resampling. The para- 
metric bootstrap uses samples from F( . ;  O ) ,  where b is the 
maximum likelihood estimator. There is a close connection 
between the parametric bootstrap and the asymptotic the- 
ory of Section 2.3, although the precise relationship is still 
elusive. A good review was given by DiCiccio and Efron 
(1996). 

An alternative to the nonparametric bootstrap is the em- 
pirical likelihood function, a particular type of profile like- 
lihood function for a parameter of interest, treating the dis- 

tribution of the data otherwise as the nuisance “parame- 
ter.” The empirical likelihood and was developed by Owen 
(1988), and has been shown to have an asymptotic theory 
similar to that for parametric likelihoods. 

Empirical likelihood and likelihoods related to the boot- 
strap were described by Efron and Tibshirani (1993). 

4. CONCLUSION 

Whether from a Bayesian or a frequentist perspective, the 
likelihood function plays an essential role in inference. The 
maximum likelihood estimator, once regarded on an equal 
footing among competing point estimators, is now typically 
the basis for most inference and subsequent point estima- 
tion, although some refinement is needed in problems with 
large numbers of nuisance parameters. The likelihood ratio 
statistic is the basis for most tests of hypotheses and interval 
estimates. The emergence of the centrality of the likelihood 
function for inference, partly due to the large increase in 
computing power, is one of the central developments in the 
theory of statistics during the latter half of the twentieth 
century. 
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Conditioning, Likelihood, and Coherence: A Review 
of Some Foundational Concepts 

James ROBINS and Larry WASSERMAN 

1. INTRODUCTION 

Statistics is intertwined with science and mathematics but 
is a subset of neither. The “foundations of statistics” is the 
set of concepts that makes statistics a distinct field. For 
example, arguments for and against conditioning on ancil- 
laries are purely statistical in nature; mathematics and prob- 
ability do not inform us of the virtues of conditioning, but 
only on how to do so rigorously. One might say that founda- 
tions is the study of the fundamental conceptual principles 
that underlie statistical methodology. Examples of foun- 
dational concepts include ancillarity, coherence, condition- 
ing, decision theory, the likelihood principle, and the weak 
and strong repeated-sampling principles. A nice discussion 
of many of these topics was given by Cox and Hinkley 
(1974). 
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There is no universal agreement on which principles are 
“right” or which should take precedence over others. In- 
deed, the study of foundations includes much debate and 
controversy. An example, which we discuss in Section 2, 
is the likelihood principle, which asserts that two experi- 
ments that yield proportional likelihood functions should 
yield identical inferences. According to Birnbaum’s the- 
orem, the likelihood principle follows logically from two 
other principles: the conditionality principle and the suffi- 
ciency principle. To many statisticians, both conditionality 
and sufficiency seem compelling yet the likelihood principle 
does not. The mathematical content of Birnbaum’s theorem 
is not in question. Rather, the question is whether condi- 
tionality and sufficiency should be elevated to the status of 
“principles” just because they seem compelling in simple 
examples. This is but one of many examples of the type of 
debate that pervades the study of foundations. 

This vignette is a selective review of some of these key 
foundational concepts. We make no attempt to be complete 
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