CHAPTER 3

Control of haphazard variation

3.1 General remarks

In the previous chapter the primary emphasis was on the elimina-
tion of systematic error. We now turn to the control of haphazard
error, which may enter at any of the phases of an investigation.
Sources of haphazard error include intrinsic variation in the exper-
imental units, variation introduced in the intermediate phases of
an investigation and measurement or sampling error in recording
response.

It is important that measures to control the effect of such vari-
ation cover all the main sources of variation and some knowledge,
even if rather qualitative, of the relative importance of the different
sources is needed.

The ways in which the effect of haphazard variability can be
reduced include the following approaches.

1. It may be possible to use more uniform material, improved mea-
suring techniques and more internal replication, i.e. repeat ob-
servations on each unit.

2. It may be possible to use more experimental units.

3. The technique of blocking, discussed in detail below, is a widely
applicable technique for improving precision.

4. Adjustment for baseline features by the techniques for bias re-
moval discussed in Section 2.3 can be used.

5. Special models of error structure may be constructed, for exam-
ple based on a time series or spatial model.

On the first two points we make here only incidental comments.

There will usually be limits to the increase in precision achiev-
able by use of more uniform material and in technological experi-
ments the wide applicability of the conclusions may be prejudiced
if artificial uniformity is forced.

[lustration. In some contexts it may be possible to use pairs
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of homozygotic twins as experimental units in the way set out in
detail in Section 3.3. There may, however, be some doubt as to
whether conclusions apply to a wider population of individuals.
More broadly, in a study to elucidate some new phenomenon or
suspected effect it will usually be best to begin with the circum-
stances under which that effect occurs in its most clear-cut form.
In a study in which practical application is of fairly direct concern
the representativeness of the experimental conditions merits more
emphasis, especially if it is suspected that the treatment effects
have different signs in different individuals.

In principle precision can always be improved by increasing the
number of experimental units. The standard error of treatment
comparisons is inversely proportional to the square root of the
number of units, provided the residual standard deviation remains
constant. In practice the investigator’s control may be weaker in
large investigations than in small so that the theoretical increase
in the number of units needed to shorten the resulting confidence
limits for treatment effects is often an underestimate.

3.2 Precision improvement by blocking

The central idea behind blocking is an entirely commonsense one of
aiming to compare like with like. Using whatever prior knowledge
is available about which baseline features of the units and other
aspects of the experimental set-up are strongly associated with
potential response, we group the units into blocks such that all
the units in any one block are likely to give similar responses in
the absence of treatment differences. Then, in the simplest case,
by allocating one unit in each block to each treatment, treatments
are compared on units within the same block.

The formation of blocks is usually, however, quite constrained
in addition by the way in which the experiment is conducted. For
example, in a laboratory experiment a block might correspond to
the work that can be done in a day. In our initial discussion we
regard the different blocks as merely convenient groupings without
individual interpretation. Thus it makes no sense to try to interpret
differences between blocks, except possibly as a guide for future ex-
perimentation to see whether the blocking has been effective in er-
ror control. Sometimes, however, some aspects of blocking do have
a clear interpretation, and then the issues of Chapter 5 concerned
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with factorial experiments apply. In such cases it is preferable to
use the term stratification rather than blocking.

[llustrations. Typical ways of forming blocks are to group to-
gether neighbouring plots of ground, responses from one subject
in one session of a psychological experiment under different con-
ditions, batches of material produced on one machine, where sev-
eral similar machines are producing nominally the same product,
groups of genetically similar animals of the same gender and initial
body weight, pairs of homozygotic twins, the two eyes of the same
subject in an opthalmological experiment, and so on. Note, how-
ever, that if gender were a defining variable for blocks, i.e. strata,
we would likely want not only to compare treatments but also to
examine whether treatment differences are the same for males and
females and this brings in aspects that we ignore in the present
chapter.

3.3 Matched pairs
3.3.1 Model and analysis

Suppose that we have just two treatments, T and C, for comparison
and that we can group the experimental units into pairs, so that
in the absence of treatment differences similar responses are to be
expected in the two units within the same pair or block.

It is now reasonable from many viewpoints to assign one mem-
ber of the pair to 7' and one to C' and, moreover, in the absence
of additional structure, to randomize the allocation within each
pair independently from pair to pair. This yields what we call the
matched pair design.

Thus if we label the units

U11,U215 Ui2,Uz2;  ...5 Uty Uz (3.1)
a possible design would be

T,Cc, CT1T;, ...; T,C. (3.2)

As in Chapter 2, a linear model that directly corresponds with
randomization theory can be constructed. The broad principle in
setting up such a physical linear model is that randomization con-
straints forced by the design are represented by parameters in the
linear model. Writing Y75, Yes for the observations on treatment
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and control for the sth pair, we have the model
Yrs=p+fBs+d+ers, Yos=p+B;—0+ecs,  (3.3)

where the € are random variables of mean zero. As in Section 2.2,
either the normal theory or the second moment assumption about
the errors may be made; the normal theory assumption leads to
distributional results and strong optimality properties.

Model (3.3) is overparameterized, but this is often convenient
to achieve a symmetrical formulation. The redundancy could be
avoided here by, for example, setting p to any arbitrary known
value, such as zero.

A least squares analysis of this model can be done in several
ways. The simplest, for this very special case, is to transform the
Yrs,Yos to sums, B and differences, Ds. Because this is propor-
tional to an orthogonal transformation, the transformed observa-
tions are also uncorrelated and have constant variance. Further in
the linear model for the new variables we have

E(Bs) = 2(/’/ + ﬂs): E(Ds) =26=A. (3'4)

It follows that, so long as the (3, are regarded as unknown parame-
ters unconnected with A, the least squares estimate of A depends
only on the differences Dy and is in fact the mean of the differences,

A=D. =Yy - Yo, (3.5)
with
var(A) = var(D,)/r = 202, (3.6)
where 0?2 is the variance of e. Finally o2 is estimated as
s> =%(Ds — D)?/{2(r - 1)}, (3.7
so that
evar(A) = 25 /r. (3.8)

In line with the discussion in Section 2.2.4 we now show that the
properties just established under the linear model and the second
moment assumption also follow from the randomization used in
allocating treatments to units, under the unit-treatment additivity
assumption. This assumption specifies the response on the sth pair
to be (€15 + 6, &a5 — d) if the first unit in that pair is randomized to
treatment and (&5 — 6, &2 + 9) if it is randomized to control. We
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then have
Er(A) = A, Eg{evar(A)} = varg(A). (3.9)

To prove the second result we note that both sides of the equa-
tion do not depend on A and are quadratic functions of the §;,.
They are invariant under permutations of the numbering of the
pairs 1,...,7, and under permutations of the two units in any pair.
Both sides are zero if &5 = &a5,8 = 1,...,7. It follows that both
sides of the equation are constant multiples of

B(&1s — €25)° (3.10)

and consistency with the least squares analysis requires that the
constants of proportionality are equal. In fact, for example,

Er(s®) = B(&15 — &a5)?/(27). (3.11)

Although not necessary for the discussion of the matched pair
design, it is helpful for later discussion to set out the relation with
analysis of variance. In terms of the original responses Y the es-
timation of u,(8s is orthogonal to the estimation of A and the
analysis of variance arises from the following decompositions.

First there is a representation of the originating random obser-
vations in the form

+(YTS - YT. - Ys + Y)’ (312)
Yos = Y.+ Yo -YV.)+(V,-Y)

+(Yos—Yo. =Y, +Y.).  (3.13)

Regarded as a decomposition of the full vector of observations, this
has orthogonal components.

Secondly because of that orthogonality the squared norms of the
components add to give

SYZ = SV24+5(V; - V)2 4+ 5(V, — V) +5(Y;, - V5. -V, +7.)? -

(3.14)
note that ¥ represents a sum over all observations so that, for
example, ¥Y? = 2rV 2. In this particular case the sums of squares
can be expressed in simpler forms. For example the last term is
%(Ds — D.)?/2. The squared norms on the right-hand side are
conventionally called respectively sums of squares for general mean,
for treatments, for pairs and for residual or error.
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Thirdly the dimensions of the spaces spanned by the compo-
nent vectors, as the vector of observations lies in the full space of
dimension 2r, also are additive:

2r=14+14+(r—-1)+(r—1). (3.15)

These are conventionally called degrees of freedom and mean squares
are defined for each term as the sum of squares divided by the de-
grees of freedom. Finally, under the physical linear model (3.3) the

residual mean square has expectation o2.

3.3.2 A modified matched pair design

In some matched pairs experiments we might wish to include some
pairs of units both of which receive the same treatment. Cost con-
siderations might sometimes suggest this as a preferable design,
although in that case redefinition of an experimental unit as a pair
of original units would be called for and the use of a mixture of
designs would not be entirely natural. If, however, there is some
suspicion that the two units in a pair do not react independently,
i.e. there is doubt about one of the fundamental assumptions of
unit-treatment additivity, then a mixture of matched pairs and
pairs both treated the same might be appropriate.

Tllustration. An opthalmological use of matched pairs might in-
volve using left and right eyes as distinct units, assigning different
treatments to the two eyes. This would not be a good design unless
there were firm a priori grounds for considering that the treatment
applied to one eye had negligible influence on the response in the
other eye. Nevertheless as a check it might be decided for some
patients to assign the same treatment to both eyes, in effect to see
whether the treatment difference is the same in both environments.
Such checks are, however, often of low sensitivity.

Consider a design in which the r matched pairs are augmented
by m pairs in which both units receive the same treatment, mz
pairs receiving T and m¢ receiving C, with mr +m¢c = m. So long
as the parameters 3, in the matched pairs model describing inter-
pair differences are arbitrary the additional observations give no
information about the treatment effect. In particular a comparison
of the means of the my and the mc complete pairs estimates A
plus a contrast of totally unknown f’s.

Suppose, however, that the pairs are randomized between com-
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plete and incomplete assignments. Then under randomization anal-
ysis the §’s can be regarded in effect as random variables. In terms
of a corresponding physical model we write for each observation

Yjs:l‘ié‘i'ﬂs"'ejs: (316)

where the sign of § depends on the treatment involved, the 3, are
now zero mean random variables of variance 0% and the €, are,
as before, zero mean random variables of variance now denoted
by o3,. All random variables are mutually uncorrelated or, in the
normal theory version, independently normally distributed.

It is again convenient to replace the individual observations by
sums and differences. An outline of the analysis is as follows. Let
Anmp and Ayy denote treatment effects in the matched pairs and
the unmatched data respectively. These are estimated by the previ-
ous estimate, now denoted by Yupr — Yupc, with variance 203, /7
and by Yuymr — Yumce with variance

(0% + 0%, /2)(1/mr + 1/mc). (3.17)

If, as might quite often be the case, 0% is large compared with
0%/, the between block comparison may be of such low precision
as to be virtually useless.

If the variance components are known we can thus test the hy-
pothesis that the treatment effect is, as anticipated a priori, the
same in the two parts of the experiment and subject to homo-
geneity find a weighted mean as an estimate of the common A.
Estimation of the two variance components is based on the sum
of squares within pairs adjusting for treatment differences in the
matched pair portion and on the sum of squares between pair totals
adjusting for treatment differences in the unmatched pair portion.

Under normal theory assumptions a preferable analysis for a
common A is summarized in Exercise 3.3. There are five sufficient
statistics, two sums of squares and three means, and four unknown
parameters. The log likelihood of these statistics can be found and
a profile log likelihood for A calculated.

The procedure of combining information from within and be-
tween pair comparisons can be regarded as the simplest special
case of the recovery of between-block information. More general
cases are discussed in Section 4.2.
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3.4 Randomized block design
8.4.1 Model and analysis

Suppose now that we have more than two treatments and that they
are regarded as unstructured and on an equal footing and therefore
to be equally replicated. The discussion extends in a fairly direct
way when some treatments receive additional replication. With v
treatments, or varieties in the plant breeding context, we aim to
produce blocks of v units. As with matched pairs we try, subject
to administrative constraints on the experiment, to arrange that in
the absence of treatment effects, very similar responses are to be
anticipated on the units within any one block. We allocate treat-
ments independently from block to block and at random within
each block, subject to the constraint that each treatment occurs
once in each block.

Tlustration. Typical ways of forming blocks include compact ar-
rangements of plots in a field chosen in the light of any knowledge
about fertility gradients, batches of material that can be produced
in one day or production period, and animals grouped on the basis
of gender and initial body weight.

Let Y;, denote the observation on treatment T in block s. Note
that because of the randomization this observation may be on any
one of the units in block s in their original listing. In accordance
with the general principle that constraints on the randomization
are represented by parameters in the associated linear model, we
represent Y}, in the form

Y;'s =p+Tj +ﬂs+€js> (3-18)

where j = 1,...,v; s = 1,...,r and ¢, are zero mean random
variables satisfying the second moment or normal theory assump-
tions. The least squares estimates of the parameters are determined
by the row and column means and in particular under the sum-
mation constraints ¥7; = 0, £, = 0, we have 7; = Y;, — Y., and
B, = Y;—Y._. The contrast L, = Xl;7; is estimated by L, = SI;Y; .

The decomposition of the observations, the sums of squares and
the degrees of freedom are as follows:

1. For the observations we write

+
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a decomposition into orthogonal components.

2. For the sums of squares we therefore have
SY; = SY243(Y -V + (Y, - V.)?
+ E(ijs - 171 - Yf.s + Y.)za (320)
where the summation is always over both suffices.
3. For the degrees of freedom we have

ro=14+@w-1)+(r-1)+(r—-1)(v-1). (3.21)

The residual mean square provides an unbiased estimate of the
variance. Let

=RV - Y -Vt V- D -1} (3.22)

We now indicate how to establish the result E(s?) = o2 under the
second moment assumptions. In the linear model the residual sum
of squares depends only on {¢;s}, and not on the fixed parameters
i, {7} and {Bs}. Thus for the purpose of computing the expected
value of (3.22) we can set these parameters to zero. All sums of
squares in (3.20) other than the residual have simple expectations:
for example

E{%;,(V; =Y.)*} = rE{Z;(& —¢€)%} (3:23)
= r(v—1)var(§.) = (v — 1)o?.(3.24)

Similarly E{X; (Y —Y.)?} = (r — 1)o?, E(%;,Y?) = 02, and
that for the residual sum of squares follows by subtraction. Thus
the unbiased estimate of the variance of L, is

evar(L,) = X037 . (3.25)

The partition of the sums of squares given by (3.20) is often
set out in an analysis of variance table, as for example Table 3.2
below. This table has one line for each component of the sum of
squares, with the usual convention that the sums of squares due
to the overall mean, nY?, is not displayed, and the total sum of
squares is thus a corrected total £(Y;; — ¥.)2.

The simple decomposition of the data vector and sum of squares
depend crucially on the balance of the design. If, for example, some
treatments were missing in some blocks not merely would the or-
thogonality of the component vectors be lost but the contrasts of
treatment means would not be independent of differences between
blocks and wice versa. To extend the discussion to such cases more
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elaborate methods based on a least squares analysis are needed.
It becomes crucial to distinguish, for example, between the sum
of squares for treatments ignoring blocks and the sum of squares
for treatments adjusting for blocks, the latter measuring the ef-
fect of introducing treatment effects after first allowing for block
differences.

The randomization model for the randomized block design uses
the assumption of unit-treatment additivity, as in the matched
pairs design. We label the units

U11,...,Uv1; U12,...,UU2; ey Uh-,...,Um«. (326)

The response on the unit in the sth block that is randomized to
treatment T is
Erys +Tj (3.27)
where {7; 5 is the response of that unit in block s in the absence of
treatment.
Under randomization theory properties such as

Egr{evar(L,)} = varp(L,) (3.28)
are established by first showing that both sides are multiples of
B(&s — ). (329)

8.4.2 Example

This example is taken from Cochran and Cox (1958, Chapter 3),
and is based on an agricultural field trial. In such trials blocks are
naturally formed from large sections of field, sometimes roughly
square; the shape of individual plots and their arrangement into
plots is usually settled by a mixture of technological convenience,
for example ease of harvesting, and special knowledge of the par-
ticular area.

This experiment tested the effects of five levels of application of
potash on the strength of cotton fibres. A single sample of cotton
was taken from each plot, and four measurements of strength were
made on each sample. The data in Table 3.1 are the means of these
four measurements.

The marginal means are given in Table 3.1, and seem to indi-
cate decreasing strength with increasing amount of potash, with
perhaps some curvature in the response, since the mean strength
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Table 3.1 Strength indez of cotton, from Cochran and Coz (1958), with
marginal means.

Pounds of potash per acre
36 54 72 108 144 Mean

I 762 814 776 7.17 7.46 7.63

Block II 800 815 7.73 7.57 7.68 7.83
I 793 787 774 7.80 7.21 7.71

Mean 7.8 805 774 751 745 7.72

Table 3.2 Analysis of variance for strength indezx of cotton.

Sums of Degrees of Mean

Source squares freedom  square
Treatment  0.7324 4 0.1831
Blocks 0.0971 2 0.0486
Residual 0.3495 8 0.0437

at 36 pounds is less than that at 54 pounds, where the maximum
is reached.

The analysis of variance outlined in Section 3.4.1 is given in Table
3.2. The main use of the analysis of variance table is to provide
an estimate of the standard error for assessing the precision of
contrasts of the treatment means. The mean square residual is
an unbiased estimate of the variance of an individual observation,
so the standard error for example for comparing two treatment
means is /(2 x 0.0437/3) = 0.17, which suggests that the observed
decrease in strength over the levels of potash used is a real effect,
but the observed initial increase is not.

It is possible to construct more formal tests for the shape of the
response, by partitioning the sums of squares for treatments, and
this is considered further in Section 3.5 below.

The S-PLUS code for carrying out the analysis of variance in this
and the following examples is given in Appendix C. As with many
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other statistical packages, the emphasis in the basic commands is
on the analysis of variance table and the associated F-tests, which
in nearly all cases are not the most useful summary information.

3.4.8 Efficiency of blocking

As noted above the differences between blocks are regarded as of
no intrinsic interest, so long as no relevant baseline information is
available about them. Sometimes, however, it may be useful to ask
how much gain in efficiency there has been as compared with com-
plete randomization. The randomization model provides a means
of assessing how effective the blocking has been in improving pre-
cision. In terms of randomization theory the variance of the dif-
ference between two treatment means in a completely randomized
experiment is determined by

2 _
=2(gjs = £)%/(or = ), (3.30)
whereas in the randomized block experiment it is
2 _
=5 - £ H{r(v - 1)} (3:31)

Also in the randomization model the mean square between blocks
is constant with value

V(€5 — €.)/(r = 1). (3.32)

As a result the relative efficiency for comparing two treatment
means in the two designs is estimated by

2SS +r(v —1)MSg
r  (vr—1)MSg

Here SSp and MSg are respectively the sum of squares for blocks
and the residual mean square in the original randomized block
analysis.

To produce from the original analysis of variance table for the
randomized block design an estimate of the effective residual vari-
ance for the completely randomized design we may therefore pro-
duce a new formal analysis of variance table as follows. Replace the
treatment mean square by the residual mean square, add the sums
of squares for modified treatments, blocks and residual and divide
by the degrees of freedom, namely vr — 1. The ratio of the two
residual mean squares, the one in the analysis of the randomized

(3.33)
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block experiment to the notional one just reconstructed, measures
the reduction in effective variance induced by blocking.

There is a further aspect, however; if confidence limits for A are
found from normal theory using the Student ¢ distribution, the
degrees of freedom are (v — 1)(r — 1) and v(r — 1) respectively in
the randomized block and completely randomized designs, showing
some advantage to the latter if the error variances remain the same.
Except in very small experiments, however, this aspect is relatively
minor.

3.5 Partitioning sums of squares
3.5.1 General remarks

We have in this chapter emphasized that the objective of the anal-
ysis is the estimation of comparisons between the treatments. In
the context of analysis of variance the sum of squares for treat-
ments is a summary measure of the variation between treatments
and could be the basis of a test of the overall null hypothesis that
all treatments have identical effect, i.e. that the response obtained
on any unit is unaffected by the particular treatment assigned to
it. Such a null hypothesis is, however, very rarely of concern and
therefore the sum of squares for treatments is of importance pri-
marily in connection with the computation of the residual sum of
squares, the basis for estimating the error variance.

It is, however, important to note that the treatment sum of
squares can be decomposed into components corresponding to com-
parisons of the individual effects and this we now develop.

3.5.2 Contrasts

Recall from Section 2.2.6 that if the treatment parameters are de-
noted by 7q,...,7, a linear combination L, = Xl;7; is called a
treatment contrast if ¥I; = 0. The contrast L, is estimated in the
randomized block design by

L =57, (3:34)

where Y. is the mean response on the jth treatment, averaged over
blocks. Equivalently we can write

L, =3%;,0Y;,/r, (3.35)
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where the sum is over individual observations and r is the number
of replications of each treatment.

Under the linear model (3.18) and the second moment assump-
tion,

E(L;)=L,, var(L,)=o>3;i3/r. (3.36)

We now define the sum of squares with one degree of freedom
associated with L, to be

SSp =rL%/ni2. (3.37)

This definition is in some ways most easily recalled by noting
that L, is a linear combination of responses, and hence SSy is
the squared length of the orthogonal projection of the observation
vector onto the vector whose components are determined by .

The following properties are derived directly from the definitions:
1. E(L,) = L, and is zero if and only if the population contrast is

zero.

2. E(SSz) =02+ rLﬁ/Elf-.

3. Under the normal theory assumption SS; is proportional to
a noncentral chi-squared random variable with one degree of
freedom reducing to the central chi-squared form if and only if
L, =0.

4. The square of the Student ¢ statistic for testing the null hypoth-
esis L; = 0 is the analysis of variance F' statistic for comparing
SSy, with the residual mean square.

In applications the Student ¢ form is to be preferred to its square,
partly because it preserves the information in the sign and more
importantly because it leads to the determination of confidence
limits.

3.5.8 Mutually orthogonal contrasts

Several contrasts Lgl) . Lg), ... are called mutually orthogonal if for
all p# ¢

=Pl = 0. (3.38)
Note that under the normal theory assumption the estimates of
orthogonal contrasts are independent. The corresponding Student ¢
statistics are not quite independent because of the use of a common
estimate of o2, although this is a minor effect unless the residual
degrees of freedom are very small.
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Now suppose that there is a complete set of v — 1 mutually or-
thogonal contrasts. Then by forming an orthogonal transformation
of ¥1,...,Y, from (1/y/v,...,1/4/v) and the normalized contrast
vectors, it follows that

szs (YJ - )_/)2 = SSL(I) + ...+ SSL(U), (3.39)

that is the treatment sum of squares has been decomposed into
single degrees of freedom.

Further if there is a smaller set of v; < v—1 mutually orthogonal
contrasts, then the treatment sum of squares can be decomposed
into

Selected individual contrasts o
Remainder v—1—wv
Total for treatments v—1

In this analysis comparison of the mean square for the remainder
term with the residual mean square tests the hypothesis that all
treatment effects are accounted for within the space of the v; iden-
tified contrasts. Thus with six treatments and the single degree of
freedom contrasts identified by

LY = (1 +7)/2— 73, (3.40)
L® = (n+7+m)/3—(1a+7+76)/3, (3.41)

we have the partition

S 1
¥ 1
Remainder 3
Total for treatments 5

The remainder term could be divided further, perhaps most nat-
urally initially into a contrast of 74 with 75 and a comparison with
two degrees of freedom among the last three treatments.

The orthogonality of the contrasts is required for the simple
decomposition of the sum of squares. Subject-matter relevance of
the comparisons of course overrides mathematical simplicity and
it may be unavoidable to look at nonorthogonal comparisons.

We have in this section used notation appropriate to partition-
ing the treatment sums of squares in a randomized block design,
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but the same ideas apply directly to more general settings, with
Y;. above replaced by the average of all observations on the jth
treatment, and r replaced by the number of replications of each
treatment. When in Chapter 5 we consider more complex treat-
ments defined by factors exactly the same analysis can be applied
to interactions.

3.5.4 Equally spaced treatment levels

A particularly important special case arises when treatments are
defined by levels of a quantitative variable, often indeed by equally
spaced values of that variable. For example a dose might be set at
four levels defined by log dose = 0,1, 2, 3 on some suitable scale, or
a temperature might have three levels defined by temperatures of
30, 40, 50 degrees Celsius, and so on.

We now discuss the partitioning of the sums of squares for such
a quantitative treatment in orthogonal components, correspond-
ing to regression on that variable. It is usual, and sensible, with
quantitative factors at equally spaced levels, to use contrasts rep-
resenting linear, quadratic, cubic, ... dependence of the response
on the underlying variable determining the factor levels. Tables of
these contrasts are widely available and are easily constructed from
first principles via orthogonal polynomials, i.e. via Gram-Schmidt
orthogonalization of {1,z,z2,...}. For a factor with three equally
spaced levels, the linear and quadratic contrasts are

and for one with four equally spaced levels, the linear, quadratic
and cubic contrasts are

-3 -1 1 3
1 -1 -1 1
-1 3 3 1

The sums of squares associated with these can be compared with
the appropriate residual sum of squares. In this way some notion
of the shape of the dependence of the response on the variable
defining the factor can be obtained.
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3.5.5 Ezample 3.4 continued

In this example the treatments were defined by increasing levels of
potash, in pounds per acre. The levels used were 36, 54, 72, 108
and 144. Of interest is the shape of the dependence of strength on
level of potash; there is some indication in Table 3.1 of a levelling
off or decrease of response at the highest level of potash.

These levels are not equally spaced, so the orthogonal polynomi-
als of the previous subsection are not exactly correct for extracting
linear, quadratic, and other components. The most accurate way of
partitioning the sums of squares for treatments is to use regression
methods or equivalently to construct the appropriate orthogonal
polynomials from first principles. We will illustrate here the use of
the usual contrasts, as the results are much the same.

The coeflicients for the linear contrast with five treatment levels
are (—2,-1,0,1,2), and the sum of squares associated with this
contrast is SSin = 3(—1.34)2/10 = 0.5387. The nonlinear contri-
bution to the treatment sum of squares is thus just 0.1938 on three
degrees of freedom, which indicates that the suggestion of nonlin-
earity in the response is not significant. The quadratic component,
defined by the contrast (2,—1,—2,—1,2) has an associated sum of
squares of 0.0440.

If we use the contrast exactly appropriate for a linear regression,
which has entries proportional to

(—2,-1.23,-0.46,1.08,2.61),

we obtain the same conclusion.

With more extensive similar data, or with various sets of similar
data, it would probably be best to fit a nonlinear model consistent
with general subject-matter knowledge, for example an exponential
model rising to an asymptote. Fitting such a model across various
sets of data should be helpful for the comparison and synthesis of
different studies.

3.6 Retrospective adjustment for improving precision

In Section 3.1 we reviewed various ways of improving precision and
in Sections 3.2 and 3.3 developed the theme of comparing like with
like via blocking the experimental units into relatively homoge-
neous sets, using baseline information. We now turn to a second
use of baseline information. Suppose that on each experimental
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unit there is a vector z of variables, either quantitative or indica-
tors of qualitative groupings and that this information has either
not been used in forming blocks or at least has been only partly
used.

There are three rather different situations. The importance of
z may have been realized only retrospectively, for example by an
investigator different from the one involved in design. It may have
been more important to block on features other than z; this is espe-
cially relevant when a large number of baseline features is available.
Thirdly, any use of z to form blocks is qualitative and it may be
that quantitative use of z instead of, or as well as, its use to form
blocks may add sensitivity.

Illustrations. In many clinical trials there will be a large num-
ber of baseline features available at the start of a trial and the
practicalities of randomization may restrict blocking to one or two
key features such as gender and age or gender and initial severity.
In an animal experiment comparing diets, blocks could be formed
from animals of the same gender and roughly the same initial body
weight but, especially in small experiments, appreciable variation
in initial body weight might remain within blocks.

Values of z can be used to test aspects of unit-treatment ad-
ditivity, in effect via tests of parallelism, but here we concentrate
on precision improvement. The formal statistical procedures of in-
troducing regression on z into a model have appeared in slightly
different guise in Section 2.3 as techniques for retrospective bias
removal and will not be repeated. In fact what from a design per-
spective is random error can become bias at the stage of analysis,
when conditioning on relevant baseline features is appropriate. It
is therefore not surprising that the same statistical technique reap-
pears.

Tllustration. A group of animals with roughly equal numbers of
males and females is randomized between two treatments 7" and C
regardless of gender. It is then realized that there are substantially
more males than females in 7. From an initial design perspective
this is a random fluctuation: it would not persist in a similar large
study. On the other hand once the imbalance is observed, unless
it can be dismissed as irrelevant or unimportant it is a potential
source of bias and is to be removed by rerandomizing or, if it is too
late for that, by appropriate analysis. This aspect is connected with
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some difficult conceptual issues about randomization; see Section
2.4.

This discussion raises at least two theoretical issues. The first
concerns the possible gains from using a single quantitative baseline
variable both as a basis for blocking and after that also as a basis
for an adjustment. It can be shown that only when the correlation
between baseline feature and response is very high is this double use
of it likely to lead to a substantial improvement in final precision.

Suppose now that there are baseline features that cannot be rea-
sonably controlled by blocking and that they are controlled by a
regression adjustment. Is there any penalty associated with adjust-
ing unnecessarily?

To study this consider first an experiment to compare two treat-
ments, with r replicates of each. After adjustment for the ¢ x 1
vector of baseline variables, z, the variance of the estimated differ-
ence between the treatments is

var(?T — ’f'c) = 0'2{2/7° + (ET. - Ec,)TRZ_Zl(ET, — 20.)}, (3.42)

where o2 is the variance per observation residual to regression on z
and to any blocking system used, Zr., Zc. are the treatment mean
vectors and R, is the matrix of sums of squares and cross-products
of z within treatments again eliminating any block effects.

Now if treatment assignment is randomized

ER(Rzz/dw) = sz: (343)

where d,, is the degrees of freedom of the residual sum of squares
in the analysis of variance table, and §),, is a finite population
covariance matrix of the unit constants within blocks. With v = 2
we have

ER(ZT - Zc) =0, ER{(ZT - Zc)(ZT - Zc)T} = QQZZ/T. (3.44)
Now

1 1

Sr(r— ) 0 e~ 20) = gl — ol (345)

say, has expectation ¢ and approximately a chi-squared distribution
with ¢ degrees of freedom.
That is, approximately

R R 202
var(fr — T¢) = T(l + W, /dw), (3.46)

where W, denotes a random variable depending on the outcome of
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the randomization and having approximately a chi-squared distri-
bution with ¢ degrees of freedom.
More generally if there are v treatments each replicated r times

avejvar(; — 7) = 02[2/r + 2/{r(v — 1) }tr(B,.,R;}")], (3.47)

where B,, is the matrix of sums of squares and products between
treatments and tr(A) denotes the trace of the matrix A, i.e. the
sum of the diagonal elements.

The simplest interpretation of this is obtained by replacing W,
by its expectation, and by supposing that the number of units n is
large compared with the number of treatments and blocks, so that
dy ~ n. Then the variance of an estimated treatment difference is
approximately

20?2 q

T(1 + E)' (3.48)

The inflation factor relative to the randomized block design is ap-
proximately n/(n — ¢) leading to the conclusion that every unnec-
essary parameter fitted, i.e. adjustment made without reduction in
the effective error variance per unit, o2, is equivalent to the loss of
one experimental unit.

This conclusion is in some ways oversimplified, however, not only
because of the various approximations in its derivation. First, in a
situation such as a clinical trial with a potentially large value of
q, adjustments would be made selectively in a way depending on
the apparent reduction of error variance achieved. This makes as-
sessment more difficult but the inflation would probably be rather
more than that based on qg, the dimension of the z actually used,
this being potentially much less than g, the number of baseline
features available.

The second point is that the variance inflation, which arises be-
cause of the nonorthogonality of treatments and regression analy-
ses in the least squares formulation, is a random variable depend-
ing on the degree of imbalance in the configuration actually used.
Now if this imbalance can be controlled by design, for example by
rerandomizing until the value of W, is appreciably smaller than its
expectation, the consequences for variance inflation are reduced
and possibly but not necessarily the need to adjust obviated. If,
however, such control at the design stage is not possible, the aver-
age inflation may be a poor guide. It is unlikely though that the
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inflation will be more for small € than
14+ Wy,/n), (3.49)

where W, . is the upper € point of the randomization distribution
of W,, approximately a chi-squared distribution with ¢ degrees of
freedom.

For example, with € = 0.01 and ¢ = 10 it will be unlikely that
there is more than a 10 per cent inflation if n > 230 as compared
with n > 100 suggested by the analysis based on properties av-
eraged over the randomization distribution. Note that when the
unadjusted and adjusted effects differ immaterially simplicity of
presentation may favour the former.

A final point concerns the possible justification of the adjusted
analysis based on randomization and the assumption of unit treat-
ment additivity. Such a justification is usually only approximate
but can be based on an approximate conditional distribution re-
garding, in the simplest case of just two treatments, Zr — Z¢ as
fixed.

3.7 Special models of error variation

In this chapter we have emphasized methods of error control by
blocking which, combined with randomization, aim to increase the
precision of estimated treatment contrasts without strong special
assumptions about error structure. That is, while the effectiveness
of the methods in improving precision depends on the way in which
the blocks are formed, and hence on prior knowledge, the validity
of the designs and the associated standard errors does not do so.

Sometimes, however, especially in relatively small experiments in
which the experimental units are ordered in time or systematically
arrayed in space a special stochastic model may reasonably be used
to represent the error variation. Then there is the possibility of
using a design that exploits that model structure. However, usually
the associated method of analysis based on that model will not
have a randomization justification and we will have to rely more
strongly on the assumed model than for the designs discussed in
this chapter.

When the experimental units are arranged in time the two main
types of variation are a trend in time supplemented by totally
random variation and a stationary time series representation. The
latter is most simply formulated via a low order autoregression.
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For spatial problems there are similar rather more complex repre-
sentations. Because the methods of design and analysis associated
with these models are more specialized we defer their discussion to
Chapter 8.

3.8 Bibliographic notes

The central notions of blocking and of adjustment for baseline vari-
ables are part of the pioneering contributions of Fisher (1935), al-
though the qualitative ideas especially of the former have a long
history. The relation between the adjustment process and random-
ization theory was discussed by Cox (1982). See also the Biblio-
graphic notes to Chapter 2. For the relative advantages of blocking
and adjustment via a baseline variable, see Cox (1957).

The example in Section 3.4 is from Cochran and Cox (1958,
Chapter 3), and the partitioning of the treatment sum of squares
follows closely their discussion. The analysis of matched pairs and
randomized blocks from the linear model is given in most books on
design and analysis; see, for example, Montgomery (1997, Chapters
2 and 5) and Dean and Voss (1999, Chapter 10). The randomization
analysis is given in detail in Hinkelmann and Kempthorne (1994,
Chapter 9), as is the estimation of the efficiency of the randomized
block design, following an argument attributed to Yates (1937).

3.9 Further results and exercises

1. Under what circumstances would it be reasonable to have a
randomized block experiment in which each treatment occurred
more than once, say, for example, twice, in each block, i.e. in
which the number of units per block is twice the number of
treatments? Set out the analysis of variance table for such a
design and discuss what information is available that cannot be
examined in a standard randomized block design.

2. Suppose in a matched pair design the responses are binary. Con-
struct the randomization test for the null hypothesis of no treat-
ment difference. Compare this with the test based on that for
the binomial model, where A is the log odds-ratio. Carry out a
similar comparison for responses which are counts of numbers
of occurrences of point events modelled by the Poisson distribu-
tion.
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3. Consider the likelihood analysis under the normal theory as-
sumptions of the modified matched pair design of Section 3.3.2.
There are » matched pairs, m7 pairs in which both units re-
ceive T and m¢ pairs in which both units receive C'; we assume
a common treatment difference applies throughout. We trans-
form the original pairs of responses to sums and differences as
in Section 3.3.1.

(a)

(b)

(e)

Show that r of the differences have mean A, and that my +
mc of them have mean zero, all differences being indepen-
dently normally distributed with variance 7p, say.

Show that independently of the differences the sums are in-
dependently normally distributed with variance 7g, say, with
r having mean v, say, mr having mean v + § and m¢ having
mean v — §, where A = 24.

Hence show that minimal sufficient statistics are (i) the least
squares estimate of v from the sums; (ii) the least squares
estimate AS of A from the unmatched pairs, i.e. the difference
of the means of mr and mg pairs; (iii) the estimate Ap
from the matched pairs; (iv) a mean square MSp with dp =
r — 14+ myp + me degrees of freedom estimating 7p and (v)
a mean square MSg with dg = r — 2 + mg + m¢ degrees of
freedom estimating 75. This shows that the system is a (5,4)
curved exponential family.

Without developing a formal connection with randomization
theory note that complete randomization of pairs to the three
groups would give some justification to the strong homogene-
ity assumptions involved in the above. How would such ho-
mogeneity be examined from the data?

Show that a log likelihood function obtained by ignoring (i)
and using the known densities of the four remaining statistics
is

1 P

- §IOgTS —m(AS - A)2/(2TS)
1 ~

- EIOgTD—T(AD—A)2/(2TD)
1 1

- EdDIOgTD - §dDMSD/TD

1 1
— §ds log 7s — idSMSS/TSa
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where 1/m =1/mp + 1/ms.

(f) Hence show, possibly via some simulated data, that only in
quite small samples will the profile likelihood for A differ ap-
preciably from that corresponding to a weighted combination
of the two estimates of A replacing the variances and theo-
retically optimal weights by sample estimates and calculating
confidence limits via the Student ¢ distribution with effective
degrees of freedom

d = (rMSg + mMSp)?(r?MS% /dp + m>*MS3, /ds) ™ .
For somewhat related calculations, see Cox (1984b).

4. Suppose that n experimental units are arranged in sequence in
time and that there is prior evidence that the errors are likely to
be independent and identically distributed initially with mean
zero except that at some as yet unknown point there is likely to
be a shift in mean error. What design would be appropriate for
the comparison of v treatments? After the experiment is com-
pleted and the responses obtained it is found that the disconti-
nuity has indeed occurred. Under the usual linear assumptions
what analysis would be suitable if

(a) the position of the discontinuity can be determined without
error from supplementary information

(b) the position of the discontinuity is regarded as an unknown
parameter.



