
Today
I data presentation Yi Lu

I re-cap on random effects examples

I in the news

I semi-parametric regression

I March/April: Semi-parametric regression (§10.7),
generalized additive models, penalized regression
methods (ridge regression, lasso); proportional hazards
models (§10.8)

I Chapter 9 reading: 9.1, 9.2.1, 9.2.2, 9.3.1, 9.3.2, 9.4
I HW 3: due March 21
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Example: Panel Study of Income Dynamics Faraway, §9.1
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log(income)ij = µ+ b0j + α yeari + b1jyeari +

β sexj + γ (yeari × sexj ) + β2educj + β3agej + εij ,

εij ∼ N(0, σ2), bj ∼ N2(0, σ2Ωb)

year = year− 78 j subject, i year
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... PSID

> mmod = lmer(log(income) ˜ cyear*sex + age + educ +
+ (cyear | person), data=psid)

log(income)ij = µ+ b0j + α yeari + b1jyeari +

β sexj + γ (yeari × sexj ) + β2educj + β3agej + εij ,

εij ∼ N(0, σ2), bj ∼ N2(0, σ2Ωb)

I we could fit separate lines for each subject (as also
mentioned in SM Example 9.18)

I this would give us 85 slopes and 85 intercepts
I we could compare these slopes and intercepts between

genders (two-sample test)
I simple, but limited

STA 2201: Applied Statistics II February 28, 2014 3/37



... PSID – using lmer
compare random effects model to fixed effects model:
> mmod = lmer(log(income) ˜ cyear*sex + age + educ +
+ (cyear | person), data=psid)

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.67420 0.54332 12.284
cyear 0.08531 0.00900 9.480
sexM 1.15031 0.12129 9.484
age 0.01093 0.01352 0.808
educ 0.10421 0.02144 4.861
cyear:sexM -0.02631 0.01224 -2.150

> lmod = lm(log(income) ˜ cyear*sex + age + educ, data = paid)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.737201 0.206490 32.627 <2e-16 ***
cyear 0.082049 0.005304 15.470 <2e-16 ***
sexM 1.130826 0.045554 24.824 <2e-16 ***
age 0.009401 0.005061 1.858 0.0634 .
educ 0.106934 0.008184 13.066 <2e-16 ***
cyear:sexM -0.017716 0.007088 -2.499 0.0125 *

Residual standard error: 0.9126 on 1655 degrees of freedom

I coefficients the same; standard errors for lm much smaller
I 1655 degrees of freedom?
I all observations treated as independent
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... PSID – using lme

> mmod = lme(log(income) ˜ cyear*sex + age + educ ,
random = ˜ 1 + cyear | person, data=psid)

Fixed effects: log(income) ˜ cyear * sex + age + educ
Value Std.Error DF t-value p-value

(Intercept) 6.674204 0.5433252 1574 12.283995 0.0000
cyear 0.085312 0.0089996 1574 9.479521 0.0000
sexM 1.150313 0.1212925 81 9.483790 0.0000
age 0.010932 0.0135238 81 0.808342 0.4213
educ 0.104210 0.0214366 81 4.861287 0.0000
cyear:sexM -0.026307 0.0122378 1574 -2.149607 0.0317

Random effects:
Formula: ˜1 + cyear | person
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 0.53071321 (Intr)
cyear 0.04898952 0.187
Residual 0.68357323

> lmod = lm(log(income) ˜ cyear*sex + age + educ, data = paid)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.737201 0.206490 32.627 <2e-16 ***
cyear 0.082049 0.005304 15.470 <2e-16 ***
sexM 1.130826 0.045554 24.824 <2e-16 ***
age 0.009401 0.005061 1.858 0.0634 .
educ 0.106934 0.008184 13.066 <2e-16 ***
cyear:sexM -0.017716 0.007088 -2.499 0.0125 *

Residual standard error: 0.9126 on 1655 degrees of freedom
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Inference for fixed effects
I β̂ = (X TΥ̂X )−1X TΥ̂y , σ̂2 = 1

n (y − X β̂)T(y − X β̂)

I σ̂2 usually replaced by REML estimate σ̃2

I s.e.(β̂j) =
√
{σ̃2(X TΥ̂X )−1

jj }

I educ coefficient estimate 0.1042, e0.1042 = 1.11, 11%
increase in income per year of education

I sexM coefficient estimate 1.15, e1.15 = 3.16, 3× higher at
baseline for males

I slope for females approximately 9% per year; for males
approximately 6% per year

I standard deviation of slopes estimated to be 0.049
I variation within subjects (0.68)2 larger than between

subjects (0.53)2
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Random effects
I estimates (predictions) of b0i , b1i available

I Y = Xβ + Zb + ε; b ∼ N(0, σ2Ωb), ε ∼ N(0, σ2Ωj)

I Y ∼ N(Xβ, (Ω + Z ΩbZ T))

I b̃ = (Z TΩ̂−1Z + Ω̂−1
b )−1Z TΩ−1(y − Xβ)

y − X β̂ = Zb̃ + y − X β̂ − Zb̃
= Zb̃ + {In − Z (Z TΩ̂−1Z + Ω̂−1

b )−1Z TΩ̂−1}(y − X β̂)︸ ︷︷ ︸
new residual
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pieces of lmer

> methods(class="merMod")
[1] anova.merMod* as.function.merMod* coef.merMod*
[4] confint.merMod deviance.merMod* drop1.merMod*
[7] extractAIC.merMod* family.merMod* fitted.merMod*

[10] fixef.merMod* formula.merMod* isGLMM.merMod*
[13] isLMM.merMod* isNLMM.merMod* isREML.merMod*
[16] logLik.merMod* model.frame.merMod* model.matrix.merMod*
[19] nobs.merMod* plot.merMod* predict.merMod*
[22] print.merMod* profile.merMod* ranef.merMod*
[25] refit.merMod* refitML.merMod* residuals.merMod*
[28] sigma.merMod* simulate.merMod* summary.merMod*
[31] terms.merMod* update.merMod* VarCorr.merMod*
[34] vcov.merMod weights.merMod*

> ranef(mmod)
$person

(Intercept) cyear
1 -0.029975590 0.0161575447
2 0.015961618 0.0198586106
3 -0.122972629 -0.0449473569
4 0.109534933 -0.0074016139
5 -0.572308284 -0.1108678330
6 0.218592408 0.0263156155

> length(residuals(mmod))
[1] 1661
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Example: Balance experiment Faraway, 10.1

I 3× 2 factorial, 2 replications per subject
I factors: surface (normal or foam);

vision (open, closed, domed)
I 20 male and 20 female subjects
I auxiliary variables age, height, weight

I simplest analysis, subject by subject 2× 3 factorial with 2
observations per cell
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... balance
I three possible model fits

1. ignore subject, fit usual glm
2. include a fixed effect for each subject, fit usual glm –

confounded with subject-level covariates
3. include random intercepts for subject – fewer parameters to

estimate, allows subject covariates to be used
I fit using glmer in lme or glmmPQL in MASS

I each involves an approximate integral of random effects,
results can vary depending on control parameters
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... balance
> library(MASS)

> balance2 <- glmmPQL(stable ˜ Sex + Age + Height + Weight + Surface + Vision,
+ random = ˜1 | Subject, family = binomial, data = ctsib)
> summary(balance2)

Random effects:
Formula: ˜1 | Subject

(Intercept) Residual
StdDev: 3.060712 0.5906232

Variance function:
Structure: fixed weights
Formula: ˜invwt

Fixed effects: stable ˜ Sex + Age + Height + Weight + Surface + Vision
Value Std.Error DF t-value p-value

(Intercept) 15.571494 13.498304 437 1.153589 0.2493
Sexmale 3.355340 1.752614 35 1.914478 0.0638
Age -0.006638 0.081959 35 -0.080992 0.9359
Height -0.190819 0.092023 35 -2.073601 0.0455
Weight 0.069467 0.062857 35 1.105155 0.2766
Surfacenorm 7.724078 0.573578 437 13.466492 0.0000
Visiondome 0.726464 0.325933 437 2.228873 0.0263
Visionopen 6.485257 0.543980 437 11.921876 0.0000

480− 3 = 477− 40 = 437 40− 5 = 35
this is similar to a split-plot experiment: treatments are within subjects (sub-plots);

covariates are between subjects (main plots); see OzDASL
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In the News
CBC
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... cheating
I A CBC survey of Canadian universities shows more than

7,000 students were disciplined for academic cheating in
2011-12, a finding experts say falls well short of the
number of students who actually cheat.

I In the first survey of its kind, CBC News contacted 54
universities and asked them to provide the number of
2011-12 academic misconduct cases that went through a
formal discipline process.

I Forty-two institutions supplied data, showing less than one
per cent of total students were affected.

I “There’s a huge gap between what students are telling us
they’re doing and the numbers of students that are being
caught and sanctioned for those behaviours,” said Julia
Christensen Hughes,

I Hughes said surveys of students show that more than 50
per cent admit to different forms of cheating.
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SFU

http://www.cbc.ca/news/canada/british-columbia/sfu-disciplines-more-cheating-students-than-ubc-survey-says-1.2550250


... cheating
I Detecting cheating can be hard. Christensen Hughes

published a study in 2006 that found that more than 50 per
cent of undergraduate students and 35 per cent of
graduate students admitted they had cheated on written
work.

I
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... cheating
I This paper ... presenting the results of a study conducted at 11

Canadian higher education institutions between January 2002
and March 2003.

I A modified version of the survey utilized in the Center for
Academic Integrity’s Assessment Project ... was used to collect
data from 11 Canadian higher education institutions between
January 2002 and March 2003

I Each institution was encouraged to advertise the project broadly
and an e-mail message inviting participation was distributed to
each institution’s entire academic population

I Response rates ranged from approximately 5 to 25%

I In addition to these low to modest response rates, this study had
several limitations
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... cheating
I Substantially fewer graduate students (only 9%) reported

having engaged in one or more instances of serious test
cheating behaviour,

I while a surprisingly high number (35%) reported having
engaged in one or more instances of serious cheating on
written work (see Table 3).

I our findings suggest that these rates may be understated
as many graduate students (37%) reported they were
certain another student had cheated in a test or exam
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Semiparametric Regression §10.7
I model yj = g(xj) + εj , j = 1, . . . ,n xj scalar

I mean function g(·) assumed to be “smooth”

I introduce a kernel function w(u) and define a set of
weights

wj =
1
h

w
(

xj − x0

h

)
I estimate of g(x), at x = x0:

ĝ(x0) =

∑n
j=1 wjyj∑n
j=1 wj

I Nadaraya-Watson estimator (10.40) – local averaging
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... kernel smoothing
I better estimates can be obtained using local regression at

point x

I

I

β̂ = (X T WX )−1X T Wy

I

ĝ(x0) = β̂0

I usually obtain estimates ĝ(xj), j = 1, . . . ,n
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... kernel smoothing
I odd-order polynomials work better than even; usually local

linear fits are used
I kernel function is often a Gaussian density, or the tricube

function (10.37)
I choice of bandwidth, h controls smoothness of function
I kernel estimators are biased
I larger bandwidth = more smoothing – increases bias,

decreases variance
I some smoothers allows variable bandwidth depending on

density of observations near x0

I ksmooth computes local averages; loess computes local
linear regression (robustified)
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Example: weighted average

?ksmooth

ksmooth(x,y,kernel=c("box","normal"),bandwidth=0.5,
range.x=range(x),
n.points=max(100,length(x)), x.points)

> eps<-rnorm(100,0,1/3)
> x<-runif(100)
> sin4 <- function(x){sin(4*x)}
> y<-sin4(x)+eps
> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> points(x,y)
> lines(ksmooth(x,y,"box",bandwidth=.2),col="blue")
> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
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... Example

> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
> lines(ksmooth(x,y,"normal",bandwidth=0.4),col="blue")
> lines(ksmooth(x,y,"normal",bandwidth=0.6),col="red")
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Fitting in R
I scatter.smooth fits a loess curve to a scatter plot
I loess takes a family argument : family = gaussian

gives weighted least squares using Kλ as weights and
family=symmetric gives a robust version using Tukey’s
biweight

I supsmu implements “Friedman’s super smoother”: a
running lines smoother with elaborate adaptive choice of
bandwidth

I Library KernSmooth has locpoly for local polynomial
fits, and by setting degree = 0 gives a kernel smooth

I as usual more smoothing means larger bias, smaller
variance
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Example: local linear smoothing

> plot(sin4,0,1,type="l",ylim=c(-1,1.5),xlim=c(0,1), xlab = "x")
> lo1 = loess(y ˜ x, degree = 1, span = 0.75)

> attributes(lo1)
$names
[1] "n" "fitted" "residuals" "enp" "s" "one.delta"
[7] "two.delta" "trace.hat" "divisor" "pars" "kd" "call"

[13] "terms" "xnames" "x" "y" "weights"

$class
[1] "loess"

> lines(lo1$x[ord],lo1$fitted[ord],col="red")
> lo2 = loess(y˜x, degree=1, span=0.4)
> lo3 = loess(y˜x, degree=2, span=0.4)
> lines(lo1$x[ord],lo2$fitted[ord],col="green")
> lines(lo1$x[ord],lo3$fitted[ord],col="purple")

STA 2201: Applied Statistics II February 28, 2014 25/37



0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x

si
n4

 (x
)





0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x

y





0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

supsmu(x, y)$x

su
ps

m
u(

x,
 y

)$
y



Inference from smooth functions
I β̂ = (X T WX )−1X T Wy

I W = diag(w1, . . . ,wn)

I ĝ(x0) = β̂0 =
∑n

j=1 S(x0; xj ,h)yj

I S(x0; x1,h), . . . ,S(x0; xn,h) first row of “hat” matrix
(X T WX )−1X T W

I E{ĝ(x0)} =
∑n

j=1 S(x0; xj ,h)g(xj)

I var{ĝ(x0)} = σ2∑n
j=1 S(x0; xj ,h)2

I similarly ĝ = (ĝ(x1), . . . , ĝ(xn)) = Shy

I ν1 = tr(Sh), ν2 = tr(ST
h Sh) suggested as

estimates of ‘degrees of freedom’
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Extension
I original model yj = g(xj) + εj

I extend to yj ∼ f (·;β, φxj)

I

max
β

∑ 1
h

w
(

xj − x0

h

)
log f (yj ;β, φ, x0)

I local log-likelihood fitting
I example yj = rj/mj , rj ∼ Binom{m,π(xj)}

I π(x) = exp[θ(x)/{1 + exp{θ(x)}]
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Example 10.32

θ(x)
.

= β0 + β1(x − x0) + · · ·+ βk (x − x0)k/k !

θ̂(x0) = β̂0
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... Ex 10.32
> library(mgcv)
> library(SMPracticals)
> data(toxo)
> ?gam
> toxo.gam <- gam(cbind(r,m-r) ˜ s(rain), family = binomial, data = toxo)
> summary(toxo.gam)

Family: binomial
Link function: logit

Formula:
cbind(r, m - r) ˜ s(rain)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.09015 0.08573 -1.052 0.293

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(rain) 6.515 7.57 23.05 0.00259 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.221 Deviance explained = 36.7%
UBRE score = 0.82365 Scale est. = 1 n = 34
> par(mfrow=c(2,2))
> toxo.gam$sp

s(rain)
0.008141828
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=toxo.gam$sp, family = binomial, data = toxo), residuals=TRUE, pch="*")
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=0.05, family = binomial, data = toxo), residuals=TRUE, pch="*")
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=0.5, family = binomial, data = toxo), residuals=TRUE, pch="*")
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=1, family = binomial, data = toxo), residuals=TRUE, pch="*")STA 2201: Applied Statistics II February 28, 2014 35/37
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