This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

## data is in honey.txt (short version), .xls file from reporter, and there are two data frames in honey.Rdata; one from 2000 on
load("honey.Rdata")
head(honey)
##   year colonies pounds average fiveyear  runmean
## 1 1970   123160   7636      62       NA       NA
## 2 1971   115000   7245      63       NA       NA
## 3 1972   103200   6708      65       NA 67.60175
## 4 1973    97900   9203      94       NA 71.80162
## 5 1974    99900   5395      54       68 72.80162
## 6 1975   104000   8632      83       72 74.80162
library(ggplot2)

## fiveyear is the mean of the preceding 5 years, to correspond to reporter's calculatuions
## runmean is a central five year mean, e.g. in 1972 the average of 1970,1,2,3,4

## various plots show smooths of average honey over time, all seem to indicate a drop after about 2002

honeyplot <- ggplot(data=honey,aes(year,average))   # nothing will be plotted yet

honeyplot+geom_point(aes(honey$year,honey$average))+scale_x_continuous(breaks = 1970:2014) +theme(axis.text.x = element_text(angle=45)) 

## this makes the x axis look like the excel plot that was sent
honeyplot + geom_line(aes(honey$year,honey$runmean),col = "green",size=1.5) + geom_point(aes(honey$year,honey$average))+scale_x_continuous(breaks=1970:2014)  + theme(axis.text.x = element_text(angle=45))+geom_smooth(method="loess", span = .5) + geom_smooth(method="loess",span=.75,se=F) + scale_y_continuous(breaks=seq(0,140,by=10))
## Warning: Removed 4 rows containing missing values (geom_path).

# this puts two loess smooths, as well as the running mean 

honey.lo <- loess(average ~ year, span = 0.5, data = honey)  # loess smoother, span can be changed
                                                              ## qqnorm of residuals looks okay

honey.lo2 <- loess(average ~ year, span = 0.5, 
                   family = "symmetric", data = honey) # robust version; looks same

honey.ss <- smooth.spline(honey$year,honey$average) # again may smoothing parameters tried (spar = .5:.75 by .05)

library(sm)
## Package 'sm', version 2.2-5.4: type help(sm) for summary information
hcv(honey$year, honey$average, display = "lines", ngrid=32) #cross-validation in library sm

## [1] 4.665511
honey.sm <- sm.regression(honey$year, honey$average, h = 4.6655, se = T) # using 'best' h in sm

plot(honey$year, honey$average) #old-fashioned R plots
lines(honey.ss)
lines(honey.lo$x, honey.lo$fitted, col="red")
lines(honey.sm$eval.points,honey.sm$estimate,col="blue")
lines(honey$year,honey$runmean,col="green")
lines(smooth.spline(honey$year,honey$average,spar = 0.5)) # and so on (see plot manysmooth)
legend(1974,130, legend = c("RunningAverage", "loess", "splines"), col = c("green", "red", "black"), lty = c(2,1,1), merge=T)