STA 3000F (Fall, 2013)

Notes on Homework 3

1. Profile log-likelihood. Suppose Y = (Yi,...,Y,) is a vector of in-
dependent, identically distributed random variables from the density
fly;4, N), where ¢ € R is the parameter of interest and A € R is
a nuisance parameter. The profile log-likelihood is defined as ¢,(¢)) =

(1), Ay), where \,, is assumed to satisfy the score equation d¢(), X)/ON =
0.

(a) Show that the estimator of ¢ that satisfies the profile score equa-
tion 00,(¢)/0y = 0 is the same as the maximum likelihood esti-
mator of 1.

(b) Show that the profile information function j, (1)) = =9, () /OpIPT
satisfies

Up(@)} 1 =3 (¢, Ay),

where j¥%(0) is the (¥,4) block of j71(6), the inverse of the ob-
served Fisher information from the log-likelihood function £(1), ).

(c¢) Use Taylor series expansion to show that
Ao = A= =G5 (@ N, M) (@ = ) + Op(n 7).

(d) Expand ¢,(¢) about ¢ and use the results of (b) and (c) to show
that

wy (1) = 2{€p(772) — L)} = (¥ — 1&)2‘71)(1;) + 0p(1),

and hence that the limiting distribution of w, (1) is x3, under the
model.

[ don’t think any Taylor series are needed for (a) or (b), just the score
equations. In (d) the expansion is about 1), not ¢ as stated in an earlier
version.



2. BNC, Ezxercise 3.6. Based on observations yq, . .., independently nor-
mally distributed with unknown mean and variance, obtain the profile
log-likelihood for Pr(Y > a), where a is an arbitrary constant, and com-
pare inference based on this with the exact answer from the non-central
t-distribution.

The “compare inference ... distribution” is rather cryptic. The follow-
ing will hopefully get you started.

First, if Z; ~ N(6,1), and independently Z ~ x7, then Z1/+/(Z2/f)
follows a non-central ¢-distribution, with non-centrality parameter o
and degrees of freedom n — 1. This density is available in R, using the
ncp argument to pt, dt, qt, rt.

Let 1) = ®((§ — a)/s) be the maximum likelihood estimate of the
parameter of interest v = ®((u — a)/o), where §j = Jy;/n,s* =
Y(y; —4)?/(n — 1).! Consider finding a value 15, € R, say, for which

Pr(y) > ¢p) =1 —

then ¢y, is a lower confidence bound for ¢. If we used the Wald statistic

to compute this, then the solution is simply ¢, = ¢ — 2,j,(1)*/2. For
the solution based on the non-central ¢, we write

Pr(y > 4p) = Pr{®((5—a)/s) > v}
= Pr{(y—a)/s > 27" (Y1)} = Pr{(§ — a)/s > Z;},

say, and this last equation has an expression in terms of the non-central
t distribution, with non-centrality parameter (I think) \/n®~*(¢).

3. Adapted from BNC, Ex. 2.24.

(a) Suppose Yy, ..., Y, areindependent, identically distributed as Pois-

son with mean #. Show that the conditional distribution of Y7, ... Y],
given S = XY}, is Multinomial(S, ) where 7 = (1/n,...,1/n).
This distribution can in principle be used to assess goodness of fit
of the Poisson model, but if n is much bigger than 2 or 3 it will
be difficult to determine which directions in the sample space to
examine.

1Strictly speaking, this is not the m.lLe., because the m.l.e. of o2 has divisor n — 1.
Let’s ignore that complication for now.



(b) A summary statistic that could be used to see whether data are
consistent with the moment properties of the Poisson is T =
Y(Y; —Y)?/{(n —1)Y}. Show that

B(T|S=s) =1, var(:r\szs):%,

and thus that, conditionally on S = s, (n — 1)sT/(s — 1) has the
same first two moments as a X?nq)s/(sq)-

The question came up on Friday about a faster way to compute
the variance than grinding it through the multinomial. I haven’t
tried this, but it might be a little simpler to use the result that
the marginal distribution of any component of a multinomial is a
binomial, and the joint distribution of any pair of multinomials is

a trinomial.

(c) Explore the extension of this to assessing goodness of fit for a
Poisson regression, where y; ~ Po(6;), and log§; = o + Sx;.

4. SM, Problem 4.9.1. The logistic density is a location-scale family with
density function

f(y;M70)= eXp{(y—u)/a} —00 <Y < 00,—00 < i < 00,0 > 0.

o[l +exp{(y — p)/a}]’

(a) When o = 1, show that the expected Fisher information about p
inyis 1/3.

(b) If instead of observing y, we observe z = 1 if y > 0, otherwise
z = 0. When o0 = 1 show that the maximum expected Fisher
information about p in z is 1/4, achieved at p = 0, so that the
maximum relative efficiency is 3/4.

Corrected from earlier statement.

5. Saddlepoint approximation. Suppose Xi,..., X, are independent and
identically distributed on R, with density function f(x) and moment
generating function Mx(t) = E{exp(tX)} assumed to exist for ¢ in
an open interval about 0, and cumulant generating function Kx(t) =
log Mx(t). The saddlepoint approzimation to the density of X =
n~1YX; is given by

1/2
F) = L n exp{nK (o) — nozx
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where ¢ = ¢(z) satisfies the equation K (¢) = Z.

(a) Show thatif Y;,...,Y, are independent and identically distributed
from a scalar parameter exponential family

fy;0) = exp{0y — c(0) — d(y)}

that the saddlepoint approximation to the density of 0 is given by
fo(0:0) = —=j""*(6) exp{€(0) — £(0)}.

(b) If y1,...,yn are independent and identically distributed from a
scalar parameter location family

f(y;0) = foly — 0),

then we showed in class that the exact density of the maximum
likelihood estimator 0 given a, where a; = y; — 0 1=1,...,n,is

exp{((0;y)
[ exp{l(6;y)}db’

f@|A(9 | a;0) =

where in the right hand side we recall that y; = 0+ a. By ex-
panding ¢(6) in the denominator in a Taylor series about 6, show
that the exact conditional density can be approximated by

forall | a:60) = —=j"/2(0) exp{9) = ).

Both these approximations have similar versions for p-dimensional para-
metric models, with slight changes in notation. Both approximations
have relative error O(n™!), and when re-normalized to integrate to 1
have relative error O(n=3/2).

You are not required to show these last two statements, but bonus
marks if you do.



