
STA 3000F (Fall, 2013)

Notes on Homework 3

1. Profile log-likelihood. Suppose Y = (Y1, . . . , Yn) is a vector of in-
dependent, identically distributed random variables from the density
f(y;ψ, λ), where ψ ∈ R is the parameter of interest and λ ∈ R is
a nuisance parameter. The profile log-likelihood is defined as `p(ψ) =

`(ψ, λ̂ψ), where λ̂ψ is assumed to satisfy the score equation ∂`(ψ, λ)/∂λ =
0.

(a) Show that the estimator of ψ that satisfies the profile score equa-
tion ∂`p(ψ)/∂ψ = 0 is the same as the maximum likelihood esti-
mator of ψ.

(b) Show that the profile information function jp(ψ) = −∂`p(ψ)/∂ψ∂ψT

satisfies
{jp(ψ)}−1 = jψψ(ψ, λ̂ψ),

where jψψ(θ) is the (ψ, ψ) block of j−1(θ), the inverse of the ob-
served Fisher information from the log-likelihood function `(ψ, λ).

(c) Use Taylor series expansion to show that

λ̂ψ − λ̂ = −j−1
λλ (ψ̂, λ̂)jλψ(ψ̂, λ̂)(ψ − ψ̂) +Op(n

−1).

(d) Expand `p(ψ) about ψ̂ and use the results of (b) and (c) to show
that

wp(ψ) = 2{`p(ψ̂)− `p(ψ)} = (ψ − ψ̂)2jp(ψ̂) + op(1),

and hence that the limiting distribution of wp(ψ) is χ2
1, under the

model.

I don’t think any Taylor series are needed for (a) or (b), just the score
equations. In (d) the expansion is about ψ̂, not ψ as stated in an earlier
version.
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2. BNC, Exercise 3.6. Based on observations y1, . . . yn independently nor-
mally distributed with unknown mean and variance, obtain the profile
log-likelihood for Pr(Y > a), where a is an arbitrary constant, and com-
pare inference based on this with the exact answer from the non-central
t-distribution.

The “compare inference ... distribution” is rather cryptic. The follow-
ing will hopefully get you started.

First, if Z1 ∼ N(δ, 1), and independently Z2 ∼ χ2
f , then Z1/

√
(Z2/f)

follows a non-central t-distribution, with non-centrality parameter δ
and degrees of freedom n− 1. This density is available in R, using the
ncp argument to pt, dt, qt, rt.

Let ψ̂ = Φ((ȳ − a)/s) be the maximum likelihood estimate of the
parameter of interest ψ = Φ((µ − a)/σ), where ȳ = Σyi/n, s

2 =
Σ(yi − ȳ)2/(n− 1).1 Consider finding a value ψL ∈ R, say, for which

Pr(ψ̂ > ψL) = 1− α;

then ψL is a lower confidence bound for ψ. If we used the Wald statistic
to compute this, then the solution is simply ψL = ψ̂ − zαjp(ψ̂)1/2. For
the solution based on the non-central t, we write

Pr(ψ̂ > ψL) = Pr{Φ((ȳ − a)/s) > ψL}
= Pr{(ȳ − a)/s > Φ−1(ψL)} = Pr{(ȳ − a)/s > ZL},

say, and this last equation has an expression in terms of the non-central
t distribution, with non-centrality parameter (I think)

√
nΦ−1(ψ).

3. Adapted from BNC, Ex. 2.24.

(a) Suppose Y1, . . . , Yn are independent, identically distributed as Pois-
son with mean θ. Show that the conditional distribution of Y1, . . . , Yn,
given S = ΣYi, is Multinomial(S, π) where π = (1/n, . . . , 1/n).

This distribution can in principle be used to assess goodness of fit
of the Poisson model, but if n is much bigger than 2 or 3 it will
be difficult to determine which directions in the sample space to
examine.

1Strictly speaking, this is not the m.l.e., because the m.l.e. of σ2 has divisor n − 1.
Let’s ignore that complication for now.
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(b) A summary statistic that could be used to see whether data are
consistent with the moment properties of the Poisson is T =
Σ(Yi − Ȳ )2/{(n− 1)Ȳ }. Show that

E(T | S = s) = 1, var(T | S = s) =
2(1− 1/s)

n− 1
,

and thus that, conditionally on S = s, (n− 1)sT/(s− 1) has the
same first two moments as a χ2

(n−1)s/(s−1).

The question came up on Friday about a faster way to compute
the variance than grinding it through the multinomial. I haven’t
tried this, but it might be a little simpler to use the result that
the marginal distribution of any component of a multinomial is a
binomial, and the joint distribution of any pair of multinomials is
a trinomial.

(c) Explore the extension of this to assessing goodness of fit for a
Poisson regression, where yi ∼ Po(θi), and log θi = α + βxi.

4. SM, Problem 4.9.1. The logistic density is a location-scale family with
density function

f(y;µ, σ) =
exp{(y − µ)/σ}

σ[1 + exp{(y − µ)/σ}]
, −∞ < y <∞,−∞ < µ <∞, σ > 0.

(a) When σ = 1, show that the expected Fisher information about µ
in y is 1/3.

(b) If instead of observing y, we observe z = 1 if y > 0, otherwise
z = 0. When σ = 1 show that the maximum expected Fisher
information about µ in z is 1/4, achieved at µ = 0, so that the
maximum relative efficiency is 3/4.

Corrected from earlier statement.

5. Saddlepoint approximation. Suppose X1, . . . , Xn are independent and
identically distributed on R, with density function f(x) and moment
generating function MX(t) = E{exp(tX)} assumed to exist for t in
an open interval about 0, and cumulant generating function KX(t) =
logMX(t). The saddlepoint approximation to the density of X̄ =
n−1ΣXi is given by

fX̄(x̄)
.
=

1√
2π

{
n

K ′′X(φ̂)

}1/2

exp{nKX(φ̂)− nφ̂x̄},
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where φ̂ = φ̂(x̄) satisfies the equation K ′X(φ̂) = x̄.

(a) Show that if Y1, . . . , Yn are independent and identically distributed
from a scalar parameter exponential family

f(y; θ) = exp{θy − c(θ)− d(y)}

that the saddlepoint approximation to the density of θ̂ is given by

fΘ̂(θ̂; θ)
.
=

1√
2π
j1/2(θ̂) exp{`(θ)− `(θ̂)}.

(b) If y1, . . . , yn are independent and identically distributed from a
scalar parameter location family

f(y; θ) = f0(y − θ),

then we showed in class that the exact density of the maximum
likelihood estimator θ̂, given a, where ai = yi − θ̂, i = 1, . . . , n, is

fΘ̂|A(θ̂ | a; θ) =
exp{`(θ; y)∫

exp{`(θ; y)}dθ
,

where in the right hand side we recall that yi = θ̂ + ai. By ex-
panding `(θ) in the denominator in a Taylor series about θ̂, show
that the exact conditional density can be approximated by

fΘ̂|A(θ̂ | a; θ)
.
=

1√
2π
j1/2(θ̂) exp{`(θ)− `(θ̂)}.

Both these approximations have similar versions for p-dimensional para-
metric models, with slight changes in notation. Both approximations
have relative error O(n−1), and when re-normalized to integrate to 1
have relative error O(n−3/2).

You are not required to show these last two statements, but bonus
marks if you do.
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