
Example Q           Strength of cotton yarn 
 
Description of data 
 
An experiment was done with the objects of estimating: 
 

(i) The difference in mean strength of two worsted yarns produced by slightly different 
processes, and 

(ii) The variation of strength between and within bobbins for yarns of this type. 
 
For each yarn a considerable number of bobbins were produced and 6 bobbins selected at random. From 
each of these, 4 short lengths were chosen at random for strength testing. The breaking loads are given in 
table Q.1. 

       Table Q.1     Breaking loads (oz) 
================================================
Bobbin      1      2      3      4      5      6
------------------------------------------------
Yarn A   15.0   15.7   14.8   14.9   13.0   15.9 
         17.0   15.6   15.8   14.2   16.2   15.6 
         13.8   17.6   18.2   15.0   16.4   15.0 
         15.5   17.1   16.0   12.8   14.8   15.5 

Yarn B   18.2   17.2   15.2   15.6   19.2   16.2 
         16.8   18.5   15.9   16.0   18.0   15.9 
         18.1   15.0   14.5   15.2   17.0   14.9 
         17.0   16.2   14.2   14.9   16.9   15.5 
================================================

 
General considerations 
 
This problem illustrates in fairly simple form the analysis of data in which the pattern of random variation 
has some nontrivial structure. Because of the nature of the response variable, it is reasonable to 
concentrate on means and variances, this being totally appropriate if the variation is normal. It would be 
possible to use broadly similar, although more complicated, techniques based on detailed models 
involving particular non-normal distributions, Poisson, binomial, exponential, etc., were that appropriate. 
 
The numbering of bobbins within each yarn is random, as too is the numbering of test lengths within 
bobbins. Thus the analysis-of-variance table has the doubly nested form shown in Table Q.4. Note that 
the form of the table is settled by the way the data were obtained. It would be possible to examine 
differences between individual bobbins, although this would normally be fruitful only if more information 
were available to characterize the bobbins as individuals. Because the bobbins are chosen from a large 
population, it is helpful to regard between-bobbin variation as a form of random variation, described by a 
component of variance between bobbins, i.e. the variance over the population of the ‘true’ bobbin means. 
 
That is, we characterize the random variation for each yarn by two components of variance, one between 
lengths within bobbins and the other between bobbins. These are estimated from the analysis-of-variance 
table, either separately for each yarn or pooled over yarns. 
 
More broadly, there are four possibilities that could have arisen: 
 

(i) The bobbins are identifiable individuals; 
(ii) Only the variance of the ‘true’ means, calculated over the bobbins individually observed, is of 

interest; 



(iii) The bobbins are a sample from a finite population of known size and only the variance of the 
‘true’ means, calculated over the finite population, is of interest; 

(iv) The population of bobbins is effectively infinite and again the variance of the ‘true’ means is 
required. 

 
The analysis-of-variance table is the same in all cases; it is the interpretation of the bobbin means that is 
different. More than one of (i)-(iv) might be relevant for different purposes, although in fact (iv) is 
the most useful here. 
 
The components of variance have at least three uses. Firstly, they provide summary descriptions of 
important aspects of the problem under study and so may be regarded as primary parameters. Next, they 
clarify the fact that to compare the means of the two yarns, the mean square between bobbins within yarns 
provides an appropriate estimate of error. Finally, via a process of synthesis of variance, it is possible to 
estimate the consequences of some different scheme of sampling in which the number of repeat 
observations per bobbin is changed. 
 
To see that the analysis of variance does not overlook some major aspect of importance, it is desirable to 
check that: 
 

(a) No single observation or small number of ‘wild’ observations has inflated the mean square within 
bobbins; 

(b) No single bobbin has inflated the mean square between bobbins; 
(c) There is no relation between the bobbin means and standard deviations that might suggest a 

transformation; 
(d) The between-bobbin variation is approximately normal. 
 

It is possible also to examine for each yarn the variation from bobbin to bobbin in the mean square within 
bobbins. Because bobbins are randomly numbered, excessive variation in these mean squares would 
imply either some non-independence in sampling or a long-tailed distribution within bobbins. 
 
In principle it would be possible to make similar analyses of higher cumulants. 
 
The analysis 
 
Mean breaking loads for each bobbin and yarn are summarized in Table Q.2. The overall mean for yarn B 
is 0.86 oz higher than for yarn A. �

       Table Q.2   Mean breaking loads (oz) 
----------------------------------------------------------
Bobbin          1      2     3      4      5      6   mean
----------------------------------------------------------
Yarn     A 15.325 16.500 16.20 14.225 15.100 15.500 15.475 
         B 17.525 16.725 14.95 15.425 17.775 15.625 16.338
---------------------------------------------------------- �

Table Q.3 gives the mean squares within bobbins. �
Table Q.3   Mean squares within bobbins (3 df) 
-----------------------------------------------
Bobbin           1    2     3     4     5     6 
Yarn     A   1.756 1.01 2.053 1.029 2.467 0.140 
         B   0.529 2.21 0.577 0.229 1.149 0.316 
----------------------------------------------- �



There is no evidence of any systematic relationship between these and the bobbin means (see figure 
below), nor is there evidence of heterogeneity between the mean squares within either yarn (see the 
solution to Exercise (i)b). Approximate normality of the variation between bobbins is confirmed by 
plotting bobbin means against expected normal order statistics (Pearson and Hartly, 1966, Table 28) (see 
figure below). 

��
The analysis of variance is given in Table Q.4 (slightly rearranged). �

        Table Q.4 Analysis of Variance Table 
======================================================
                       Df   Sum Sq   Mean Sq   E[m.s.] 
------------------------------------------------------
Between yarns           1    8.927     8.927
Between bobbins        10   40.779     4.078 ��� � ����
       Within yarn A    5   13.210     2.642
       Within yarn B    5   27.569     5.514 
Within bobbins         36   40.382     1.122
       Within yarn A   18   25.355     1.409 
       Within yarn B   18   15.028     0.835 
------------------------------------------------------
Total                  47   90.088 
======================================================

 
There is no significant difference in variation according to yarn, either within bobbins 
(F=1.409/0.835=1.69 with (18,18) df ) or between bobbins (F=5.514/2.642 = 2.09 with 
(5,5) df ). It is convenient to pool mean squares within yarns. 
 
Now the standard error of the observed difference of 0.86 oz between yarns is equal to    
	
��� � ����� �
�   (see Exercise (iii) for derivation details), and can be estimated directly from the mean 
square between bobbin as 	����� �
� � ���� oz with 10 degrees of freedom. Thus no evidence of any 
systematic difference in strength between yarns A and B can be established. Confidence limits at any 
desired level are readily found. 
 
Estimates of the components of variation   ��� , within bobbins, and  ���, between bobbins, are required if, 
for example, recommendations are to be made for further experimentation. Suppose m bobbins are 
selected for each yarn, and  l  lengths per bobbin tested and that it takes k, a known value, times as long to 
sample a bobbin as it does to perform a single test. The total time taken is proportional to  
 � � �
� � �� 

14.5 15.5 16.5 17.5

0.
5

1.
0

1.
5

2.
0

2.
5

tapply(load, yarn:bobbin, mean)

ta
pp
ly
(lo
ad
, y
ar
n:
bo
bb
in
, v
ar
)

-1.5 -0.5 0.5 1.5

14
.5

15
.0

15
.5

16
.0

16
.5

17
.0

17
.5

Normal Q-Q Plot

Theoretical Quantiles

S
am
pl
e 
Q
ua
nt
ile
s



And the variance of the observed difference in mean strength will be proportional to(see Exercise (iv) for 
derivation details) 

� � � ����� �
���� � 

 
The recommended optimum choice of l  is obtained by minimizing V subject to given T ( or minimizing 
T subject to given V), i.e. (see Exercise (iv) for derivation details) 

���� � ������� 

Equating observed mean squares in Table Q.4 to their expected values gives estimates for the components 
of variance, ���� � ���

���� !������� � 
����� " ���

� �� � ���#$ 
 
Thus if, say, k=4 the estimated value of ���� is 	�
���

 ���#$�� � 
��%#; we would take � � #. 

Further points and exercises 
 
(i)   (a)   Show that for the normal-theory estimates of variance, s2 say, based on n observations,  
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Solution: 
 
Assume that X1, … , Xn are independent, identically distributed random variables from a N(�;�2) 
distribution. Let ,� � �
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(b) Use the result from (a) to check the homogeneity within yarns of the mean squares given in Table Q.3 
 
Solution: 
 
Homogeneity of (group) variance (also called homoscedasticty) is an assumption of ANOVA that refers 
to the situation that variances of the observations in individual groups are equal. Tests of homogeneity of 
variances concern the question of whether several populations have the same variance. 
 
The following are two methods that can be employed to check the homogeneity within yarns of the 
mean squares. 



 
� Confidence Interval Method 

 
Check if observed log(s2)’s  fall in the 95% confidence interval.. 
 

-------------------------------------------------------------
Yarn A       s2      1.756  1.007  2.053  1.029  2.467  0.140 
        log(s2)      0.565  0.010  0.719  0.030  0.904 -1.966 
------------------------------------------------------------- 

                      
The 95% confidence intervals for the mean squares yarn A is 
 

)*+
,
�CCCCCCCCCC �D ��$%�E�&'()*+�
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� " ��� � 
"���%�A ��%���� 
All the observed values of log(s2) except the last one fall in the 95% CI, indicating the homogeneity of 
variance within Yarn A.  
 

-----------------------------------------------------------
Yarn B        s2  0.529  2.209  0.577  0.229  1.149  0.316 
          log(s2 ) -0.635  0.793 -0.545 -1.470  0.140 -1.139 
----------------------------------------------------------- 

 
The 95% confidence intervals for the mean squares yarn B is 
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 All the values of log(s2) falls in the 95% CI, indicating the homogeneity of variance within Yarn B.  
 
 

� Bartlett’s M-test  Method  
 
When comparing the variances of two random samples from a normal distribution we use the F test but 
keep in mind that the F test is quite sensitive to departures from normality. 
 
Bartlett’s M-test  or the Neyman–Pearson–Bartlett test of homogeneity of variances is the standard 
procedure when we have k >2 populations and if the populations are approximately normally 
distributed(Armitage and Berry, 1994).  Applications arise in the analysis-of variance context, principally 
in testing the equal ‘‘within-group’’ variances assumption.  
 
The test of the null hypothesis of equality of group variances is based on comparing (the 
logarithm) of a pooled estimate of variance (across all of the groups) with the sum of the 
logarithms of the variances of individual groups.  
 F�G������� � ��� � H � �I�� FJG������� K �L� 
 
To test null hypothesis H0, Bartlett introduces the statistic M: 
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Under H0, as each 
 Q �" ���  gets arbitrarily large, M has a limiting �2(k�1) distribution, i.e. 
 

M  
\]���2(k�1)    as �
 Q �" ��� ] �,  j = 1, … , k 

 
To achieve closeness to �2 for finite�
 Q �" ���  , Bartlett suggests a modified statistic T: 
 

� � �M^  
where 
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IQS� a  
 
A test with approximate size � is based on referring T to a �2(k�1) distribution. So we have the decision 
rule: 
 

Reject   H0   if  T  >  �2(�,k�1)   
Accept   Ha  if T  �   �2(�,k�1)   

 
Substituting the numbers in Table Q.3 into the formulas, we calculate and get T = 4.783 for yarn A, and T 
= 4.775 for yarn B. They both are less than the tabulated value of �2(5) at significant level, say � = 10%, 
which is 9.24. So the data is consistent with the assumption of homoscedasticity.   
 
But Bartlett's test is not reliable with moderate departures from normality and Levene's test is routinely 
used as an alternative.  

(ii)       Show that the expected value of the mean square between bobbins is ��� � ���� 
 
Solution: 
 
Example Q regards the two-stage nested design that involves two factors A and B having a and b levels, 
respectively, with b levels of factor B being nested under each level of factor A. The linear model for the 
design is  b3Qc � �d � e3 � fQ
3� � gc
3Q� h � �Ai A �j �k � �Ai A lj m � �Ai A   
where   
                b3Qc: the response variable corresponding to ith level of factor A, jth level of factor B nested  
                          within the ith level of factor A and the rth replicate within the jth level of B 
                 d: the overall mean 
                 e3: the effect due to the ith level of factor A 
                 fQ
3�: the effect due to the jth level of factor B nested within the ith level of factor A 
                gc
3Q�: the error term  that takes into account the random variation within a particular cell 



                 �: the number of levels of factor A 
                 l: the number of levels of factor B nested within the ith level of factor A 
                 n: the number of replicates in each level of B 
 
For the error term   gc
3Q�  we assume that   gc
3Q���5��nop
�A������ 
 
The assumptions concerning   e3A fQ
3�� depend on whether the levels of A and B are fixed or random. 
Here we consider only the mixed model with A fixed and B random, we may assume 
                                                          1 e3J3S� � �      and       fQ
3��5�nop
�A ���q�� 
 
The total corrected sum of squres is 
 1 1 1 
b3Qc " bCi��/cS�rQS�J3S� � �1 1 1 
bC3�� " bCi � bC3Q� " bC3�� � b3Qc " bC3Q���/cS�rQS�J3S�   

 
                        � l 1 
bC3�� " bCi��J3S� � � 1 1 
bC3Q� " bC3����rQS�J3S� � 1 1 1 
b3Qc " bC3Q���/cS�rQS�J3S�   
 
since the three cross-product terms is zero. Symbolically, the equation can be written as 
 sst � �ssu � ssq
u� � ssv 
where     
                       sst: total sum of squares with !wt � �l " � 
                       ssu: sum of squares due to factor A with  !wu � � " � 
                       ssq
u�: sum of squares due to factor B with  !wq
u� � �
l " �� 
                        ssv: sum of squares due to error with  !wv � �l
 " �� 
    
The expected value of Msq
u� is 
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In the same way we can get 
                                                              BxMsq
u�y � �� �  �q� � r/

J0�1 e3�J3S�   
 
In Example Q, factor A is ‘yarn’, which is fixed, and factor B is ‘bobbin’, which is random. The number 
of levels of A is a = 2; the number of levels of factor B is b = 6; the number of replicates within each level 
of B is n = 4. The mean square between bobbins is Msq
u�; the variation within bobbins is denoted as ���; 
the variation between bobbins is denoted as ���. So we have 
 



BxMsq
u�y � ��� � ���� 
                        
(iii)     Find the variance of  bC��� " bC��� 
 
Solution: 
 
The difference between the observed means of yarn A and yarn B, i.e.�bC��� " bC��� estimates the difference 
between the effects due to the two level of factor A, i.e.  e� " e�. The variance of this estimator is �&'(bC��� " bC���- � �&'xPd � e� � f4�
�� � g4�
���R " Pd � e� � f4�
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Or in the other notation, 

�&'(bC��� " bC���- � �
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(iv)       Show that  ���� � ������[ 
 
Solution: 
 
Let m be the number of bobbins to be selected for each yarn, l  the number of samples per bobbin. And 
suppose it takes k (known) times as long to sample a bobbin as it does to perform a single test. The total 
time taken is proportional to T = m (k + l). Rearranging it yields 
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The optimum choice of l is to minimizing 
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Appendix: R Code 

#######################
# R code for Example Q 
#######################

#----------------------------------------
# input Table Q.1 and create data frame 
#----------------------------------------

load = c( 150,157,148,149,130,159, 170,156,158,142,162,156, 
          138,176,182,150,164,150, 155,171,160,128,148,155, 
          182,172,152,156,192,162, 168,185,159,160,180,159, 
          181,150,145,152,170,149, 170,162,142,149,169,155) / 10 
yarn = factor(rep(c(‘A’, ‘B’), each=24)) 
bobbin = factor(rep(1:6,times=8)) 
table = data.frame(yarn, bobbin, load) 

> table 
   yarn bobbin load 
1     A      1 15.0 
2     A      2 15.7 
3     A      3 14.8 
4     A      4 14.9 
5     A      5 13.0 
6     A      6 15.9 
7     A      1 17.0 
8     A      2 15.6 
9     A      3 15.8 
10    A      4 14.2 
11    A      5 16.2 
12    A      6 15.6 
13    A      1 13.8 
14    A      2 17.6 
15    A      3 18.2 
16    A      4 15.0 
17    A      5 16.4 
18    A      6 15.0 
19    A      1 15.5 
20    A      2 17.1 
21    A      3 16.0 
22    A      4 12.8 
23    A      5 14.8 
24    A      6 15.5 
25    B      1 18.2 
26    B      2 17.2 
27    B      3 15.2 
28    B      4 15.6 
29    B      5 19.2 
30    B      6 16.2 
31    B      1 16.8 
32    B      2 18.5 
33    B      3 15.9 
34    B      4 16.0 
35    B      5 18.0 
36    B      6 15.9 
37    B      1 18.1 
38    B      2 15.0 
39    B      3 14.5 
40    B      4 15.2 
41    B      5 17.0 
42    B      6 14.9 
43    B      1 17.0 
44    B      2 16.2 
45    B      3 14.2 
46    B      4 14.9 
47    B      5 16.9 
48    B      6 15.5 

#----------------------
# reproduce Table Q.2 
#----------------------

tapply(load, list(yarn,bobbin), mean) 
meanA = mean(load[yarn==‘A’]) 



meanB = mean(load[yarn==‘B’]) 
meanA; meanB; meanA-meanB

> tapply(load, list(yarn,bobbin), mean) 
       1      2     3      4      5      6 
A 15.325 16.500 16.20 14.225 15.100 15.500 
B 17.525 16.725 14.95 15.425 17.775 15.625 

> meanA; meanB; meanA-meanB 
[1] 15.475 
[1] 16.3375 
[1] -0.8625

#----------------------
# reproduce Table Q.3 
#----------------------

tapply(load, list(yarn,bobbin), var) 

> options(digits=4) 
> tapply(load, list(yarn,bobbin), var) 
       1     2      3      4     5      6 
A 1.7558 1.007 2.0533 1.0292 2.467 0.1400 
B 0.5292 2.209 0.5767 0.2292 1.149 0.3158 

#----------------------------------------------------
# visualize the points concerning Table Q.2 and Q.3 
#----------------------------------------------------

# It is claimed that there is no evidence of any systematic 
# relationship between mean squares  and the bobbin means, and 
# approximate normality of the variation between bobbins is confirmed 
# by plotting bobbin means against expected normal order statistics 

op = par(mfrow=c(1,2)) 
plot(tapply(load,yarn:bobbin,mean), tapply(load,yarn:bobbin,var)) 
qqnorm(tapply(load,yarn:bobbin,mean))
par(op)
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#----------------------
# reproduce Table Q.4 
#----------------------

# factor ‘bobbin’ is nested in factor ‘yarn’ 
Q = aov(load ~ yarn + bobbin %in% yarn) 
anova(Q)
SST = sum(anova(Q)[2]) 

> anova(Q) 
Analysis of Variance Table 

Response: load 
            Df Sum Sq Mean Sq F value   Pr(>F)
yarn         1  8.927   8.927  7.9581 0.007741 ** 
yarn:bobbin 10 40.779   4.078  3.6353 0.002023 ** 
Residuals   36 40.382   1.122
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

> SST 
[1] 90.08812 

## in the output listed above, 
## ‘yarn’ corresponds to ‘between yarns’ in Table Q.4 
## ‘yarn:bobbin’ corresponds to ‘between bobbins within yarns’ in Table Q.4 
## ‘Residuals’ corresponds to ‘within bobbins’ in Table Q.4 

## Now partition ’between bobbins within yarns’ into two components: 
## ‘between bobbins:within yarn A’ and ‘between bobbins:within yarn B’
## And partition ’within bobbins’ into two components: 
## ‘within bobbins: within yarn A’ and ‘within bobbins: within yarn B’

H1 = aov(load ~ bobbin, subset = yarn == ’A’ ) 
H2 = aov(load ~ bobbin, subset = yarn == ’B’ ) 
summary(H1)
summary(H2)

> summary(H1) 
            Df  Sum Sq Mean Sq F value Pr(>F) 
bobbin       5 13.2100  2.6420  1.8756 0.1488 
Residuals   18 25.3550  1.4086

## in the output listed above,
## ‘bobbin’ corresponds to ‘between bobbins: within yarn A’ 
## ‘residual’ corresponds to ‘within bobbins: within yarn A’ 

> summary(H2) 
            Df  Sum Sq Mean Sq F value   Pr(>F)
bobbin       5 27.5688  5.5138  6.6044 0.001178 ** 
Residuals   18 15.0275  0.8349
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## in the output listed above,
## ‘bobbin’ corresponds to ‘between bobbins: within yarn B’ 
## ‘residual’ corresponds to ‘within bobbins: within yarn B’ 



#--------------------------------
# exercise (i)(b): Barlet’s test 
#--------------------------------

## Barlett statistic T (yarn A) 
k = 6 
ssja = c(1.756,1.007,2.053,1.029,2.467,0.140)   # mean square for yarn A 
logssja = log(ssja) 
nj = c(4, 4, 4, 4, 4, 4) 
njr = 1/(nj - 1) 
nn = sum(nj - 1) 
ssa =  sum((nj - 1)*ssja) / nn 
MA = nn * log(ssa) - sum((nj-1)*logssja) 
CA =  1 +  (1/3/(k-1)) * ( sum(njr) – 1/nn) 
TA = MA/CA 
cat(‘Barlett test statistic T for yarn A is’, TA,’\n’) 

## Bartlett statistic T ( yarn B ) 
k = 6 
ssjb = c(0.529,2.209,0.577,0.229,1.149,0.316)   # mean square for yarn B 
logssjb = log(ssjb) 
nj = c(4, 4, 4, 4, 4, 4) 
nn = sum(nj - 1) 
njr = 1/(nj - 1) 
ssb =  sum((nj-1)*ssjb) / nn 

MB = nn * log(ssb) - sum((nj-1)*logssjb)
CB =  1 +  (1/3/(k-1)) * (sum(njr) – 1/nn) 
TB = MB/CB 
cat(‘Barlett test statistic T for yarn B is’, TB,’\n’) 

> cat('Barlett test statistic T for yarn A is', TA,'\n') 
Barlett test statistic T for yarn A is 4.783164
> cat('Barlett test statistic T for yarn B is', TB,'\n') 
Barlett test statistic T for yarn B is 4.775429

## Barlett’s test using R function bartlett.test,
## which we expect to be consistent with the above results

bartlett.test(load ~ bobbin, data=table, subset=yarn==’A’) 
bartlett.test(load ~ bobbin, data=table, subset=yarn==’B’) 

> bartlett.test(load ~ bobbin, data=table, subset=yarn=='A') 

        Bartlett test of homogeneity of variances 

data:  load by bobbin
Bartlett's K-squared = 4.7832, df = 5, p-value = 0.4429 

> bartlett.test(load ~ bobbin, data=table, subset=yarn=='B') 

        Bartlett test of homogeneity of variances 

data:  load by bobbin
Bartlett's K-squared = 4.7755, df = 5, p-value = 0.4439 


