Models assessment and selection (Ch. 7)

» to see how well any of these smoothing methods work,
need a notion of ‘long-run’ performance

» e.g. if we assume Y = f(X) + e and our method gives f(-)
based on £x1,y,,), ey (XS YN):
e Does f(xg) — f(x0), N — o0? all xp?

~

o Is \/n{f(xo) — f(xo0)} asymptotically normal? variance?
o Is Ef(xp) = f(xo) ? (unbiased?)
» assume we have a a loss function, i.e. a measure of
distance from Y to f(X)

LY, F(X)) = (Y = 7(X))?
» Test error, generalization error:
Err = E[L{Y,f(X)}]
over the distribution of Y, X, and 7.
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LModels assessment and selection (Ch. 7)

~

e Testerror: Err = EL{Y,f(X)}:
f(X) = (X X1, 01, ..., xn, yn) = £(X tn), say

distance from Y (0 )

needa

LY T0) = (Y = X))

» Test error, generalization eror:

B — EL(Y.T00)]

over the distibution of ¥, X, and .

o distribution of f(X) depends on distribution of X and ty

-~

e Err = EX,YJNL{Y; f(X)}




Models assessment and selection (Ch. 7)

» Training error: average loss in training sample
_ N =
err = 1N >zt L{yi, f(xi) }

~

As f(-) becomes more complex, training error will decrease

~

(eventually to 0) but test error will increase, because f(+)
fits observed data exactly
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Methods of estimating test error (§7.3)

» Test error at a fixed Xo: Err (Xo) = E[L{Y, f(X0)}]
» depends on distribution of Y and 7(xo) = f(xo; ty)

» under squared error loss
Err (Xo) = 0@ 4 Bias?f(xo) + var f(Xo)

> Example: k-nearest neighbour estimate

f(x0) = & Sy yit{xi € Ne(x0)}
> Ef(x0) = £ 2 Elyit{x € Nk(x0)}]
» assume x; are fixed

= % g Ei)1{x € Nk(x0)} = % S0y f(X(e))
> var ?(Xo) = o?/k

» see Eq. (7.9) ; note have assumed training x; are fixed
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Methods of estimating test error (§7.3)

>

>

>

Example: linear regression: 7(x0) = xOTB

var/f(xo) = Var(XOTﬁA) = varx] {(X"X)~'XTy} where X and
y refer to training data

= Var(aTy), say,

= o?a’a=0?||a|[? = o?||x(XTX) " X x0[|2 = 02| h(X0)]|2

note have assumed training x; are fixed

» Err(Xo) = 02 + Bias?f(xo) + 02||h(xo)| |2
» arough guide to Err(xp) is

& S Err(x) = 0 + 3§ S {f(x) — EF(x)}? + o%p/N

» shows that Err increases as p increases

similarly for ridge regression
Err(X) = 02 + Bias?f(xy) + o2||h@98(xq)||2
h9e(x0) = xJ (XTX + A1)~ xq
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Methods of estimating test error (§7.3)

» §7.3 and 7.4 discuss instead the estimation of “in-sample
error”, not quite the same as test error

> Errjp = 1 SN EyEynen[L{ Y F(x))}]

> test values Y™ observed at training points x;

» Claim Brrj, = E &rr + (2/N) XN, cov(§, i) (7.18)
» For squared error loss, a vague sketch

er = 1NZ(}/,—A
= %Z i — () + (%) — §)?
= S R+ g S )
NZ{yI— (X HPi — F(x)}
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Methods of estimating test error (§7.3)

» If y = Sy, where S has d degrees of freedom, then
> cov(§, yi) = do®

» Errj, = Eyjerr + %daz

» Errj, relevant for model selection, and easier to analyse
than Err

» Estimating Err;,: for example €7 + 2do?: this is Cp

» AIC replaces 1, (v — #)? with — 2 log(d; y)

» see Figure 7.4
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Cross-validation §7.10

Generalization/test error Err = E, , 5[L{Y, (X)}]
Cross-validation attempts to estimate this directly

CV = % 3 Liyi, FF0(x)} (7.42)

(i) indexes which of K partitions observation i is in (K-fold
CV)

If?depends on a tuning parameter, «, then we compute

> CV(a) = 4 3 L{y;, F*)(x;, a)} for a variety of choices

» K =1 has low bias but high variance; large K the
opposite; K = 5 or 10 recommended

» generalized CV is an approximation to CV with K = 1 used
in linear fitting methods with squared error loss

» (GCV is used by the Im.ridge program)

vV v v Vv

v
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