Exercises November 13

- 1. Consider the simple linear regression model $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where ϵ_i are independent normal random variables with expected value zero and variance $\sigma_i^2 = \sigma^2(1 + \gamma x_i^2), i = 1, ..., n$. Simulate 1000 datasets of length n = 50 with parameters $\beta_0 = 1, \beta_1 = 1, \sigma^2 = 3, \gamma = 2$ and covariate x_i simulated from a U(-1, 1).
 - (a) Fit each dataset with a simple linear regression model (assuming $\gamma = 0$), and comparecompute the simulation mean and variance of $\hat{\beta}_1$ to that computed from the fitted model with $\gamma = 0$.
 - (b) Compare the true and estimated sandwich variance of β₁ based on the Godambe information matrix to the naive estimate from (a) (from the regression output).
 - (c) The true $\operatorname{var}(\hat{\beta}_1)$ can be computed (tediously) from the appropriate element of G^{-1} , where $G(\cdot)$ is the Godambe information. Somewhat confusingly, this is a 3×3 matrix, since the fitted model has just 3 parameters, but it depends on $(\beta_0, \beta_1, \sigma^2, \gamma)$ (and these values are known since we are simulating). (Royal "we")

The estimated value of the Godambe information is less clear, because we have no estimate of γ . However, if we compute the 3×1 score vector for each observation, say $U_i(\beta_0, \beta_1, \sigma^2)$ we can estimate $E(UU^T)$ by

$$\frac{1}{n}\sum_{i=1}^{n}U_{i}(\hat{\theta})U_{i}(\hat{\theta})^{\mathrm{T}}.$$
(1)

General least-squares theory shows that if $y \sim N(X\beta, \sigma^2 W)$, then $\hat{\beta}_{LS} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y$ has expected value β and variance

 $\sigma^2 (X^{\mathrm{T}} X)^{-1} (X^{\mathrm{T}} W X) (X^{\mathrm{T}} X)^{-1},$

where W is a diagonal matrix whose entries can be estimated using $\hat{\epsilon}$. This agrees with what I got using (1).

So together (a) and (b) ask you to compare the simulation variance of $\hat{\beta}_1$ with its true variance under the model, the estimated variance using (1), and the estimated variance from the regression fit $(\sigma^2 (X^T X)^{-1})$.

2. Suppose we have an i.i.d. sample y_1, \ldots, y_n from a model with density $f(y; \theta), \theta \in \mathbb{R}$, and we estimate θ by means of an estimating equation

$$g(y;\theta) = \sum_{i=1}^{n} g(y_i;\theta);$$

the estimator $\tilde{\theta}_g$ is defined as the solution to $g(y; \theta) = 0$, assuming the solution exists w.p.1. We assume that $g(y; \theta)$ is an <u>unbiased</u> estimating equation, i.e.

$$\mathbf{E}\{g(y;\theta)\} = \int g(y;\theta)f(y;\theta)dy = 0.$$

(a) Assuming further that g is differentiable with respect to θ , show that to a first order of approximation

$$ilde{ heta}_g \doteq heta - rac{\sum_{i=1}^n g(y_i; heta)}{\sum_{i=1}^n \partial g(y_i; heta) / \partial heta}.$$

(b) Apply the weak law of large numbers to the denominator, and the central limit theorem to the numerator, to conclude that

$$\sqrt{n(\tilde{\theta}_g - \theta)} \sim N\{0, \sigma^2(\theta)\},\$$

where

$$\sigma^{2}(\theta) = \frac{\operatorname{var}\{g(Y_{1};\theta)\}}{\operatorname{E}\{-\partial g(Y_{1};\theta)/\partial\theta\}^{2}}.$$