
Exercises November 13 STA 4508S (Fall, 2018)

1. Consider the simple linear regression model Yi = β0 + β1xi + εi, where
εi are independent normal random variables with expected value zero
and variance σ2

i = σ2(1 + γx2i ), i = 1, . . . , n. Simulate 1000 datasets
of length n = 50 with parameters β0 = 1, β1 = 1, σ2 = 3, γ = 2 and
covariate xi simulated from a U(−1, 1).

(a) Fit each dataset with a simple linear regression model (assuming
γ = 0), and comparecompute the simulation mean and variance
of β̂1 to that computed from the fitted model with γ = 0.

(b) Compare the true and estimated sandwich variance of β̂1 based
on the Godambe information matrix to the naive estimate from
(a) (from the regression output).

(c) The true var(β̂1) can be computed (tediously) from the appro-
priate element of G−1, where G(·) is the Godambe information.
Somewhat confusingly, this is a 3×3 matrix, since the fitted model
has just 3 parameters, but it depends on (β0, β1, σ

2, γ) (and these
values are known since we are simulating). (Royal “we”)

The estimated value of the Godambe information is less clear,
because we have no estimate of γ. However, if we compute the
3 × 1 score vector for each observation, say Ui(β0, β1, σ

2) we can
estimate E(UUT) by

1

n

n∑
i=1

Ui(θ̂)Ui(θ̂)
T. (1)

General least-squares theory shows that if y ∼ N(Xβ, σ2W ), then
β̂LS = (XTX)−1XTy has expected value β and variance

σ2(XTX)−1(XTWX)(XTX)−1,

where W is a diagonal matrix whose entries can be estimated using
ε̂. This agrees with what I got using (1).

So together (a) and (b) ask you to compare the simulation vari-
ance of β̂1 with its true variance under the model, the estimated
variance using (1), and the estimated variance from the regression
fit (σ2(XTX)−1).
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2. Suppose we have an i.i.d. sample y1, . . . , yn from a model with density
f(y; θ), θ ∈ R, and we estimate θ by means of an estimating equation

g(y; θ) =
n∑

i=1

g(yi; θ);

the estimator θ̃g is defined as the solution to g(y; θ) = 0, assuming the
solution exists w.p.1. We assume that g(y; θ) is an unbiased estimating
equation, i.e.

E{g(y; θ)} =

∫
g(y; θ)f(y; θ)dy = 0.

(a) Assuming further that g is differentiable with respect to θ, show
that to a first order of approximation

θ̃g
.
= θ −

∑n
i=1 g(yi; θ)∑n

i=1 ∂g(yi; θ)/∂θ
.

(b) Apply the weak law of large numbers to the denominator, and the
central limit theorem to the numerator, to conclude that

√
n(θ̃g − θ)

.∼ N{0, σ2(θ)},

where

σ2(θ) =
var{g(Y1; θ)}

E{−∂g(Y1; θ)/∂θ}2
.
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