
Various ‘types’ of likelihood

1. likelihood, marginal likelihood, conditional likelihood, pro�le
likelihood, adjusted pro�le likelihood

2. semi-parametric likelihood, partial likelihood

3. empirical likelihood, penalized likelihood

4. quasi-likelihood, composite likelihood

5. simulated likelihood, indirect inference

6. likelihood inference for p > n

7. bootstrap likelihood, h-likelihood, weighted likelihood,
pseudo-likelihood, local likelihood, sieve likelihood
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November 20

• HW2 and HW4 notes – please see updates on web page
• Godambe information
• quasi-likelihood
• indirect inference
• high-dimensional inference
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Exercises November 13 STA 4508S (Fall, 2018)

1. Consider the simple linear regression model Yi = β0 + β1xi + εi, where
εi are independent normal random variables with expected value zero
and variance σ2

i = σ2(1 + γx2i ), i = 1, . . . , n. Simulate 1000 datasets
of length n = 50 with parameters β0 = 1, β1 = 1, σ2 = 3, γ = 2 and
covariate xi simulated from a U(−1, 1).

(a) Fit each dataset with a simple linear regression model (assuming
γ = 0), and comparecompute the simulation mean and variance
of β̂1 to that computed from the fitted model with γ = 0.

(b) Compare the true and estimated sandwich variance of β̂1 based
on the Godambe information matrix to the naive estimate from
(a) (from the regression output).

(c) The true var(β̂1) can be computed (tediously) from the appro-
priate element of G−1, where G(·) is the Godambe information.
Somewhat confusingly, this is a 3×3 matrix, since the fitted model
has just 3 parameters, but it depends on (β0, β1, σ

2, γ) (and these
values are known since we are simulating). (Royal “we”)

The estimated value of the Godambe information is less clear,
because we have no estimate of γ. However, if we compute the
3 × 1 score vector for each observation, say Ui(β0, β1, σ

2) we can
estimate E(UUT) by

1

n

n∑

i=1

Ui(θ̂)Ui(θ̂)
T. (1)

General least-squares theory shows that if y ∼ N(Xβ, σ2W ), then
β̂LS = (XTX)−1XTy has expected value β and variance

σ2(XTX)−1(XTWX)(XTX)−1,

where W is a diagonal matrix whose entries can be estimated using
ε̂. This agrees with what I got using (1).

So together (a) and (b) ask you to compare the simulation vari-
ance of β̂1 with its true variance under the model, the estimated
variance using (1), and the estimated variance from the regression
fit (σ2(XTX)−1).
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Quasi-likelihood

• Recall: generalized linear model y1, . . . , yn independent, with

f (yi | xi;β, φ) = exp[{yiθi − c(θi)}/φ+ h(yi, φ)]

• φ a scale parameter in this exponential family
• E(yi) = µi = c′(θi) Exercises 1

• var(yi) = φV(µi) = φc′′(θi) variance function

• g(µi) = xT

i β link function

• link function converts θn×1 to βp×1
• Standard V(µ): Normal– 1; Gamma– µ2; Poisson– µ; Bernoulli– µ(1− µ)
•

`(β, φ; y) =
n∑

i=1

{
yiθi − c(θi)

φ
+ h(yi, φ)

}
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... quasi-likelihood

• log-likelihood

`(β, φ; y) =
n∑

i=1

{
yiθi − c(θi)

φ
+ h(yi, φ)

}

• score function

∂`

∂βr
=

n∑

i=1

∂`i
∂µi

∂µi
∂βr

=
n∑

i=1

yi − µi
φV(µi)

∂µi
∂βr

• MLE
n∑

i=1

yi − µi
V(µi)

xir
g′(µi)

= 0

• Bartlett identity:

E
{

∂`2

∂βr∂βs
+

∂`

∂βr

∂`

∂βs

}
= 0
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... quasi-likelihood

• Suppose instead of a generalized linear model, we had only a
partially speci�ed model:

E(yi) = µi, var(yi) = φV(µi), g(µi) = xT

i β

• g(·), V(·) known
• unbiased estimating equation

g(y;β) =
n∑

i=1

yi − µi
V(µi)

xir
g′(µi)

• using result from Exercises, if g(y; β̃) = 0, then asymptotic variance
of β̃ is

E
{
−∂g(y;β)

∂βT

}−1
var{g(y;β)}E

{
−∂g(y;β)

∂β

}−1

as with composite likelihood
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... quasi-likelihood

• With g(y;β) = Σgi(yi;β) =
∑ yi − µi

φV(µi)

xir
g′(µi)

• E
{
−∂g(y;β)

∂βT

}
=

n∑

i=1
xixT

i
1

g′(µi)2φV(µi)
= φ−1XTWX = var{g(y;β)}

• W = diag(wj), wj = {g′(µj)2V(µj)}−1, j = 1, . . . ,n

• quasi-likelihood function

Q(β; y) =
n∑

i=1

∫ µi

yi

yi − u
φV(u)

du

• this only works for models of this form
• called quasi-likelihood because ∂Q/∂β gives estimating equation
with expected value 0, and 2nd Bartlett identity holds
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Longitudinal data

• suppose now our observations come in groups:
yij, j = 1, . . . ,mi; i = 1, . . . ,n

• could be repeated measurements on subjects
• or measurements of members of the same cluster/family/group

• assume GLM-type structure E(yij) = µij, g(µij) = xT

ijβ + zTijbi
• random e�ects bi induce correlation among observations in the
same group; e.g. assume bi ∼ N(0,Ωb)

• GLM variance structure var(yij) = Vi(β, α) for example
• α are extra parameters in the variance-covariance matrix
• QL-type estimating equations

n∑

i=1

(
∂µi
∂βT

)T

V−1i (α, β)(yi − µi) = 0
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Generalized Estimating Equations Liang & Zeger, 1986

n∑

i=1

(
∂µi
∂βT

)T

V−1i (α, β)(yi − µi) = 0

• parameter α in variance function doesn’t divide out, as in
univariate case

• we will need an estimate α̂ from somewhere
many suggestions in the literature

• Liang & Zeger suggested using a “working covariance matrix” to get
an estimate of β

• e.g. could assume independence, or AR(1), or ...
• estimates of β will still be consistent, but the asymptotic variance
will be of the sandwich form as the model is misspeci�ed

• there is no integrated function that serves as a quasi-likelihood in
this setting
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Indirect Inference Gouererioux et al. ’93; Smith ’08

• true model complex, but can be simulated as the system
yt = G(yt−1, xt,ut;β), t = 1, . . . , T

• G is known function, xt is observed (‘exogenous’), ut is noise
(possibly i.i.d. F), β ∈ Rk to be estimated

• simpler working model has density f (yt | yt−1, xt; θ); θ ∈ Rp,p ≥ k
• maximum likelihood estimate θ̂ = θ̂(y) easy to obtain

• 1. simulate ũm1 , . . . ũmt from F
2. choose β and construct ỹm1 (β), . . . , ymt (β)
3. use simulated data to estimate θ

• θ̃(β) = argmaxθ
∑M

m=1
∑T

t=1 log f{ỹmt (β) | ỹmt−1(β), xt, θ}
• estimate β by minimizing d{θ̂, θ̃(β)} for some distance measure
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... indirect inference Smith ’08

• θ̃(β) = argmaxθ
∑M

m=1
∑T

t=1 log f{ỹmt (β) | ỹmt−1(β), xt, θ}
• β̃ = argminβd{θ̂, θ̃(β)}
• as T →∞, θ̃(β)→ h(β) and θ̂ → θ0 pseudo-true value, θ∗

• if p = k then h(·) is one-to-one and can be inverted:
h−1(θ0) = β;h−1(θ̂) = β̂

• when p > k need to choose d(·, ·)

1. Wald β̂W = argminβ{θ̂ − θ̃(β)}TW{θ̂ − θ̃(β)}

2. score β̂S = argminβS(β)TVS(β),
S(β) =

∑M
m=1

∑T
t=1 ∂ log f{ỹ

m
t (β) | ỹmt−1(β), xt, θ̂}/∂θ

3. β̂LR = argminβ
∑T

t=1[log f{yt | yt−1, xt, θ̂)− log f{yt | yt−1, xt, θ̃(β)}]
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... indirect inference

• it is not necessary that θ̂ be the mle under the working model
• we could instead assume some statistic ŝ(y) of dimension p
• perhaps obtained by solving

∑T
t=1 h(yt; s) = 0 for an estimating

equation
• we will probably have something like √T{ŝ− s(β)} → Np(0, ν)

• H(β; ŝ) = {ŝ− s(β)}Tν−1{ŝ− s(β)}
• β̃ = argminβH(β; ŝ)
• exp{−H(β; ŝ)} called ‘indirect likelihood’ Jiang & Turnbull ’04

• o�en ŝ will be a set of moments of the observed data
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Approximate Bayesian computation Marin et al 2012

• a similar use of simulation to avoid computation of complex
likelihood functions

• model f (y | θ), prior π(θ) posterior π(θ | y) ∝ f (y | θ)π(θ)

• Algorithm 1: assume y takes values in a �nite set D
1. generate θ′ ∼ π(θ) prior
2. simulate zi ∼ f (· | θ′)
3. if zi = y, set θi = θ′, repeat

• a�er N steps, θ1, . . . , θN is a sample from π(θ | y)

• because
∑

zi∈D π(θi)f (zi | θi)1{y = zi} ∝ π(θi)f (y | θi)

• Algorithm 2: sample space not �nite
1. generate θ′ ∼ π(θ)
2. simulate zi ∼ f (· | θ′)
3. if d{s(zi), s(y)} < ε, set θi = θ′, repeat

• need to choose s(·), d(·, ·)
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... ABC

• Algorithm 2: sample space not �nite
1. generate θ′ ∼ π(θ)
2. simulate zi ∼ f (· | θ′)
3. if d{s(zi), s(y)} < ε, set θi = θ′, repeat

• a�er N steps, θ1, . . . , θN is a sample from

πε(θ | y) =

∫
πε(θ, z | y)dz ∝

∫
π(θ)f (z | θ)1{z ∈ Aε,y}dz

• π(θ | y) ' πε(θ | y) if ε ‘small enough’ and s(z) a ‘good’ summary
statistic

• many improvements possible, using ideas from MCMC
• which generates samples from the posterior by sampling from a
Markov chain with that stationary distribution

• many techniques for trying to ensure that sampling is from regions
of Θ where π(θ | y) is large, without knowing π(θ | y)
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High-dimensional inference Bühlmann et al 2014

• f (y; θ), y ∈ Rn; θ ∈ Rp, p large relative to n, or p > n
• Aside: empirical likelihood has p = n− 1, yet usual asymptotic theory
applies

• Partial likelihood has p = n− 1+ d, yet usual asymptotic theory
applies

• “Neyman-Scott problems” have
yij ∼ f (·;ψ, λi), j = 1, . . . ,m; i = 1, . . . , k, so n = km and p = 1+ k i.e.
p/n = O(1) if m→∞, k �xed; ususal theory does not apply

• we concentrate on Bühlmann paper there is a very large literature
• y = Xβ + ε, E(ε) = 0, cov(ε) = σ2I running example, n = 71, p = 4088

β̂ridge = arg min
β
{ 1n (y − Xβ)T(y − Xβ) + λ

p∑

j=1
β2j ,

β̂lasso = arg min
β
{ 1n (y − Xβ)T(y − Xβ) + λ

p∑

j=1
|βj|
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... high-dimensional inference

β̂ridge = arg min
β
{ 1n (y − Xβ)T(y − Xβ) + λ

p∑

j=1
β2j ,

β̂lasso = arg min
β
{ 1n (y − Xβ)T(y − Xβ) + λ

p∑

j=1
|βj|

• usual to assume Σn
i=1xij = 0,Σn

i=1x
2
ij = 1 so units are comparable

β̂0 = ȳ is not ‘shrunk’

• Lasso penalty leads to several β̂k = 0 sparse solutions

• there are many variations on the penalty term
• λ is a tuning parameter o�en selected by cross-validation
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... high-dimensional inference

• Inferential goals (§2.2)
(a) prediction of surface Xβ or ynew = xT

newβ

(b) estimation of β
(c) estimation of S = {j : βj 6= 0) ‘support set’

• re (c): de�ne Ŝ = {j : β̂j 6= 0}; to have Pr(Ŝ→ S} > 1− ε, say
need very strong conditions: min |βj| > c, c ∼

√
log p/n ' 0.34

• plus condition on design
• o�en replaced by (c’): ‘screening’ Ŝ ⊃ S with high probability

also needs conditions on X

• can solve (b) and (c’), if |S| << n/ log p and log p << n
• re (a) prediction accuracy can be assessed by cross-validation
• note that (a) can be estimable even if p > n, as long as Xβ of small
enough dimension
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Inference about β, p > n

• p-values for testing H0,j : βj = 0
• three methods suggested: multi-sample splitting, debiasing,
stability selection

• multi-sample splitting: �t the model on random half, say, of
observations, leads to Ŝ

• use X(Ŝ) in �tting to the other half
• Pj = p-value for t-test of Hj if j ∈ Ŝ, o.w. 1
• Pcorr,j = Pj × |Ŝ|, j ∈ Ŝ, o.w. 1
• Repeat B times and aggregate Pbcorr,j
• de-biasing β̂ridge/Lasso,corr,j = b̂j − bias see paper
• Can show resulting estimate β̂ridge/Lasso,corr,jj ∼ N(βj, σ

2
εwj) wj known

• β̂ridge/Lasso,corr,j 6= 0, any j, so need multiplicity correction p = 4088
• on their example; Lasso selects 30 features; multi-sample selects 1;
bias-corrected Ridge selects 0; stability selection selects 3
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Non-linear models

• example yi independent, E(yi) = µi(β);g(µi) = β0 + xT

i β

• Lasso-type ‘mle’: arg min{− 1
n`(β, β0; y) + λΣj=1|βj|} β = (β1, . . . , βp)

• can use multi-sample splitting or stability selection

• a version of de-biasing applies to GLMs, based on weighted least
squares

• a marginal approach would �t y = α0 + αjx(j), one feature at a time
• leading to 4088 p-values, and then need techniques for controlling
FWER or FDR
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n,p→∞ Portnoy, 1984,5,8

• Model: yi = xT

i β + Zi, i = 1, . . . ,n independent
• M-estimation:

n∑

i=1
xiψ(yi − xT

i β̂) = 0 (1)

• result: if ψ is monotone, and p log(p)/n→ 0, and conditions on X,
then

there is a solution of (1) satisfying ||β̂ − β||2 = O(p/n)

• “rows of X behave like a sample from a distribution in Rp”

• if p3/2 log n/n→ 0, then

max |xT

i (β̂ − β)| p→ 0

• and
aT

n (β̂ − β)
d→ N(0, σ2)

σ2 = aT
n (XTX)−1anEψ2(Z)/{Eψ′(Z)}2STA 4508 Nov 20 2018 21



n,p→∞ Portnoy, 1984,5,8

• Model: yi ∼ exp{θTy − ψ(θ)}, i = 1, . . . ,n independent; p = pn
• maximum likelihood estimate ψ′(θ̂n) = ȳn
• under conditions on the eigenvalues of ψ′′(θ) and moment
conditions on y, Fisher information matrix

||θ̂n − θn||2 ≤ c
p
n , in probability ,

•
||θ̂ − θ − ȳ|| = Op(p/n) if p/n→ 0,

• p3/2/n→ 0: √
naT

n (θ̂ − θ)
d→ N(0, 1),

likelihood ratio test of simple hypothesis asymptotically χ2p
• “asymptotic approximations are trustworthy if p3/2/n is small, but
may be very wrong if p2/n is not small”

• MLE ‘will tend to be’ consistent if p/n→ 0
cf. also El Karoui et al., 2013, PNAS
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Asymptotic theory, overview

• Sartori ’03
• Neyman Scott problems as above
• pro�le likelihood inference okay if p = o(n1/2)
• modi�ed PL inference okay if p = o(n3/4)

• Portnoy ’84
• MLE “will tend to be consistent” if p/n→ 0
• asymptotic approixmations okay if p3/2/n→ 0
• and fail if p2/n→ 0

• classical p/n→ 0, p �xed, n→∞
• semi-classical pn/n→ 0 or p3/2n /n→ 0 Portnoy, Sartori

• moderate dimensions pn/n→ β Sur & Candes ’17

• high dimensions pn/n→∞
• ultra-high dimensions pn ∼ en
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