## Various 'types' of likelihood

1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood
2. semi-parametric likelihood, partial likelihood
3. empirical likelihood, penalized likelihood
4. quasi-likelihood, composite likelihood
5. simulated likelihood, indirect inference
6. Likelihood inference for $p>n$
7. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local likelihood, sieve likelihood

- HW2 and HW4 notes - please see updates on web page
- Godambe information
- quasi-likelihood
- indirect inference
- high-dimensional inference

1. Consider the simple linear regression model $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, where $\epsilon_{i}$ are independent normal random variables with expected value zero and variance $\sigma_{i}^{2}=\sigma^{2}\left(1+\gamma x_{i}^{2}\right), i=1, \ldots, n$. Simulate 1000 datasets of length $n=50$ with parameters $\beta_{0}=1, \beta_{1}=1, \sigma^{2}=3, \gamma=2$ and covariate $x_{i}$ simulated from a $U(-1,1)$.
(a) Fit each dataset with a simple linear regression model (assuming $\gamma=0$ ), and of $\hat{\beta}_{1}$ to that computed from the fitted model with $\gamma=0$.
(b) Compare the true and estimated sandwich variance of $\hat{\beta}_{1}$ based on the Godambe information matrix to the naive estimate from (a) (from the regression output).
(c) The true $\operatorname{var}\left(\hat{\beta}_{1}\right)$ can be computed (tediously) from the appropriate element of $G^{-1}$, where $G(\cdot)$ is the Godambe information. Somewhat confusingly, this is a $3 \times 3$ matrix, since the fitted model has just 3 parameters, but it depends on ( $\beta_{0}, \beta_{1}, \sigma^{2}, \gamma$ ) (and these values are known since we are simulating). (Royal "we")
The estimated value of the Godambe information is less clear, because we have no estimate of $\gamma$. However, if we compute the $3 \times 1$ score vector for each observation, say $U_{i}\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$ we can estimate $\mathrm{E}\left(U U^{\mathrm{T}}\right)$ by

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} U_{i}(\hat{\theta}) U_{i}(\hat{\theta})^{\mathrm{T}} . \tag{1}
\end{equation*}
$$

General least-squares theory shows that if $y \sim N\left(X \beta, \sigma^{2} W\right)$, then $\hat{\beta}_{L S}=\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} y$ has expected value $\beta$ and variance

$$
\sigma^{2}\left(X^{\mathrm{T}} X\right)^{-1}\left(X^{\mathrm{T}} W X\right)\left(X^{\mathrm{T}} X\right)^{-1}
$$

where $W$ is a diagonal matrix whose entries can be estimated using $\hat{\epsilon}$. This agrees with what I got using (1).
So together (a) and (b) ask you to compare the simulation variance of $\hat{\beta}_{1}$ with its true variance under the model, the estimated variance using (1), and the estimated variance from the regression fit $\left(\sigma^{2}\left(X^{\mathrm{T}} X\right)^{-1}\right)$.







## Quasi-likelihood

- Recall: generalized linear model $y_{1}, \ldots, y_{n}$ independent, with

$$
f\left(y_{i} \mid x_{i} ; \beta, \phi\right)=\exp \left[\left\{y_{i} \theta_{i}-c\left(\theta_{i}\right)\right\} / \phi+h\left(y_{i}, \phi\right)\right]
$$

- $\phi$ a scale parameter in this exponential family
- $\mathrm{E}\left(y_{i}\right)=\mu_{i}=c^{\prime}\left(\theta_{i}\right)$
- $\operatorname{var}\left(y_{i}\right)=\phi V\left(\mu_{i}\right)=\phi C^{\prime \prime}\left(\theta_{i}\right)$
- $g\left(\mu_{i}\right)=x_{i}^{\mathrm{T}} \beta$
- link function converts $\theta_{n \times 1}$ to $\beta_{p \times 1}$
- Standard $V(\mu)$ : Normal- 1; Gamma- $\mu^{2}$; Poisson- $\mu$; Bernoulli- $\mu(1-\mu)$ -

$$
\ell(\beta, \phi ; y)=\sum_{i=1}^{n}\left\{\frac{y_{i} \theta_{i}-c\left(\theta_{i}\right)}{\phi}+h\left(y_{i}, \phi\right)\right\}
$$

## ... quasi-likelihood

- log-likelihood

$$
\ell(\beta, \phi ; y)=\sum_{i=1}^{n}\left\{\frac{y_{i} \theta_{i}-c\left(\theta_{i}\right)}{\phi}+h\left(y_{i}, \phi\right)\right\}
$$

- score function

$$
\frac{\partial \ell}{\partial \beta_{r}}=\sum_{i=1}^{n} \frac{\partial \ell_{i}}{\partial \mu_{i}} \frac{\partial \mu_{i}}{\partial \beta_{r}}=\sum_{i=1}^{n} \frac{y_{i}-\mu_{i}}{\phi V\left(\mu_{i}\right)} \frac{\partial \mu_{i}}{\partial \beta_{r}}
$$

- MLE

$$
\sum_{i=1}^{n} \frac{y_{i}-\mu_{i}}{V\left(\mu_{i}\right)} \frac{x_{i r}}{g^{\prime}\left(\mu_{i}\right)}=0
$$

- Bartlett identity:

$$
\mathrm{E}\left\{\frac{\partial \ell^{2}}{\partial \beta_{r} \partial \beta_{s}}+\frac{\partial \ell}{\partial \beta_{r}} \frac{\partial \ell}{\partial \beta_{s}}\right\}=0
$$

## ... quasi-likelihood

- Suppose instead of a generalized linear model, we had only a partially specified model:

$$
\mathrm{E}\left(y_{i}\right)=\mu_{i}, \operatorname{var}\left(y_{i}\right)=\phi \mathrm{V}\left(\mu_{i}\right), g\left(\mu_{i}\right)=x_{i}^{\mathrm{T}} \beta
$$

- $g(\cdot), V(\cdot)$ known
- unbiased estimating equation

$$
g(y ; \beta)=\sum_{i=1}^{n} \frac{y_{i}-\mu_{i}}{V\left(\mu_{i}\right)} \frac{x_{i r}}{g^{\prime}\left(\mu_{i}\right)}
$$

- using result from Exercises, if $g(y ; \tilde{\beta})=0$, then asymptotic variance of $\tilde{\beta}$ is

$$
\mathrm{E}\left\{-\frac{\partial g(y ; \beta)}{\partial \beta^{\mathrm{T}}}\right\}^{-1} \operatorname{var}\{g(y ; \beta)\} \mathrm{E}\left\{-\frac{\partial g(y ; \beta)}{\partial \beta}\right\}^{-1}
$$

as with composite likelihood

## ... quasi-tikelihood

- With $g(y ; \beta)=\Sigma g_{i}\left(y_{i} ; \beta\right)=\sum \frac{y_{i}-\mu_{i}}{\phi V\left(\mu_{i}\right)} \frac{x_{i r}}{g^{\prime}\left(\mu_{i}\right)}$
- $\mathrm{E}\left\{-\frac{\partial g(y ; \beta)}{\partial \beta^{\mathrm{T}}}\right\}=\sum_{i=1}^{n} x_{i} x_{i}^{\mathrm{T}} \frac{1}{g^{\prime}\left(\mu_{i}\right)^{2} \phi V\left(\mu_{i}\right)}=\phi^{-1} X^{\mathrm{T}} W X=\operatorname{var}\{g(y ; \beta)\}$
- $W=\operatorname{diag}\left(w_{j}\right), \quad w_{j}=\left\{g^{\prime}\left(\mu_{j}\right)^{2} V\left(\mu_{j}\right)\right\}^{-1}, j=1, \ldots, n$
- quasi-likelihood function

$$
Q(\beta ; y)=\sum_{i=1}^{n} \int_{y_{i}}^{\mu_{i}} \frac{y_{i}-u}{\phi V(u)} d u
$$

- this only works for models of this form
- called quasi-likelihood because $\partial Q / \partial \beta$ gives estimating equation with expected value 0 , and 2nd Bartlett identity holds


## Longitudinal data

- suppose now our observations come in groups:
$y_{i j}, j=1, \ldots, m_{i} ; i=1, \ldots, n$
- could be repeated measurements on subjects
- or measurements of members of the same cluster/family/group
- assume GLM-type structure $\mathrm{E}\left(y_{i j}\right)=\mu_{i j}, g\left(\mu_{i j}\right)=x_{i j}^{\mathrm{T}} \beta+z_{i j}^{\mathrm{T}} b_{i}$
- random effects $b_{i}$ induce correlation among observations in the same group; e.g. assume $b_{i} \sim N\left(\mathrm{o}, \Omega_{b}\right)$
- GLM variance structure $\operatorname{var}\left(y_{i j}\right)=V_{i}(\beta, \alpha)$ for example
- $\alpha$ are extra parameters in the variance-covariance matrix
- QL-type estimating equations

$$
\sum_{i=1}^{n}\left(\frac{\partial \mu_{i}}{\partial \beta^{\mathrm{T}}}\right)^{\mathrm{T}} V_{i}^{-1}(\alpha, \beta)\left(y_{i}-\mu_{i}\right)=0
$$

## Generalized Estimating Equations

$$
\sum_{i=1}^{n}\left(\frac{\partial \mu_{i}}{\partial \beta^{\mathrm{T}}}\right)^{\mathrm{T}} V_{i}^{-1}(\alpha, \beta)\left(y_{i}-\mu_{i}\right)=0
$$

- parameter $\alpha$ in variance function doesn't divide out, as in univariate case
- we will need an estimate $\hat{\alpha}$ from somewhere
many suggestions in the literature
- Liang \& Zeger suggested using a "working covariance matrix" to get an estimate of $\beta$
- e.g. could assume independence, or $\operatorname{AR}(1)$, or ...
- estimates of $\beta$ will still be consistent, but the asymptotic variance will be of the sandwich form as the model is misspecified
- there is no integrated function that serves as a quasi-likelihood in this setting
- true model complex, but can be simulated as the system $y_{t}=G\left(y_{t-1}, x_{t}, u_{t} ; \beta\right), t=1, \ldots, T$
- $G$ is known function, $x_{t}$ is observed ('exogenous'), $u_{t}$ is noise (possibly i.i.d. F), $\beta \in \mathbb{R}^{k}$ to be estimated
- simpler working model has density $f\left(y_{t} \mid y_{t-1}, x_{t} ; \theta\right) ; \theta \in \mathbb{R}^{p}, p \geq k$
- maximum likelihood estimate $\hat{\theta}=\hat{\theta}(y)$ easy to obtain
- 1. simulate $\tilde{u}_{1}^{m}, \ldots \tilde{u}_{t}^{m}$ from $F$

2. choose $\beta$ and construct $\tilde{y}_{1}^{m}(\beta), \ldots, y_{t}^{m}(\beta)$
3. use simulated data to estimate $\theta$

- $\tilde{\theta}(\beta)=\operatorname{argmax}_{\theta} \sum_{m=1}^{M} \sum_{t=1}^{T} \log f\left\{\tilde{y}_{t}^{m}(\beta) \mid \tilde{y}_{t-1}^{m}(\beta), x_{t}, \theta\right\}$
- estimate $\beta$ by minimizing $d\{\hat{\theta}, \tilde{\theta}(\beta)\}$ for some distance measure
- $\tilde{\theta}(\beta)=\operatorname{argmax}_{\theta} \sum_{m=1}^{M} \sum_{t=1}^{T} \log f\left\{\tilde{y}_{t}^{m}(\beta) \mid \tilde{y}_{t-1}^{m}(\beta), x_{t}, \theta\right\}$
- $\tilde{\beta}=\operatorname{argmin}_{\beta} d\{\hat{\theta}, \tilde{\theta}(\beta)\}$
- as $T \rightarrow \infty, \tilde{\theta}(\beta) \rightarrow h(\beta)$ and $\hat{\theta} \rightarrow \theta_{0}$
- if $p=k$ then $h(\cdot)$ is one-to-one and can be inverted:

$$
h^{-1}\left(\theta_{0}\right)=\beta ; h^{-1}(\hat{\theta})=\hat{\beta}
$$

- when $p>k$ need to choose $d(\cdot, \cdot)$

1. Wald $\hat{\beta}_{W}=\operatorname{argmin}_{\beta}\{\hat{\theta}-\tilde{\theta}(\beta)\}^{\mathrm{T}} W\{\hat{\theta}-\tilde{\theta}(\beta)\}$
2. score $\hat{\beta}_{S}=\operatorname{argmin}_{\beta} S(\beta)^{\mathrm{T}} V S(\beta)$,

$$
S(\beta)=\sum_{m=1}^{M} \sum_{t=1}^{T} \partial \log f\left\{\tilde{y}_{t}^{m}(\beta) \mid \tilde{y}_{t-1}^{m}(\beta), x_{t}, \hat{\theta}\right\} / \partial \theta
$$

3. $\hat{\beta}_{L R}=\operatorname{argmin}_{\beta} \sum_{t=1}^{T}\left[\log f\left\{y_{t} \mid y_{t-1}, x_{t}, \hat{\theta}\right)-\log f\left\{y_{t} \mid y_{t-1}, x_{t}, \tilde{\theta}(\beta)\right\}\right]$

## ... indirect inference

- it is not necessary that $\hat{\theta}$ be the mle under the working model
- we could instead assume some statistic $\hat{s}(y)$ of dimension $p$
- perhaps obtained by solving $\sum_{t=1}^{T} h\left(y_{t} ; s\right)=0$ for an estimating equation
- we will probably have something like $\sqrt{ } T\{\hat{s}-s(\beta)\} \rightarrow N_{p}(0, \nu)$
- $\boldsymbol{H}(\beta ; \hat{\boldsymbol{s}})=\{\hat{\boldsymbol{s}}-\boldsymbol{s}(\beta)\}^{\mathrm{T}} \nu^{-1}\{\hat{\boldsymbol{s}}-\boldsymbol{s}(\beta)\}$
- $\tilde{\beta}=\operatorname{argmin}_{\beta} H(\beta ; \hat{s})$
- $\exp \{-H(\beta ; \hat{s})\}$ called 'indirect likelihood'
- often $\hat{s}$ will be a set of moments of the observed data
- a similar use of simulation to avoid computation of complex likelihood functions
- model $f(y \mid \theta), \quad$ prior $\pi(\theta) \quad$ posterior $\pi(\theta \mid y) \propto f(y \mid \theta) \pi(\theta)$
- Algorithm 1: assume y takes values in a finite set $\mathcal{D}$

1. generate $\theta^{\prime} \sim \pi(\theta)$
2. simulate $z_{i} \sim f\left(\cdot \mid \theta^{\prime}\right)$
3. if $z_{i}=y$, set $\theta_{i}=\theta^{\prime}$, repeat

- after $N$ steps, $\theta_{1}, \ldots, \theta_{N}$ is a sample from $\pi(\theta \mid y)$
- because $\sum_{z_{i} \in \mathcal{D}} \pi\left(\theta_{i}\right) f\left(z_{i} \mid \theta_{i}\right) 1\left\{y=z_{i}\right\} \propto \pi\left(\theta_{i}\right) f\left(y \mid \theta_{i}\right)$
- Algorithm 2: sample space not finite

1. generate $\theta^{\prime} \sim \pi(\theta)$
2. simulate $z_{i} \sim f\left(\cdot \mid \theta^{\prime}\right)$
3. if $d\left\{s\left(z_{i}\right), s(y)\right\}<\epsilon$, set $\theta_{i}=\theta^{\prime}$, repeat

- need to choose $s(\cdot), d(\cdot, \cdot)$
- Algorithm 2: sample space not finite

1. generate $\theta^{\prime} \sim \pi(\theta)$
2. simulate $z_{i} \sim f\left(\cdot \mid \theta^{\prime}\right)$
3. if $d\left\{s\left(z_{i}\right), s(y)\right\}<\epsilon$, set $\theta_{i}=\theta^{\prime}$, repeat

- after $N$ steps, $\theta_{1}, \ldots, \theta_{N}$ is a sample from

$$
\pi_{\epsilon}(\theta \mid y)=\int \pi_{\epsilon}(\theta, z \mid y) d z \propto \int \pi(\theta) f(z \mid \theta) 1\left\{z \in A_{\epsilon, y}\right\} d z
$$

- $\pi(\theta \mid y) \simeq \pi_{\epsilon}(\theta \mid y)$ if $\epsilon$ 'small enough' and $s(z)$ a 'good' summary statistic
- many improvements possible, using ideas from MCMC
- which generates samples from the posterior by sampling from a Markov chain with that stationary distribution
- many techniques for trying to ensure that sampling is from regions of $\Theta$ where $\pi(\theta \mid y)$ is large, without knowing $\pi(\theta \mid y)$


## High-dimensional inference

- $f(y ; \theta), y \in \mathbb{R}^{n} ; \theta \in \mathbb{R}^{p}, p$ large relative to $n$, or $p>n$
- Aside: empirical likelihood has $p=n-1$, yet usual asymptotic theory applies
- Partial likelihood has $p=n-1+d$, yet usual asymptotic theory applies
- "Neyman-Scott problems" have

$$
y_{i j} \sim f\left(\cdot ; \psi, \lambda_{i}\right), j=1, \ldots, m ; i=1, \ldots, k \text {, so } n=k m \text { and } p=1+k \text { i.e. }
$$

$p / n=O(1)$ if $m \rightarrow \infty, k$ fixed; ususal theory does not apply

- we concentrate on Bühlmann paper
- $y=X \beta+\epsilon, \quad \mathrm{E}(\epsilon)=0, \operatorname{cov}(\epsilon)=\sigma^{2}$ I
there is a very large literature
running example, $n=71, p=4088$

$$
\begin{aligned}
& \hat{\beta}_{\text {ridge }}=\arg \min _{\beta}\left\{\frac{1}{n}(y-X \beta)^{\mathrm{T}}(y-X \beta)+\lambda \sum_{j=1}^{p} \beta_{j}^{2}\right. \\
& \hat{\beta}_{\text {lasso }}=\arg \min _{\beta}\left\{\frac{1}{n}(y-X \beta)^{\mathrm{T}}(y-X \beta)+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right.
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\beta}_{\text {ridge }}=\arg \min _{\beta}\left\{\frac{1}{n}(y-X \beta)^{\mathrm{T}}(y-X \beta)+\lambda \sum_{j=1}^{p} \beta_{j}^{2}\right. \\
& \hat{\beta}_{\text {lasso }}=\arg \min _{\beta}\left\{\frac{1}{n}(y-X \beta)^{\mathrm{T}}(y-X \beta)+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right.
\end{aligned}
$$

- usual to assume $\sum_{i=1}^{n} x_{i j}=0, \sum_{i=1}^{n} x_{i j}^{2}=1$
so units are comparable $\hat{\beta}_{0}=\bar{y}$ is not 'shrunk'
- Lasso penalty leads to several $\hat{\beta}_{k}=0$
- there are many variations on the penalty term
- $\lambda$ is a tuning parameter


## ... high-dimensional inference

- Inferential goals (§2.2)
(a) prediction of surface $X \beta$ or $y_{\text {new }}=x_{\text {new }}^{\mathrm{T}} \beta$
(b) estimation of $\beta$
(c) estimation of $S=\left\{j: \beta_{j} \neq 0\right)$
'support set'
- re (c): define $\hat{S}=\left\{j: \hat{\beta}_{j} \neq 0\right\}$; to have $\operatorname{Pr}(\hat{S} \rightarrow S\}>1-\epsilon$, say need very strong conditions: $\min \left|\beta_{j}\right|>c, c \sim \sqrt{\log p / n}$
- plus condition on design
- often replaced by (c'): ‘screening’ $\hat{S} \supset S$ with high probability
also needs conditions on $x$
- can solve (b) and (c'), if $|S| \ll n / \log p$ and $\log p \ll n$
- re (a) prediction accuracy can be assessed by cross-validation
- note that (a) can be estimable even if $p>n$, as long as $X \beta$ of small enough dimension


## Inference about $\beta, \boldsymbol{p}>\boldsymbol{n}$

- $p$-values for testing $H_{o, j}: \beta_{j}=0$
- three methods suggested: multi-sample splitting, debiasing, stability selection
- multi-sample splitting: fit the model on random half, say, of observations, leads to $\hat{S}$
- use $X^{(\hat{S})}$ in fitting to the other half
- $P_{j}=p$-value for $t$-test of $H_{j}$ if $j \in \hat{S}$, o.w. 1
- $P_{\text {corr }, j}=P_{j} \times|\hat{S}|, j \in \hat{S}$, o.w. 1
- Repeat $B$ times and aggregate $P_{\text {corr, } j}^{b}$
- de-biasing $\hat{\beta}_{\text {ridge/Lasso,corr, } j}=\hat{b}_{j}$ - bias
- Can show resulting estimate $\hat{\beta}_{\text {ridge/Lasso,corr, } j} j \sim N\left(\beta_{j}, \sigma_{\epsilon}^{2} w_{j}\right) \quad w_{j}$ known
- $\hat{\beta}_{\text {ridge/Lasso,corr, }} \neq 0$, any $j$, so need multiplicity correction $\quad p=4088$
- on their example; Lasso selects 30 features; multi-sample selects 1; bias-corrected Ridge selects o; stability selection selects 3


## Non-linear models

- example $y_{i}$ independent, $\mathrm{E}\left(y_{i}\right)=\mu_{i}(\beta) ; g\left(\mu_{i}\right)=\beta_{0}+x_{i}^{\mathrm{T}} \beta$
- Lasso-type 'mle': arg min $\left\{-\frac{1}{n} \ell\left(\beta, \beta_{0} ; y\right)+\lambda \Sigma_{j=1}\left|\beta_{j}\right|\right\} \quad \beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$
- can use multi-sample splitting or stability selection
- a version of de-biasing applies to GLMs, based on weighted least squares
- a marginal approach would fit $y=\alpha_{0}+\alpha_{j} x^{(j)}$, one feature at a time
- leading to $4088 p$-values, and then need techniques for controlling FWER or FDR
- Model: $y_{i}=x_{i}^{\mathrm{T}} \beta+Z_{i}, \quad i=1, \ldots, n$
- M-estimation:

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \psi\left(y_{i}-x_{i}^{\mathrm{T}} \hat{\beta}\right)=0 \tag{1}
\end{equation*}
$$

- result: if $\psi$ is monotone, and $p \log (p) / n \rightarrow 0$, and conditions on $X$, then

$$
\text { there is a solution of }(1) \text { satisfying }\|\hat{\beta}-\beta\|^{2}=O(p / n)
$$

- "rows of $X$ behave like a sample from a distribution in $\mathbb{R}^{p "}$
- if $p^{3 / 2} \log n / n \rightarrow 0$, then

$$
\max \left|x_{i}^{\mathrm{T}}(\hat{\beta}-\beta)\right| \xrightarrow{p} \mathrm{o}
$$

- and

$$
\begin{aligned}
a_{n}^{\mathrm{T}}(\hat{\beta}-\beta) \xrightarrow{d} & N\left(\mathrm{O}, \sigma^{2}\right) \\
& \sigma^{2}=a_{n}^{\mathrm{T}}\left(X^{\mathrm{T}} X\right)^{-1} a_{n} \mathrm{E} \psi^{2}(Z) /\left\{E \psi^{\prime}(Z)\right\}^{2}
\end{aligned}
$$

- Model: $y_{i} \sim \exp \left\{\theta^{\mathrm{T}} y-\psi(\theta)\right\}, i=1, \ldots, n$
- maximum likelihood estimate $\psi^{\prime}\left(\hat{\theta}_{n}\right)=\bar{y}_{n}$
- under conditions on the eigenvalues of $\psi^{\prime \prime}(\theta)$ and moment conditions on $y$,

Fisher information matrix

$$
\begin{aligned}
& \left\|\hat{\theta}_{n}-\theta_{n}\right\|^{2} \leq c \frac{p}{n}, \text { in probability }, \\
& \|\hat{\theta}-\theta-\bar{y}\|=O_{p}(p / n) \text { if } p / n \rightarrow 0
\end{aligned}
$$

- $p^{3 / 2} / n \rightarrow 0$ :

$$
\sqrt{n} a_{n}^{\mathrm{T}}(\hat{\theta}-\theta) \xrightarrow{d} N(0,1),
$$

likelihood ratio test of simple hypothesis asymptotically $\chi_{p}^{2}$

- "asymptotic approximations are trustworthy if $p^{3 / 2} / n$ is small, but may be very wrong if $p^{2} / n$ is not small"
- MLE 'will tend to be' consistent if $p / n \rightarrow 0$ cf. also El Karoui et al., 2013, PNAS


## Asymptotic theory, overview

- Sartori '03
- Neyman Scott problems as above
- profile likelihood inference okay if $p=o\left(n^{1 / 2}\right)$
- modified PL inference okay if $p=o\left(n^{3 / 4}\right)$
- Portnoy '84
- MLE "will tend to be consistent" if $p / n \rightarrow 0$
- asymptotic approixmations okay if $p^{3 / 2} / n \rightarrow 0$
- and fail if $p^{2} / n \rightarrow 0$
- classical $p / n \rightarrow 0, p$ fixed, $n \rightarrow \infty$
- semi-classical $p_{n} / n \rightarrow 0$ or $p_{n}^{3 / 2} / n \rightarrow 0$
- moderate dimensions $p_{n} / n \rightarrow \beta$
- high dimensions $p_{n} / n \rightarrow \infty$
- ultra-high dimensions $p_{n} \sim e^{n}$

