- likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood
- 2. semi-parametric likelihood, partial likelihood
- 3. empirical likelihood, penalized likelihood
- 4. quasi-likelihood, composite likelihood
- 5. simulated likelihood, indirect inference
- **6.** likelihood inference for p > n
- bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local likelihood, sieve likelihood

STA 4508 Nov 20 2018

November 20

- HW2 and HW4 notes please see updates on web page
- Godambe information
- quasi-likelihood
- indirect inference
- high-dimensional inference

Exercises November 13

- Consider the simple linear regression model Y_i = β_i + β_ix_i + ε_i, where ε_i are independent normal random variables with expected value zero and variance σ²_i = σ²(1 + γx²_i), i = 1,..., n. Simulate 1000 datasets of length n = 50 with parameters β₀ = 1, β_i = 1, σ² = 3, γ = 2 and covariate x_i simulated from a U(−1, 1).
 - (a) Fit each dataset with a simple linear regression model (assuming γ = 0), and comparecompute the simulation mean and variance of β₁ to that computed from the fitted model with γ = 0.
 - (b) Compare the true and estimated sandwich variance of β̂₁ based on the Godambe information matrix to the naive estimate from (a) (from the regression output).
 - (c) The true var(ħ) can be computed (tedioasky) from the appropriate element of G⁻¹, where Ger(1) is the Gedmike information. Somewhat confusingly, this is a 3×3 matrix, since the fitted model has just 3 parameters, but it depends on (\$\$,\$\$,\$\$,\$\$,\$\$,\$\$^{*},\$\$) (and these values are known since we are simulating). (Royal "w⁰) The estimated value of the Godambe information is less clear, because we have no estimate of γ. However, if we compute the

 3×1 score vector for each observation, say $U_i(\beta_0,\beta_1,\sigma^2)$ we can estimate ${\rm E}(UU^{\tau})$ by

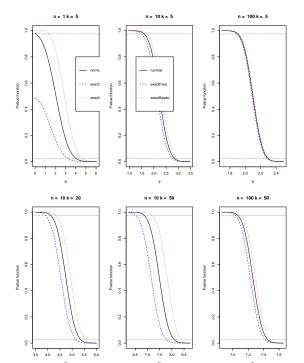
$$\frac{1}{n}\sum_{i=1}^{n}U_{i}(\hat{\theta})U_{i}(\hat{\theta})^{T}.$$
(1)

General least-squares theory shows that if $y \sim N(X\beta, \sigma^2 W)$, then $\hat{\beta}_{LS} = (X^T X)^{-1} X^T y$ has expected value β and variance

 $\sigma^{2}(X^{T}X)^{-1}(X^{T}WX)(X^{T}X)^{-1},$

where W is a diagonal matrix whose entries can be estimated using $\hat{\epsilon}$. This agrees with what I got using (1).

So together (a) and (b) ask you to compare the simulation variance of $\hat{\beta}_1$ with its true variance under the model, the estimated variance using (1), and the estimated variance from the regression fit $(\sigma^2(X^*X)^{-1})$.



• Recall: generalized linear model y_1, \ldots, y_n independent, with

 $f(\mathbf{y}_i \mid \mathbf{x}_i; \beta, \phi) = \exp[\{\mathbf{y}_i \theta_i - \mathbf{C}(\theta_i)\} / \phi + h(\mathbf{y}_i, \phi)]$

- + ϕ a scale parameter in this exponential family
- $\mathsf{E}(y_i) = \mu_i = \mathsf{C}'(\theta_i)$ Exercises 1

•
$$\operatorname{var}(y_i) = \phi V(\mu_i) = \phi c''(\theta_i)$$

• $g(\mu_i) = \mathbf{X}_i^{\mathrm{T}} \boldsymbol{\beta}$ link function

- link function converts $\theta_{n \times 1}$ to $\beta_{p \times 1}$
- Standard V(μ): Normal- 1; Gamma- μ^2 ; Poisson- μ ; Bernoulli- $\mu(1 \mu)$

$$\ell(\beta,\phi;\mathbf{y}) = \sum_{i=1}^{n} \left\{ \frac{\mathbf{y}_i \theta_i - \mathbf{c}(\theta_i)}{\phi} + h(\mathbf{y}_i,\phi) \right\}$$

.

variance function

log-likelihood

$$\ell(\beta,\phi;\mathbf{y}) = \sum_{i=1}^{n} \left\{ \frac{y_i \theta_i - c(\theta_i)}{\phi} + h(y_i,\phi) \right\}$$

score function

$$\frac{\partial \ell}{\partial \beta_{\mathsf{r}}} = \sum_{i=1}^{\mathsf{n}} \frac{\partial \ell_i}{\partial \mu_i} \frac{\partial \mu_i}{\partial \beta_{\mathsf{r}}} = \sum_{i=1}^{\mathsf{n}} \frac{\mathsf{y}_i - \mu_i}{\phi \mathsf{V}(\mu_i)} \frac{\partial \mu_i}{\partial \beta_{\mathsf{r}}}$$

• MLE

$$\sum_{i=1}^n \frac{y_i - \mu_i}{V(\mu_i)} \frac{x_{ir}}{g'(\mu_i)} = 0$$

• Bartlett identity:

$$\mathsf{E}\left\{\frac{\partial\ell^2}{\partial\beta_r\partial\beta_s} + \frac{\partial\ell}{\partial\beta_r}\frac{\partial\ell}{\partial\beta_s}\right\} = \mathsf{O}$$

... quasi-likelihood

• Suppose instead of a generalized linear model, we had only a partially specified model:

$$\mathsf{E}(\mathbf{y}_i) = \mu_i, \operatorname{var}(\mathbf{y}_i) = \phi \mathsf{V}(\mu_i), \ \mathbf{g}(\mu_i) = \mathbf{x}_i^{\mathrm{T}} \beta$$

- $g(\cdot), V(\cdot)$ known
- · unbiased estimating equation

$$g(\mathbf{y};\beta) = \sum_{i=1}^{n} \frac{\mathbf{y}_i - \mu_i}{\mathbf{V}(\mu_i)} \frac{\mathbf{x}_{ir}}{g'(\mu_i)}$$

- using result from Exercises, if $g(y; \tilde{\beta}) = 0$, then asymptotic variance of $\tilde{\beta}$ is

$$\mathsf{E}\left\{-\frac{\partial g(y;\beta)}{\partial \beta^{\mathrm{T}}}\right\}^{-1}\mathsf{var}\{g(y;\beta)\}\mathsf{E}\left\{-\frac{\partial g(y;\beta)}{\partial \beta}\right\}^{-1}$$

as with composite likelihood

... quasi-likelihood

• With
$$g(y;\beta) = \Sigma g_i(y_i;\beta) = \sum \frac{y_i - \mu_i}{\phi V(\mu_i)} \frac{x_{ir}}{g'(\mu_i)}$$

•
$$E\left\{-\frac{\partial g(y;\beta)}{\partial \beta^{\mathrm{T}}}\right\} = \sum_{i=1}^{n} x_i x_i^{\mathrm{T}} \frac{1}{g'(\mu_i)^2 \phi V(\mu_i)} = \phi^{-1} X^{\mathrm{T}} W X = \operatorname{var}\{g(y;\beta)\}$$

- $W = \text{diag}(w_j), \quad w_j = \{g'(\mu_j)^2 V(\mu_j)\}^{-1}, j = 1, ..., n$
- quasi-likelihood function

$$Q(\beta; \mathbf{y}) = \sum_{i=1}^{n} \int_{y_i}^{\mu_i} \frac{y_i - u}{\phi V(u)} du$$

- · this only works for models of this form
- called quasi-likelihood because $\partial Q/\partial \beta$ gives estimating equation with expected value 0, and 2nd Bartlett identity holds

• suppose now our observations come in groups:

 $y_{ij}, j = 1, ..., m_i; i = 1, ..., n$

- · could be repeated measurements on subjects
- or measurements of members of the same cluster/family/group
- assume GLM-type structure $E(y_{ij}) = \mu_{ij}$, $g(\mu_{ij}) = x_{ij}^{T}\beta + z_{ij}^{T}b_{i}$
- random effects b_i induce correlation among observations in the same group; e.g. assume b_i ~ N(0, Ω_b)
- GLM variance structure $var(y_{ij}) = V_i(\beta, \alpha)$ for example
- + α are extra parameters in the variance-covariance matrix
- QL-type estimating equations

$$\sum_{i=1}^{n} \left(\frac{\partial \mu_i}{\partial \beta^{\mathrm{T}}}\right)^{\mathrm{T}} V_i^{-1}(\alpha,\beta)(y_i - \mu_i) = 0$$

$$\sum_{i=1}^{n} \left(\frac{\partial \mu_i}{\partial \beta^{\mathrm{T}}}\right)^{\mathrm{T}} V_i^{-1}(\alpha,\beta)(y_i - \mu_i) = 0$$

- parameter α in variance function doesn't divide out, as in univariate case
- we will need an estimate $\hat{\alpha}$ from somewhere

many suggestions in the literature

- Liang & Zeger suggested using a "working covariance matrix" to get an estimate of β
- e.g. could assume independence, or AR(1), or ...
- estimates of β will still be consistent, but the asymptotic variance will be of the sandwich form as the model is misspecified
- there is no integrated function that serves as a quasi-likelihood in this setting

- true model complex, but can be simulated as the system $y_t = G(y_{t-1}, x_t, u_t; \beta), t = 1, \dots, T$
- *G* is known function, x_t is observed ('exogenous'), u_t is noise (possibly i.i.d. *F*), $\beta \in \mathbb{R}^k$ to be estimated
- simpler working model has density $f(y_t \mid y_{t-1}, x_t; \theta)$; $\theta \in \mathbb{R}^p, p \ge k$
- maximum likelihood estimate $\hat{\theta} = \hat{\theta}(y)$ easy to obtain
- 1. simulate $\tilde{u}_1^m, \ldots \tilde{u}_t^m$ from F
 - 2. choose β and construct $\tilde{y}_1^m(\beta), \ldots, y_t^m(\beta)$
 - 3. use simulated data to estimate $\boldsymbol{\theta}$
- $\tilde{\theta}(\beta) = \operatorname{argmax}_{\theta} \sum_{m=1}^{M} \sum_{t=1}^{T} \log f\{\tilde{y}_{t}^{m}(\beta) \mid \tilde{y}_{t-1}^{m}(\beta), x_{t}, \theta\}$
- estimate β by minimizing $d\{\hat{\theta}, \tilde{\theta}(\beta)\}$ for some distance measure

... indirect inference

- $\tilde{\theta}(\beta) = \operatorname{argmax}_{\theta} \sum_{m=1}^{M} \sum_{t=1}^{T} \log f\{\tilde{y}_{t}^{m}(\beta) \mid \tilde{y}_{t-1}^{m}(\beta), x_{t}, \theta\}$
- $\tilde{\beta} = \operatorname{argmin}_{\beta} d\{\hat{\theta}, \tilde{\theta}(\beta)\}$
- as $T o \infty$, $ilde{ heta}(eta) o h(eta)$ and $\hat{ heta} o heta_{ ext{o}}$

- pseudo-true value, θ^*
- if p = k then $h(\cdot)$ is one-to-one and can be inverted: $h^{-1}(\theta_0) = \beta; h^{-1}(\hat{\theta}) = \hat{\beta}$
- when p > k need to choose $d(\cdot, \cdot)$
 - 1. Wald $\hat{\beta}_{W} = \operatorname{argmin}_{\beta} \{ \hat{\theta} \tilde{\theta}(\beta) \}^{\mathrm{T}} W \{ \hat{\theta} \tilde{\theta}(\beta) \}$
 - 2. score $\hat{\beta}_{S} = \operatorname{argmin}_{\beta} S(\beta)^{\mathrm{T}} VS(\beta)$, $S(\beta) = \sum_{m=1}^{M} \sum_{t=1}^{T} \partial \log f\{\tilde{y}_{t}^{m}(\beta) \mid \tilde{y}_{t-1}^{m}(\beta), x_{t}, \hat{\theta}\} / \partial \theta$
 - 3. $\hat{\beta}_{LR} = \operatorname{argmin}_{\beta} \sum_{t=1}^{T} [\log f\{y_t \mid y_{t-1}, x_t, \hat{\theta}) \log f\{y_t \mid y_{t-1}, x_t, \tilde{\theta}(\beta)\}]$

STA 4508 Nov 20 2018

... indirect inference

- it is not necessary that $\hat{\theta}$ be the mle under the working model
- we could instead assume some statistic $\hat{s}(y)$ of dimension p
- perhaps obtained by solving $\sum_{t=1}^{T} h(y_t; s) = 0$ for an estimating equation
- we will probably have something like $\sqrt{T\{\hat{s} s(\beta)\}} \rightarrow N_p(0, \nu)$
- $H(\beta; \hat{\mathbf{s}}) = \{\hat{\mathbf{s}} \mathbf{s}(\beta)\}^{\mathrm{T}} \nu^{-1}\{\hat{\mathbf{s}} \mathbf{s}(\beta)\}$
- $\tilde{\beta} = \operatorname{argmin}_{\beta} H(\beta; \hat{s})$
- $\exp\{-H(\beta; \hat{s})\}$ called 'indirect likelihood'

Jiang & Turnbull '04

- often \hat{s} will be a set of moments of the observed data

prior

- a similar use of simulation to avoid computation of complex likelihood functions
- model $f(y \mid \theta)$, prior $\pi(\theta)$ posterior $\pi(\theta \mid y) \propto f(y \mid \theta)\pi(\theta)$
- Algorithm 1: assume y takes values in a finite set ${\mathcal D}$
 - 1. generate $heta' \sim \pi(heta)$
 - 2. simulate $z_i \sim f(\cdot \mid \theta')$
 - 3. if $z_i = y$, set $\theta_i = \theta'$, repeat
- after *N* steps, $\theta_1, \ldots, \theta_N$ is a sample from $\pi(\theta \mid y)$
- because $\sum_{z_i \in D} \pi(\theta_i) f(z_i \mid \theta_i) \mathbb{1}\{y = z_i\} \propto \pi(\theta_i) f(y \mid \theta_i)$
- Algorithm 2: sample space not finite
 - 1. generate $heta' \sim \pi(heta)$
 - 2. simulate $z_i \sim f(\cdot \mid \theta')$
 - 3. if $d{s(z_i), s(y)} < \epsilon$, set $\theta_i = \theta'$, repeat
- need to choose $s(\cdot)$, $d(\cdot, \cdot)$

... ABC

- Algorithm 2: sample space not finite
 - 1. generate $heta' \sim \pi(heta)$
 - 2. simulate $z_i \sim f(\cdot \mid \theta')$
 - 3. if $d{s(z_i), s(y)} < \epsilon$, set $\theta_i = \theta'$, repeat
- after *N* steps, $\theta_1, \ldots, \theta_N$ is a sample from

$$\pi_{\epsilon}(\theta \mid y) = \int \pi_{\epsilon}(\theta, z \mid y) dz \propto \int \pi(\theta) f(z \mid \theta) \mathbb{1}\{z \in \mathsf{A}_{\epsilon, y}\} dz$$

- $\pi(\theta \mid y) \simeq \pi_{\epsilon}(\theta \mid y)$ if ϵ 'small enough' and s(z) a 'good' summary statistic
- many improvements possible, using ideas from MCMC
- which generates samples from the posterior by sampling from a Markov chain with that stationary distribution
- many techniques for trying to ensure that sampling is from regions of Θ where $\pi(\theta \mid y)$ is large, without knowing $\pi(\theta \mid y)$

- $f(y; \theta), y \in \mathbb{R}^n$; $\theta \in \mathbb{R}^p$, p large relative to n, or p > n
 - Aside: empirical likelihood has p = n 1, yet usual asymptotic theory applies
 - Partial likelihood has p = n 1 + d, yet usual asymptotic theory applies
 - "Neyman-Scott problems" have $y_{ij} \sim f(\cdot; \psi, \lambda_i), j = 1, \dots, m; i = 1, \dots, k$, so n = km and p = 1 + k i.e. p/n = O(1) if $m \to \infty, k$ fixed; usual theory does not apply
- we concentrate on Bühlmann paper there is a very large literature
- $\mathbf{y} = \mathbf{X}\beta + \epsilon$, $\mathsf{E}(\epsilon) = \mathsf{O}, \operatorname{cov}(\epsilon) = \sigma^2 I$ running example, n = 71, p = 4088

$$\hat{\beta}_{ridge} = \arg \min_{\beta} \{ \frac{1}{n} (y - X\beta)^{\mathrm{T}} (y - X\beta) + \lambda \sum_{j=1}^{p} \beta_{j}^{2}, \\ \hat{\beta}_{lasso} = \arg \min_{\beta} \{ \frac{1}{n} (y - X\beta)^{\mathrm{T}} (y - X\beta) + \lambda \sum_{j=1}^{p} |\beta_{j}| \}$$
STA 4508 Nov 20 2018

... high-dimensional inference

$$\hat{\beta}_{ridge} = \arg\min_{\beta} \{\frac{1}{n}(y - X\beta)^{\mathrm{T}}(y - X\beta) + \lambda \sum_{j=1}^{p} \beta_{j}^{2}, \\ \hat{\beta}_{lasso} = \arg\min_{\beta} \{\frac{1}{n}(y - X\beta)^{\mathrm{T}}(y - X\beta) + \lambda \sum_{j=1}^{p} |\beta_{j}|$$

• usual to assume
$$\sum_{i=1}^{n} x_{ij} = 0, \sum_{i=1}^{n} x_{ij}^2 = 1$$

so units are comparable $\hat{\beta}_{o} = \bar{y}$ is not 'shrunk'

• Lasso penalty leads to several $\hat{\beta}_k = 0$

sparse solutions

- there are many variations on the penalty term
- λ is a tuning parameter

often selected by cross-validation

• Inferential goals (§2.2)

(a) prediction of surface $X\beta$ or $y_{new} = x_{new}^{T}\beta$ (b) estimation of β (c) estimation of $S = \{j : \beta_j \neq 0\}$ (support set)

- re (c): define $\hat{S} = \{j : \hat{\beta}_j \neq 0\}$; to have $Pr(\hat{S} \rightarrow S\} > 1 \epsilon$, say need very strong conditions: min $|\beta_j| > c$, $c \sim \sqrt{\log p/n} \simeq 0.34$
- plus condition on design
- + often replaced by (c'): 'screening' $\hat{S} \supset S$ with high probability

also needs conditions on X

- can solve (b) and (c'), if $|S| << n/\log p$ and $\log p << n$
- re (a) prediction accuracy can be assessed by cross-validation
- note that (a) can be estimable even if p > n, as long as Xβ of small enough dimension

Inference about β , p > n

- *p*-values for testing $H_{o,j}$: $\beta_j = o$
- three methods suggested: multi-sample splitting, debiasing, stability selection
- multi-sample splitting: fit the model on random half, say, of observations, leads to $\hat{\mathsf{S}}$
- use $X^{(\hat{S})}$ in fitting to the other half
- $P_j = p$ -value for t-test of H_j if $j \in \hat{S}$, o.w. 1
- $P_{corr,j} = P_j \times |\hat{S}|, j \in \hat{S}$, o.w. 1
- Repeat B times and aggregate $P^b_{corr,j}$
- de-biasing $\hat{eta}_{\textit{ridge/Lasso,corr,j}} = \hat{b}_j {\sf bias}$ see paper
- Can show resulting estimate $\hat{\beta}_{ridge/Lasso,corr,j} \sim N(\beta_j, \sigma_e^2 w_j)$ w_j known
- $\hat{\beta}_{ridge/Lasso,corr,j} \neq$ 0, any *j*, so need multiplicity correction p = 4088
- on their example; Lasso selects 30 features; multi-sample selects 1; bias-corrected Ridge selects 0; stability selection selects 3

Non-linear models

- example y_i independent, $E(y_i) = \mu_i(\beta)$; $g(\mu_i) = \beta_0 + x_i^T\beta$
- Lasso-type 'mle': arg min $\{-\frac{1}{n}\ell(\beta,\beta_0;y) + \lambda \Sigma_{j=1}|\beta_j|\}$ $\beta = (\beta_1,\dots,\beta_p)$
- · can use multi-sample splitting or stability selection
- a version of de-biasing applies to GLMs, based on weighted least squares

- a marginal approach would fit $y = \alpha_0 + \alpha_j x^{(j)}$, one feature at a time
- leading to 4088 *p*-values, and then need techniques for controlling FWER or FDR

• Model: $y_i = x_i^{\mathrm{T}}\beta + Z_i, \quad i = 1, \dots, n$

independent

• M-estimation:

$$\sum_{i=1}^{n} x_i \psi(y_i - x_i^{\mathrm{T}} \hat{\beta}) = 0$$
(1)

- result: if ψ is monotone, and $p \log(p)/n \rightarrow 0$, and conditions on X, then

there is a solution of (1) satisfying $||\hat{\beta} - \beta||^2 = O(p/n)$

• "rows of X behave like a sample from a distribution in \mathbb{R}^{p^n} "

ľ

0

• if $p^{3/2} \log n/n \to 0$, then

$$\max |X_i^{\mathrm{T}}(\hat{eta} - eta)| \stackrel{p}{
ightarrow} \mathsf{O}$$

and

$$\sigma_n^{\mathrm{T}}(\hat{\beta} - \beta) \xrightarrow{d} \mathsf{N}(\mathbf{0}, \sigma^2)$$
$$\sigma^2 = a_n^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}a_n\mathsf{E}\psi^2(Z)/\{\mathsf{E}\psi'(Z)\}^2$$
21

STA 4508 Nov 20 2018

• Model: $y_i \sim \exp\{\theta^{\mathrm{T}}y - \psi(\theta)\}, i = 1, \dots, n$

independent; $p = p_n$

- maximum likelihood estimate $\psi'(\hat{\theta}_n) = \bar{y}_n$
- under conditions on the eigenvalues of $\psi''(\theta)$ and moment conditions on y, Fisher information matrix

$$||\hat{\theta}_n - \theta_n||^2 \le c \frac{p}{n}$$
, in probability,

$$||\hat{\theta} - \theta - \bar{y}|| = O_p(p/n) \text{ if } p/n \to 0,$$

• $p^{3/2}/n
ightarrow$ 0:

$$\sqrt{n}a_n^{\mathrm{T}}(\hat{\theta}-\theta) \stackrel{d}{\rightarrow} N(0,1),$$

likelihood ratio test of simple hypothesis asymptotically χ^2_p

- "asymptotic approximations are trustworthy if $p^{3/2}/n$ is small, but may be very wrong if p^2/n is not small"
- MLE 'will tend to be' consistent if p/n
 ightarrow o

- Sartori '03
 - Neyman Scott problems as above
 - profile likelihood inference okay if $p = o(n^{1/2})$
 - modified PL inference okay if $p = o(n^{3/4})$
- Portnoy '84
 - MLE "will tend to be consistent" if p/n
 ightarrow 0
 - asymptotic approixmations okay if $p^{3/2}/n
 ightarrow$ 0
 - and fail if $p^2/n \to 0$
- classical p/n
 ightarrow 0, p fixed, $n
 ightarrow \infty$
- semi-classical $p_n/n
 ightarrow$ o or $p_n^{3/2}/n
 ightarrow$ o
- moderate dimensions $p_n/n \rightarrow \beta$
- high dimensions $p_n/n \to \infty$
- ultra-high dimensions $p_n \sim e^n$

- Portnoy, Sartori
- Sur & Candes '17