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Various ‘types’ of likelihood

1. likelihood, marginal likelihood, conditional likelihood, pro�le
likelihood, adjusted pro�le likelihood

2. semi-parametric likelihood, partial likelihood

3. empirical likelihood, penalized likelihood

4. quasi-likelihood, composite likelihood

5. simulated likelihood, indirect inference

6. bootstrap likelihood, h-likelihood, weighted likelihood,
pseudo-likelihood, local likelihood, sieve likelihood
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Why so many?

• Principle: “The probability model and the choice of [parameter]
serve to translate a subject-matter question into a mathematical
and statistical one” Cox, 2006, p.3

• likelihood function is proportional to the probability model

• inference based on the likelihood function is widely accepted
• provides more than point estimate or test of point hypothesis

• models needed for applications are more and more complex

• need some analogues to the likelihood function for these complex
settings
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The likelihood function

• Parametric model: f (y; θ), y ∈ Y, θ ∈ Θ ⊂ Rp

• Likelihood function

L(θ; y) = f (y; θ), or L(θ; y) = c(y)f (y; θ), or L(θ; y) ∝ f (y; θ)

• typically, y = (y1, . . . , yn) x1, . . . , xn i = 1, . . . , n

• f (y; θ) or f (y | x; θ) is joint density

• under independence L(θ; y) ∝
∏
f (yi | xi; θ)

• log-likelihood `(θ; y) = log L(θ; y) =
∑

log f (yi | xi; θ)

• θ could have dimension p > n (e.g. genetics), or d ↑ n, or
• θ could have in�nite dimension e.g.
• regular model p < n and p �xed as n increases
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Examples

• yi ∼ N(µ, σ2):

L(θ; y) =
n∏
i=1

σ−n exp{− 1
2σ2 (yi − µ)2}

• E(yi) = xTi β:

L(θ; y) =
n∏
i=1

σ−n exp{− 1
2σ2 (yi − xTi β)2}

• E(yi) = m(xi), m(x) = ΣJ
j=1φjBj(x):

L(θ; y) =
n∏
i=1

σ−n exp{− 1
2σ2 (yi − ΣJ

j=1φjBj(xi))2}
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... examples

• yi = µ+ ρ(yi−1 − µ) + εi, εi ∼ N(0, σ2):

L(θ; y) =
n∏
i=1

f (yi | yi−1; θ)f0(y0; θ)

• y1, . . . , yn i.i.d. observations from a U(0, θ) distribution:

L(θ; y) =
n∏
i=1

θ−n, 0 < y(1) < · · · < y(n) < θ
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... examples

• y1, . . . , yn are the times of jumps of a non-homogeneous Poisson
process with rate function λ(·):

`{λ(·); y} =
n∑
i=1

log{λ(yi)} −
∫ τ

0
λ(u)du, 0 < y1 < · · · < yn < τ

Davison, §6.5

• multinomial: yi = (yi1, . . . , yik), yic = 1, yic′ = 0, c′ 6= c

`(θ; y) =
n∑
i=1

k∑
c=1

yic log(pic)

negative cross-entropy Hastie et al., Ch. 7
pic = p(xic; θ), as above
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Data: times of failure of a spring under stress
225, 171, 198, 189, 189, 135, 162, 135, 117, 162



Complicated likelihoods

• example: clustered binary data Renard et al. (2004)

• latent variable: zir = x′irβ + bi + εir, bi ∼ N(0, σ2b), εir ∼ N(0, 1)
• r = 1, . . . ,ni: observations in a cluster/family/school...
i = 1, . . . ,n clusters

• random e�ect bi introduces correlation between
observations in a cluster

• observations: yir = 1 if zir > 0, else 0

• Pr(yir = 1 | bi) = Φ(x′irβ + bi) = pi Φ(z) =
∫ z 1√

2πe
−x2/2dx

L(θ; y) =
n∏
i=1

∫ ∞
−∞

ni∏
r=1

piyir(1− pi)1−yirφ(bi, σ2b)dbi

• more general: zir = x′irβ + w′irbi + εir
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... complicated likelihoods

• generalized linear geostatistical models

E{Y(s) | u(s)} = g{x(s)Tβ + u(s)}, s ∈ S ⊂ Rd,d ≥ 2

Diggle & Ribeiro, 2007
• random intercept u is a realization of a stationary GRF, mean 0,
covariance

cov{u(s),u(s′)} = σ2ρ(s− s′;α)

• n observed locations y = (y1, . . . , yn) with yi = y(si)
• likelihood function

L(θ; y) =

∫
Rn

n∏
i=1

f (yi | ui; θ) f (u; θ)︸ ︷︷ ︸
MVN(0,Σ)

du1 . . .dun

• no factorization into lower dimensional integrals, as with previous
example
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Non-computable likelihoods

• Ising model:
f (y; θ) = exp(

∑
(i,j)∈E

θijyiyj)
1

Z(θ)

• yi = ±1; binary property of a node i in a graph with n nodes
• θij measures strength of interaction between nodes i and j
• E is the set of edges between nodes

• partition function Z(θ) =
∑

y exp(
∑

(i,j)∈E θijyiyj)

Davison §6.2
Ravikumar et al. (2010).

High-dimensional Ising model selection... Ann. Statist. p.1287
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History
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History
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History
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Why likelihood?

• makes probability modelling central
• emphasizes the inverse problem of reasoning
from y0 to θ or f (·)

• suggested by Fisher as a measure of plausibility
Royall, 1994

L(θ̂)/L(θ) ∈ (1, 3) very plausible;
L(θ̂)/L(θ) ∈ (3, 10) implausible;
L(θ̂)/L(θ) ∈ (10,∞) very implausible

• converts a ‘prior’ probability π(θ) to a posterior π(θ | y)

via Bayes’ formula
• provides a conventional set of summary quantities for inference
based on properties of the postulated model
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... why likelihood?

• likelihood function depends on data only through su�cient
statistics

• “likelihood map is su�cient” Fraser & Naderi, 2006

• gives exact inference in transformation models
• “likelihood function as pivotal” Hinkley, 1980

• provides summary statistics with known limiting distribution
• leading to approximate pivotal functions,
based on normal distribution

• likelihood function + sample space derivative gives better
approximate inference
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Likelihood inference

• direct use of likelihood function
• note that only relative values are well-de�ned

• de�ne relative likelihood RL(θ) =
L(θ)

supθ′ L(θ′)
=
L(θ)

L(θ̂)

SM (4.11)

STA 4508 October 16 2018 19



... likelihood inference

• combine with a probability density for θ
•

π(θ | y) =
f (y; θ)π(θ)∫
f (y; θ)π(θ)dθ

• inference for θ via probability statements from π(θ | y)

• e.g., “Probability (θ > 0 | y) = 0.23”, etc.

• any other use of likelihood function for inference relies on derived
quantities and their distribution under the model

• the Likelihood Principle states two experiments with proportional
likelihood functions lead to the same inference about the same
parameter C& H, 1974, p.39 (strong likelihood)
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Derived quantities, single observation

observed likelihood L(θ; y) = c(y)f (y; θ)

log-likelihood `(θ; y) = log L(θ; y) = log f (y; θ) + a(y)

score U(θ) = ∂`(θ; y)/∂θ

observed information j(θ) = −∂2`(θ; y)/∂θ∂θT

expected information i(θ) = EθU(θ)U(θ)T called i1(θ) in CH
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... derived quantities, i.i.d. sample

observed likelihood L(θ; y) ∝
∏n

i=1 f (yi; θ)

log-likelihood `(θ; y) =
∑n

i=1 log f (y; θ)+a(y)

score U(θ) = ∂`(θ; y)/∂θ = Op(
√
n)

maximum likelihood estimate θ̂ = θ̂(y) = arg supθ `(θ; y)

Fisher information j(θ̂) = −∂2`(θ̂; y)/∂θ∂θT = Op(n)

expected information i(θ) = EθU(θ)U(θ)T = O(n)
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Bartlett identities

1 =

∫
f (y; θ)dy endpoints not speci�ed

0 =
∂

∂θ

∫
f (y; θ)dy

=

∫
∂

∂θ
f (y; θ)dy but can’t involve θ

=

∫
∂

∂θ
`(θ; y)f (y; θ)dy = Eθ{U(θ; Y)}

0 =
∂

∂θ

∫
∂

∂θ
`(θ; y)f (y; θ)dy

=

∫
[
∂2

∂θ∂θT
`(θ; y) + { ∂

∂θ
`(θ; y)}{ ∂

∂θ
`(θ; y)}T]f (y; θ)dy

⇒ Eθ{U(θ)UT(θ)} = Eθ{−
∂2

∂θ∂θT
`(θ; y)}

i(θ) = Eθ{j(θ)}
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... Bartlett identities

You can keep going, as long as the endpoints don’t depend on θ, the
log-density is di�erentiable, and the required moments exist.

From the book Tensor Methods by McCullagh:

Or when θ is a vector:
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Limiting distributions

• U(θ) =
∑n

i=1 Ui(θ)

• E{U(θ)} = 0

• var{U(θ)} = ni1(θ)

• U(θ)/
√
n d→ N{0, i1(θ)} need 0 < i1(θ) <∞

• Note that could have not i.d., or not independent, if we can still
prove the limiting normality of the sum. E.g. Lindeberg-Feller type
conditions, or weak dependence
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... limiting distributions

• U(θ)/
√
n d→ N{0, i1(θ)}

• U(θ̂) = 0 = U(θ) + (θ̂ − θ)U′(θ) + Rn

• (θ̂ − θ) = {U(θ)/i(θ)}{1+ op(1)}

• √n(θ̂ − θ)
d→ N{0, i−11 (θ)}
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... limiting distributions

• √n(θ̂ − θ)
d→ N{0, i−11 (θ)}

• `(θ) = `(θ̂) + (θ − θ̂)`′(θ̂) + 1
2 (θ − θ̂)2`′′(θ̂) + Rn

• 2{`(θ̂)− `(θ)} = (θ̂ − θ)2i(θ){1+ op(1)}

• 2{`(θ̂)− `(θ)} d→ χ2d
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Inference from limiting distributions

• θ̂ .∼ Nd{θ, j−1(θ̂)} j(θ̂) = −`′′(θ̂; y)

• “θ is estimated to be 21.5 (95% CI 19.5− 23.5)”
• θ̂ ± 2σ̂

• w(θ) = 2{`(θ̂)− `(θ)} .∼ χ2d
• “likelihood based CI for θ with con�dence level 95% is (18.6, 23.0)”
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p-value functions of θ

•

ru(θ) = U(θ)j−1/2(θ̂)
.∼ N(0, 1)

re(θ) = (θ̂ − θ)j1/2(θ̂),

r(θ) = sign(θ̂ − θ)[2{`(θ̂)− `(θ)}]1/2

• approximate pivotal quantities

Pr{ru(θ) ≤ r0u(θ)} .= Φ{r0u(θ)}

under sampling from the model f(y; θ) = f(y1, . . . , yn; θ)

• p-value function (of θ, for �xed data)

pu(θ) = Φ{r0u(θ)}

• similarly pe(θ) = Φ{re(θ)}, pr(θ) = Φ{r(θ)} are also
p-value functions for θ, based on limiting dist’ns
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BDR, Ch.3.2, Cauchy, distribution functions (y) at θ = 0, n = 1



Example

• f (yi; θ) = θe−yiθ, i = 1, . . . ,n

• `(θ) = n log θ − nθȳ

• `′(θ) = n
θ − nȳ θ̂ = ȳ−1

• `′′(θ) = − n
θ2

• ru(θ) = 1√
n`
′(θ)j−1/2(θ̂) =

√
n( 1

θȳ − 1)

• re(θ) = (θ̂ − θ)j1/2(θ̂) =
√
n(1− ȳθ)

• r(θ) =
√

(2n){θȳ − 1− log(θȳ)}1/2

expand log(θȳ) around 1 to get asymptotic equivalence to re, ru
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Example

• f (yi; θ) = θyie−θ/yi!

• `(θ) =

• `′(θ) =

• `′′(θ) =

• re(θ) = (s− nθ)/
√
s

• Pr(S ≤ s) 6= 1− Pr(S ≥ s)

• upper and lower p-value functions: Pr(S < s), Pr(S ≤ s)

• mid p-value function: Pr(S < sr) + 0.5Pr(S = s)
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Aside

• for inference re θ, given y, plot p(θ) vs θ

• for p-value for H0 : θ = θ0, compute p(θ0)

• for checking whether, e.g. Φ{re(θ)} is a good approximation,
• compare p(θ) = Φ{re(θ)} to pexact(θ), as a function of θ, �xed y

• or compare p(θ0) to pexact(θ0) as a function of y

• if pexact(θ) not available, simulate

• if θ is a vector, choose one component at a time
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Nuisance parameters

• θ = (ψ, λ) = (ψ1, . . . , ψq, λ1, . . . , λd−q)

• U(θ) =

(
Uψ(θ)

Uλ(θ)

)
, Uλ(ψ, λ̂ψ) = 0

• i(θ) =

(
iψψ iψλ
iλψ iλλ

)
j(θ) =

(
jψψ jψλ
jλψ jλλ

)

• i−1(θ) =

(
iψψ iψλ

iλψ iλλ

)
j−1(θ) =

(
jψψ jψλ

jλψ jλλ

)
.

• iψψ(θ) = {iψψ(θ)− iψλ(θ)i−1λλ(θ)iλψ(θ)}−1,

• `P(ψ) = `(ψ, λ̂ψ), jP(ψ) = −`′′P(ψ)
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Inference from limiting distributions, nuisance parameters

wu(ψ) = Uψ(ψ, λ̂ψ)T{iψψ(ψ, λ̂ψ)}Uψ(ψ, λ̂ψ)
.∼ χ2q

we(ψ) = (ψ̂ − ψ){iψψ(ψ̂, λ̂)}−1(ψ̂ − ψ)
.∼ χ2q

w(ψ) = 2{`(ψ̂, λ̂)− `(ψ, λ̂ψ)} = 2{`P(ψ̂)− `P(ψ)} .∼ χ2q;

Approximate Pivots, q = 1

ru(ψ) = `′P(ψ)jP(ψ̂)−1/2
.∼ N(0, 1),

re(ψ) = (ψ̂ − ψ)jP(ψ̂)1/2
.∼ N(0, 1),

r(ψ) = sign(ψ̂ − ψ)[2{`P(ψ̂)− `P(ψ)}]1/2 .∼ N(0, 1)
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