
Exercises October 23 STA 4508S (Fall, 2018)

1. The Kullback-Leibler divergence from the distribution G to the distri-
bution F is given by

KL(F : G) =

∫
log

f(y)

g(y)
f(y)dy, (1)

where f and g are and density functions with respect to Lebesgue
measure. Note that the divergence is not symmetric in its arguments.
This is called the directed information distance in Barndorff-Nielsen
and Cox (1994) where the more general definition KL(F : G) =∫

log(dF/dG)dF is used, assuming F and G are mutually absolutely
continuous.

(a) In the canonical exponential family model with density f(s;ϕ) =
exp{ϕT s − k(ϕ)}h(s), s ∈ Rp, find an expression for the KL di-
vergence between the model with parameter ϕ1 and that with
parameter ϕ2. I should have said “from one to the other” to
be clear. If we say “from f(s;ϕ1) to f(s;ϕ2) then it’s (ϕ1 −
ϕ2)

Tk′(ϕ1) − k(ϕ1) + k(ϕ2). If ϕ2 = ϕ̂ and ϕ1 = ϕ0, then it’s
k(ϕ̂)− k(ϕ0)− (ϕ̂− ϕ0)k

′(ϕ0), so close to quadratic in ϕ̂− ϕ0.

(b) Show that for a sample of observations from a model with den-
sity f(y; θ) the maximum likelihood estimator minimizes the KL
divergence from F (·; θ) to Gn(·), where Gn(·) is the empirical dis-
tribution function putting mass 1/n at each observation yi.

The definition from BNC makes the wording confusing; ”from F to G”
means

∫
log(dG/dF )dG. See handwritten notes for Nov 6.

2. Suppose yi ∼ N(µi, 1/n), i = 1, . . . , k and ψ2 = Σk
i=1µ

2
i is the parameter

of interest.1

(a) Show that the marginal posterior density for nψ2, assuming a
flat prior π(µ) ∝ 1, is a non-central χ2

k distribution, with non-
centrality parameter nΣy2i .

(b) Show that the maximum likelihood estimate of ψ2 is ψ̂2 = Σy2i ,
and that nψ̂2 has a non-central χ2

k distribution with non-centrality
parameter nψ2.

1It will be convenient to use λi = µi/
√

Σµ2
i for the nuisance parameters.

1



(c) Compare the normal approximations to ru(ψ), re(ψ) and r(ψ)
with the exact distribution of the maximum likelihood estimate.

(d) Compare the 95% Bayesian posterior probability interval for ψ2,
based on (a) to the 95% confidence interval for ψ2, based on (b).

This question is awfully vague. First need to show that λ̂i = yi/||y||, and
further that λ̂i,ψ = λ̂i (not yi/ψ as was claimed in class). With this in hand
we can show that `p(ψ) = nψ||y|| − nψ2/2, and rp = re = r. We have 3
p-value functions: based on the normal approximation to any of the pivots,
the exact frequentist distribution of ψ̂ and the Bayes posterior for ψ:

pnorm(ψ) = Pr{N(0, 1) ≥
√
n(||y|| − ψ)}

pexact(ψ) = Pr{χ2
k(nψ

2) ≥ n||y||2}
pBayes(ψ) = Pr{χ2

k(n||y||2) ≤ nψ2}.

(The Bayes posterior is switched so that all the curves are descending.) The
somewhat ugly plots on the next page illustrate convergence of both as n→
∞, fixed k, but not (of course) as k →∞, fixed n.

p1= function(psi){pnorm(sqrt(n)*(normy-psi))}

p2=function(psi){pchisq(n*normy^2,df=k,ncp=n*psi^2)}

p3=function(psi){1-pchisq(n*psi^2,df=k,ncp=n*normy^2)}

n=10

k=5

y = rnorm(k,1,sqrt(1/n)) #lazy choice of mu

normy = sqrt(sum(y^2))

lower = normy-4/sqrt(n)

upper = normy+4/sqrt(n)

# should be a good range for psi, but it shouldn’t go negative

psivals=seq(max(0,lower),upper,length=100)

plot(psivals,p1(psivals),type="l",main = paste("n = ", n, "k = ", k),

ylab = "Pvalue function", xlab = expression(psi),ylim=c(0,1))

lines(psivals,p2(psivals),col="blue",lty=2)

lines(psivals,p3(psivals),col="red",lty=3)

legend(upper-normy,.8, c("normal","exactFreq","exactBayes"),

lty=c(1,2,3),col=c("black","blue","red"))

#legend placement is not always ideal
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