Exercises October 23

1. The Kullback-Leibler divergence from the distribution G to the distribution F is given by

$$
\begin{equation*}
K L(F: G)=\int \log \frac{f(y)}{g(y)} f(y) d y \tag{1}
\end{equation*}
$$

where f and g are and density functions with respect to Lebesgue measure. Note that the divergence is not symmetric in its arguments. This is called the directed information distance in Barndorff-Nielsen and Cox (1994) where the more general definition $K L(F: G)=$ $\int \log (d F / d G) d F$ is used, assuming F and G are mutually absolutely continuous.
(a) In the canonical exponential family model with density $f(s ; \varphi)=$ $\exp \left\{\varphi^{T} s-k(\varphi)\right\} h(s), s \in \mathbb{R}^{p}$, find an expression for the KL divergence between the model with parameter φ_{1} and that with parameter φ_{2}. I should have said "from one to the other" to be clear. If we say "from $f\left(s ; \varphi_{1}\right)$ to $f\left(s ; \varphi_{2}\right)$ then it's $\left(\varphi_{1}-\right.$ $\left.\varphi_{2}\right)^{T} k^{\prime}\left(\varphi_{1}\right)-k\left(\varphi_{1}\right)+k\left(\varphi_{2}\right)$. If $\varphi_{2}=\hat{\varphi}$ and $\varphi_{1}=\varphi_{0}$, then it's $k(\hat{\varphi})-k\left(\varphi_{0}\right)-\left(\hat{\varphi}-\varphi_{0}\right) k^{\prime}\left(\varphi_{0}\right)$, so close to quadratic in $\hat{\varphi}-\varphi_{0}$.
(b) Show that for a sample of observations from a model with density $f(y ; \theta)$ the maximum likelihood estimator minimizes the KL divergence from $F(\cdot ; \theta)$ to $G_{n}(\cdot)$, where $G_{n}(\cdot)$ is the empirical distribution function putting mass $1 / n$ at each observation y_{i}.

The definition from BNC makes the wording confusing; "from F to G " means $\int \log (d G / d F) d G$. See handwritten notes for Nov 6 .
2. Suppose $y_{i} \sim N\left(\mu_{i}, 1 / n\right), i=1, \ldots, k$ and $\psi^{2}=\sum_{i=1}^{k} \mu_{i}^{2}$ is the parameter of interest. ${ }^{1}$
(a) Show that the marginal posterior density for $n \psi^{2}$, assuming a flat prior $\pi(\underline{\mu}) \propto 1$, is a non-central χ_{k}^{2} distribution, with noncentrality parameter $n \Sigma y_{i}^{2}$.
(b) Show that the maximum likelihood estimate of ψ^{2} is $\hat{\psi}^{2}=\Sigma y_{i}^{2}$, and that $n \hat{\psi}^{2}$ has a non-central χ_{k}^{2} distribution with non-centrality parameter $n \psi^{2}$.

[^0](c) Compare the normal approximations to $r_{u}(\psi), r_{e}(\psi)$ and $r(\psi)$ with the exact distribution of the maximum likelihood estimate.
(d) Compare the 95% Bayesian posterior probability interval for ψ^{2}, based on (a) to the 95% confidence interval for ψ^{2}, based on (b).

This question is awfully vague. First need to show that $\hat{\lambda}_{i}=y_{i} /\|y\|$, and further that $\hat{\lambda}_{i, \psi}=\hat{\lambda}_{i}$ (not y_{i} / ψ as was claimed in class). With this in hand we can show that $\ell_{p}(\psi)=n \psi\|y\|-n \psi^{2} / 2$, and $r_{p}=r_{e}=r$. We have 3 p-value functions: based on the normal approximation to any of the pivots, the exact frequentist distribution of $\hat{\psi}$ and the Bayes posterior for ψ :

$$
\begin{aligned}
p_{\text {norm }}(\psi) & =\operatorname{Pr}\{N(0,1) \geq \sqrt{n}(\|y\|-\psi)\} \\
p_{\text {exact }}(\psi) & =\operatorname{Pr}\left\{\chi_{k}^{2}\left(n \psi^{2}\right) \geq n\|y\|^{2}\right\} \\
p_{\text {Bayes }}(\psi) & =\operatorname{Pr}\left\{\chi_{k}^{2}\left(n\|y\|^{2}\right) \leq n \psi^{2}\right\} .
\end{aligned}
$$

(The Bayes posterior is switched so that all the curves are descending.) The somewhat ugly plots on the next page illustrate convergence of both as $n \rightarrow$ ∞, fixed k, but not (of course) as $k \rightarrow \infty$, fixed n.

```
p1= function(psi){pnorm(sqrt(n)*(normy-psi))}
p2=function(psi){pchisq(n*normy^2,df=k,ncp=n*psi^2)}
p3=function(psi){1-pchisq(n*psi^2,df=k,ncp=n*normy^2)}
n=10
k=5
y = rnorm(k,1,sqrt(1/n)) #lazy choice of mu
normy = sqrt(sum(y^2))
lower = normy-4/sqrt(n)
upper = normy+4/sqrt(n)
# should be a good range for psi, but it shouldn't go negative
psivals=seq(max(0,lower),upper,length=100)
plot(psivals,p1(psivals),type="l",main = paste("n = ", n, "k = ", k),
    ylab = "Pvalue function", xlab = expression(psi),ylim=c(0,1))
lines(psivals,p2(psivals), col="blue",lty=2)
lines(psivals,p3(psivals),col="red",lty=3)
legend(upper-normy,.8, c("normal","exactFreq","exactBayes"),
    lty=c(1,2,3),col=c("black","blue","red"))
#legend placement is not always ideal
```


[^0]: ${ }^{1}$ It will be convenient to use $\lambda_{i}=\mu_{i} / \sqrt{ } \Sigma \mu_{i}^{2}$ for the nuisance parameters.

